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ABSTRACT

In this work we improve accuracy of MFCC-based genre
classification by using the Harmonic-Percussion Signal Sep-
aration (HPSS) algorithm on the music signal, and then
calculate the MFCCs on the separated signals. The choice
of the HPSS algorithm was mainly based on the observa-
tion that the presence of harmonics causes the high MFCCs
to be noisy. A multivariate autoregressive (MAR) model
was trained on the improved MFCCs, and performance in
the task of genre classification was evaluated. By combin-
ing features calculated on the separated signals, relative er-
ror rate reductions of 20% and 16.2% were obtained when
an SVM classifier was trained on the MFCCs and MAR
features respectively. Next, by analyzing the MAR features
calculated on the separated signals, it was concluded that
the original signal contained some information which the
MAR model was capable of handling, and that the best per