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ABSTRACT

We describe an unsupervised, data-driven, method for auto-
matically identifying repeated patterns in music by analyz-
ing a feature matrix using a variant of sparse convolutive
non-negative matrix factorization. We utilize sparsity con-
straints to automatically identify the number of patterns and
their lengths, parameters that would normally need to be
fixed in advance. The proposed analysis is applied to beat-
synchronous chromagrams in order to concurrently extract
repeated harmonic motifs and their locations within a song.
Finally, we show how this analysis can be used for long-
term structure segmentation, resulting in an algorithm that
is competitive with other state-of-the-art segmentation algo-
rithms based on hidden Markov models and self similarity
matrices.

1. INTRODUCTION

Repetition has been widely-recognized to be a ubiquitous
feature of music, closely related to structural units in music,
such as beats, bars, motives and sections [10]. This applies
both to popular music, often composed of nearly exact rep-
etitions of a small number of sections, e.g. verse, chorus,
and bridge; and to more sophisticated genres, e.g. jazz or
orchestral music, where recurrences are often masked by
complex transformations, including key modulations and
tempo variations. The analysis of repeated patterns and their
temporal organization is central to the understanding of mu-
sic. However, while repetitions are apparent in symbolic
representations of music, their extraction from musical au-
dio poses a number of challenges stemming from factors
such as the presence of background noise, the influence of
multiple instruments and sonic textures, timing variations
and other attributes of musical expression, etc.

The automatic analysis of repetition in music audio has
been an important focus of attention in MIR, with appli-
cations including thumbnailing [1], retrieval [2], and, no-
tably, long-term segmentation using methods such as self-
similarity matrices and hidden Markov models [11, 8, 5].
However, with a few exceptions [7, 1], the emphasis has
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been on locating repetitions rather than on extracting of
characteristic, repetitive patterns. Previous research on de-
tecting motif occurrences across a collection [9] and cover-
song retrieval based on short-snippets [3], illustrate the
utility of extracting such patterns.

In this paper we propose a novel approach for the auto-
matic extraction and localization of repeated patterns in mu-
sic audio. The approach is based on sparse shift-invariant
probabilistic latent component analysis [14] (SI-PLCA),
a probabilistic variant of convolutive non-negative matrix
factorization (NMF). The algorithm treats a musical record-
ing as a concatenation of a small subset of short, repeated
patterns, and is able to simultaneously estimate both the
patterns and their repetitions throughout the song. The anal-
ysis naturally identifies the long-term harmonic structure
within a song, while the short-term structure is encoded
within the patterns themselves. Furthermore, we show how
it is possible to utilize sparse prior distributions to learn
the number of patterns and their respective lengths, min-
imizing the number of parameters that must be specified
exactly in advance. Finally, we explore the application of
this approach to long-term segmentation of musical pieces.

The remainder of this paper is organized as follows:
Section 2 reviews the proposed analysis based on SI-PLCA
and describes its relationship to NMF. Sections 3 and 4
describe prior distributions over the SI-PLCA parameters
and the expectation maximization algorithm for parameter
estimation. Sections 5 and 6 discuss how the proposed
analysis can be used for structure segmentation and provide
experimental results. Finally, we conclude in Section 7.

2. PROPOSED APPROACH

2.1 From NMF to PLCA

Conventional NMF decomposes a non-negative matrix V
into the product of two non-negative matrices W and H:

V ≈WH (1)

In the context of audio analysis, if V represents a time-
frequency decomposition of an audio signal, each column
of W can be thought of as a frequency template used re-
peatedly throughout V , and each row of H can be thought
of as the activations of the corresponding basis in time. In
this paper we focus on the analysis of beat-synchronous
chromagrams [4], but the method is equally applicable to
any non-negative time-frequency representation such as a
magnitude spectrogram.
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Figure 1. Demonstration of the SI-PLCA analysis of a chromagram. The decomposition was initialized with L = 40, and
K = 10 with αz = 0.98, and no sparsity on Wk or hTk . The parameter estimation algorithm pruned out most of the initial
bases due to the sparse prior on z, converging on only 4 bases.

Probabilistic Latent Component Analysis (PLCA) [14]
recasts this analysis in a probabilistic framework. PLCA
represents each column of W and each row of H as multi-
nomial probability distributions and adds an additional dis-
tribution over each basis, i.e. a mixing weight. The decom-
position can be rewritten in NMF terms as follows:

V ≈WZH =
K−1∑
k=0

wk zkhTk (2)

where Z = diag(z) is a diagonal matrix of mixing weights
z and K is the rank of the decomposition (i.e. the number
of bases in W ). Contrary to standard NMF, each of V , wk,
z, and hTk are normalized to sum to 1 since they correspond
to probability distributions.

The probabilistic foundation makes for a convenient
framework for imposing constraints on the parameters wk,
hTk , and z through the use of prior distributions. This will
be discussed in detail in Section 3.

2.2 Adding shift-invariance

A shift-invariant extension to the PLCA model which allows
for convolutive bases is described in [14]. Unlike the single
frame bases wk described in Section 2.1, each SI-PLCA
basis is expanded to form a fixed duration template Wk

containing L frames. Therefore, the F × K matrix W
becomes an F × L × K tensor W , and the normalized
basis wk becomes a normalized matrix Wk. The factorsW
and H are combined via a convolution operation instead of
matrix multiplication in a process analogous to equation (2):

V ≈
∑
k

Wk ∗ zkhTk (3)

Figure 1 shows an example SI-PLCA decomposition of a
chromagram using K = 4 basis patterns of length L = 40.

3. SPARSE PRIOR DISTRIBUTIONS

A common strategy used throughout the NMF literature is
to favor sparse settings, i.e. one containing many zeros, for
W or H in order to learn parsimonious, parts-based decom-
positions of the data. Sparse solutions can be encouraged
when estimating the parameters in equation (3) by impos-
ing constraints using an appropriate prior distribution. In
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Figure 2. Typical behavior of the automatic relevance de-
termination effect of a sparse prior on z. The initial rank of
the decomposition is set to K = 15, and as the estimation
algorithm iterates it is pruned down to a final effective rank
(the number of bases with non-zero zk) of 4.

the following sections we describe how this process can be
used to automatically learn the number and length of the
repeated patterns within a song.

3.1 Learning the number of patterns K

The Dirichlet distribution is conjugate to the multinomial
distributions Wk, z, and hTk , making it a natural choice for
a prior. The Dirichlet prior on z has the following form:

P
(
z |αz

)
∝
∏
k

zαz−1
k , αz ≥ 0 (4)

where the hyperparameter αz is fixed across all K compo-
nents. If αz < 1 this prior favors solutions where many
components are zero, i.e. where the distributions are sparse.

If z is forced to be sparse, the learning algorithm will
attempt to use as few bases as possible. This enables an
automatic relevance determination strategy in which: (a)
the algorithm is initialized to use many bases (large K),
and (b) the sparse prior on z prunes out bases that do not
contribute significantly to the reconstruction of V . Only the
most relevant patterns “survive” to the end of the parameter
estimation process, as is shown in the example in Figure 2.
This approach is useful because it removes the need to spec-
ify the exact rank of the decomposition K in advance. The
parameter estimation simply learns the underlying num-
ber of patterns needed by the data. A similar approach
to automatically determining the rank of a standard NMF
decomposition is described in [15].
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The Beatles/07-Revolver/08-Good_Day_Sunshine

*

Figure 3. Demonstration of the SI-PLCA decomposition of
a chromagram using L = 60 and sparsity in all parameters
(αz = 0.98, c = 16, m = −10−8, and αh = 1− 10−5).

3.2 Learning the pattern length L

The other parameter that must be specified in advance is the
length L of the convolutive bases. In fact, different patterns
within the same piece often have different intrinsic lengths,
e.g. if the chorus uses a shorter riff than the verse or if the
time signature changes. Therefore it is useful to automati-
cally identify the length of each basis independently instead
of using a fixed length across all bases.

We employ a similar strategy to that described in Sec-
tion 3.1 by setting L to an upper bound on the expected
pattern length and constructing a prior distribution that en-
courages the use of shorter bases. This is accomplished by
using a Dirichlet prior onWk with a parameter that depends
on the time position τ within each basis:

P
(
Wk |αw

)
∝
∏
τ

∏
f

wαwτ−1
kfτ (5)

αw is constructed as a piecewise function which is uninfor-
mative for small τ and then becomes increasingly sparse:

αwτ =

{
1, τ < c

1 +m (τ − c), τ ≥ c
(6)

This prior only effects patterns longer than c frames with a
penalty that increases with the pattern length.

An example of the effect of this prior is shown in Fig-
ure 3. Most of the information in the top basis is contained
within the first 12 columns, while the other bases have
effective lengths between 30 and 40.

3.3 Basis/activation trade-off

It is often worthwhile to enforce sparsity on hTk using a
similar approach to equation (4), with a single parameter
αh tied across all points within hTk . The rationale is that
if most of the activations in hTk are zero, then more of the
information in V will be captured by Wk, and vice versa.
A sparse hTk promotes more parsimonious patterns for Wk,
at the cost of a reduced time resolution.

This is illustrated by the example in Figure 1. The second
basis pattern is relatively sparse, while the corresponding
row of H contains many non-zero entries. In fact, the

spacing between adjacent activations in hT1 is smaller than
the length of the pattern; i.e. it is continually mixed with
delayed versions of itself. The pattern repeats about every
8 beats, roughly corresponding to the underlying meter.

In contrast, the bottom two bases contain significantly
more information while the corresponding rows of H con-
tain only about 4 peaks. The sparsity setting αh, in combi-
nation with αwτ , control the trade-off between these quali-
tatively different solutions. A sparse H leads to more musi-
cally meaningful bases that are exactly repeated throughout
the piece, while a sparseW leads to temporal patterns in H
that are organized according to to the underlying rhythm.

4. PARAMETER ESTIMATION

The decomposition of equation (3) can be computed itera-
tively using an expectation maximization (EM) algorithm.
The full derivation of the algorithm can be found in [13].
Here we extend it to incorporate the prior distributions de-
scribed in Section 3. Since we are using conjugate prior
distributions, this extension is straightforward to derive.

In the E-step, the posterior distribution over the hidden
variables k and τ is computed for each cell in V . For
notational convenience we represent this distribution as a
set of matrices {Rkτ} for each setting of k and τ . Each
point in the F×T matrixRkτ corresponds to the probability
that the corresponding point in V was generated by basis k
at time delay τ . It can be computed as follows:

Rkτ ∝ wkτ ⊗ zk
→τ
hTk (7)

where ⊗ denotes the outer product, and
→t
x shifts x t places

to the right. The set of Rkτ matrices are normalized such
that each point in

∑
kτ Rkτ is one.

Given this posterior distribution, the parameters can be
updated in the M-step as follows:

zk ∝
∑
τ

∑
ft

V ·Rkτ + αz − 1 (8)

wkτ ∝
∑
t

V ·Rkτ + αwτ − 1 (9)

hTk ∝
∑
τ

∑
f

←τ
V ·

←τ
Rkτ + αh − 1 (10)

where · denotes the element-wise matrix product and the
parameters are normalized so that z, Wk, and hTk sum to 1.

The overall EM algorithm proceeds by initializing Wk,
z, and hTk randomly, and then iterating equations (7) to (10)
until convergence. This algorithm is only guaranteed to con-
verge to a local optimum, so the quality of the factorization
is somewhat dependent on initialization. In our experiments
we found that initializing z and hTk uniformly while setting
the initial Wk randomly leads to more consistent results.

5. STRUCTURE SEGMENTATION

As mentioned in the introduction, the analysis described
in this paper can be applied to the task of music structure
segmentation. It naturally identifies the long-term temporal
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Figure 4. Song structure segmentation using the SI-PLCA
decomposition shown in Figure 1. The pairwise F-measure
of the estimated segmentation is 0.52.

structure within a song, encoded by H . At the same time,
the short-term structure is captured within the basesW .

We use the beat-synchronous chroma feature extraction
from [4]. Each frame of V is normalized so that the max-
imum energy is one. Analysis of these features identifies
repeated motifs in the form of chord patterns. We assume a
one-to-one mapping between these chord patterns and the
underlying song structure, i.e. we assume that each pattern
is used within only one segment. The mapping is derived by
computing the contribution of each pattern to the chroma
gram by summing equation (3) across all pitch classes:

`k(t) =
∑
f

Wk ∗ zkhTk (11)

The segmentation labels are then found by smoothing theK
“pattern usage” functions `k(t) using a rectangular window,
and finding the most active pattern at each frame:

`(t) = argmax
k

`k(t) ∗ 1S (12)

where 1S is a length S vector of ones. Finally, the per-frame
segment labels `(t) are post-processed to remove segments
shorter than a given minimum segment length.

5.1 Examples

An example of this segmentation procedure is shown in
Figure 4. The top panel shows the original chromagram of
the song. The following four panels show the contribution

V
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Figure 5. Song structure segmentation using the SI-PLCA
decomposition shown in Figure 3 (PFM = 0.69).

of each pattern to the chromagram, and the bottom two
panels show the smoothed `k(t) and the final segmentation.

There are some interesting differences between the ground
truth segmentation and that derived from the proposed al-
gorithm in Figure 4. For example, the proposed algorithm
breaks the beginning of the song into repeated subsections:
basis 2 (mid-gray) → basis 0 (white), while the ground
truth labels this sequence as a single segment. When in-
specting the actual patterns it is clear that these segments
are composed of distinct chord patterns, despite serving a
single musical role together (“intro/verse” as annotated in
the ground truth). In fact the mid-gray and white segments
are reused in different contexts throughout the song in re-
gions with different ground-truth annotations. The analysis
has no notion of musical role, so it tends to converge on
solutions in which bases are reused as often as possible.

One way to address this limitation is to increase the
length L of the convolutive bases (or the corresponding pa-
rameters of αwτ ), in which case the repeated sub-segments
would be merged into a single long segment. This highlights
an inherent trade-off in the proposed analysis between iden-
tifying simple chord patterns that are frequently repeated
(short Wk, many activations in hTk ) as opposed to deriv-
ing long-term musical structure (longer Wk, sparser hTk ).
This trade-off is a recognized ambiguity in the concept of
musical segmentation [12].

When high-level segments are more closely correlated
with the harmonic structure identified by our method, the
proposed analysis leads to good segmentation. An exam-
ple of this is shown in Figure 5. Note that the ground
truth labels make a distinction between “verse”(white) and
“verse/break” (black) which is not present in our analysis.
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Figure 6. PFM as a function of αz (solid line). K = 15,
L = 60, and no other priors are used. The average effective
rank for each setting of αz is displayed. Also plotted is
PFM for αz = 1 for different settings of K (dashed lines).

6. EXPERIMENTS

In this section we evaluate the proposed approach to struc-
ture segmentation. We quantify the effect of the various
prior distributions described in Section 3 and compare our
approach to other state-of-the-art algorithms. The test set
consists of 180 songs from the recorded catalog of The
Beatles, annotated into verse, chorus, refrain, etc. sections
by the Centre for Digital Music. 1 Each song contains an
average of about 10 segments and 5.6 unique labels.

Segmentation performance is measured using the pair-
wise recall rate (PRR), precision rate (PPR), and F-measure
(PFM) metrics proposed in [5] which measure the frame-
wise agreement between the ground truth and estimated
segmentation regardless of the exact segment label. We
also report the entropy-based over- and under-segmentation
scores (So and Su, respectively) as proposed in [6].

6.1 Number of patterns

Since our segmentation algorithm assumes a one-to-one
relationship between patterns and segments, the appropriate
choice of the number of patterns K is critical to obtaining
good performance. We evaluate this effect by segmenting
the data set with varying settings for K with αz = 1, and
by fixing K to 15 and varying αz . No smoothing of the
resulting labels is performed (S = 1).

The results are shown in Figure 6. For αz = 1, segmen-
tation performance decreases as K increases, peaking at
K = 4. Performance improves when the sparse prior is
applied for most settings of αz . The average effective rank
and its standard deviation both increase with decreasing αz
(increasing sparsity). The best performance is obtained for
αz = 0.98, leading to an average effective rank of 3.2±0.5.
These results demonstrate the advantage of allowing the
number of patterns to adapt to each song.

6.2 Pattern length

As described in Section 5.1, the length of the patterns used
in the decomposition has a large qualitative effect on the

1 http://isophonics.net/content/reference-annotations-beatles
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Figure 7. PFM as a function of the pattern length L. The
rank is fixed at K = 6 and no sparse priors are used.

segmentation. To measure this effect, we segmented the
entire corpus varying L between 10 and 120 beats. No spar-
sity was enforced, so the pattern length remained fixed for
all bases and all songs. The results are shown in Figure 7.

As predicted, segmentation performance is poor for
small L since the ground truth segments are often divided
into many distinct short segments. Performance improves
with increasing L, until it reaches a peak at L = 70. When
L grows larger than the average segment length in the
ground truth (78 beats) the performance decreases.

Enforcing sparsity on Wk and varying c leads to similar
results. However, we have found that allowing for vary-
ing pattern length has negligible effect on segmentation
performance, despite often resulting in qualitatively better
patterns. Following this trend, we have also found that
αh 6= 1 has minimal effect on performance, so it is set
to 1 in the remaining experiments. These results are not
surprising since the segmentation is derived from the com-
bination ofW and H . Shifting the sparsity from one factor
to another should not have significant impact on `k(t).

6.3 Comparison to the state-of-the-art

We compare the proposed segmentation system with other
state-of-the-art approaches, including Levy and Sandler’s
HMM-based segmentation system 2 [5] (QMUL) and a
more recent system from Mauch et al [8] based on analysis
of self-similarity matrices derived from beat-synchronous
chroma. As in Section 6.1, we found that QMUL has opti-
mal PFM when the number of segments is set to 4.

We compare these to the proposed system using fixed
rank K = 4 (SI-PLCA) and a variant using sparse z with
αz = 0.995 and K = 15 (SI-PLCA-αz). L was fixed at 70
for both systems, and the minimum segment length S was
set to 32. Also included is a baseline random segmentation
where each frame is given one of 4 randomly selected labels.

The results are shown in Table 1. The system from
Mauch et al performs best, followed by SI-PLCA-αz , SI-
PLCA, and QMUL. All systems perform significantly better
than the baseline. All of the segmentation systems have
roughly comparable pairwise precision and Su. The differ-
ences are primarily in the recall (and So) with Mauch et al

2 Available: http://vamp-plugins.org/plugin-doc/qm-vamp-plugins.html

127

11th International Society for Music Information Retrieval Conference (ISMIR 2010)



System PFM PPR PRR So Su

Mauch et al [8] 0.66 0.61 0.77 0.76 0.64
SI-PLCA-αZ 0.60 0.58 0.68 0.61 0.56
SI-PLCA 0.58 0.60 0.59 0.56 0.59
QMUL [5] 0.54 0.58 0.53 0.50 0.57
Random 0.30 0.36 0.26 0.07 0.24

Table 1. Segmentation performance on the Beatles data set.
The number of labels per song was fixed to 4 for SI-PLCA,
QMUL, and Random. The average effective ranks for SI-
PLCA-αz and Mauch et al were 3.9 and 5.5, respectively.

outperforming SI-PLCA-αz by 12% (15%), and SI-PLCA-
αz in turn outperforming QMUL by 15% (11%).

Aside from our algorithm’s tendency to over-segment,
the most obvious qualitative difference between Mauch et
al’s and the proposed system lies in more accurate boundary
detection in the former system. This is partially a result
of the smoothing performed in equation (12) which tends
to blur out the segmentation. A more sophisticated set of
heuristics for deriving segment labels from the SI-PLCA
decomposition might not suffer from this problem.

7. CONCLUSION

We have described an algorithm for identifying repeated
patterns in music using shift-invariant probabilistic com-
ponent analysis and shown how it can be applied to music
segmentation. The source code is freely available online. 3

We demonstrate that the use of simple sparse prior distri-
butions on the SI-PLCA parameters can be used to automat-
ically identify the bases that are most relevant for modeling
the data and discard those whose contribution is small. We
also demonstrate a similar approach to estimating the opti-
mal length of each basis. The use of these prior distributions
enables a more flexible analysis and eliminates the need to
specify these parameters exactly in advance.

Although this paper has focused on structure segmenta-
tion, the proposed analysis has many other potential applica-
tions. For example, basis patterns could be extracted from
a collection of pieces to search for common motifs used
throughout a corpus of music, e.g. retrieval of cover songs
or musical variations. Similarly, Mauch et al demonstrate
that chord recognition performance can be improved by
pooling data from repeated sections to smooth over vari-
ations [8]. In the context of the proposed analysis this
amounts to simply analyzing the bases Wk.

Other potential future work includes extracting the hier-
archical structure within a piece by repeating the SI-PLCA
analysis at different time scales. Finally, we mention that
it is possible to extend the SI-PLCA decomposition to be
key-invariant by using the 2D extension to SI-PLCA which
allow for shifts in pitch class/frequency as well as time [14].
Such an extension would allow for structure segmentation
that is insensitive to key modulations within a piece.

3 http://marl.smusic.nyu.edu/resources/siplca-segmentation/
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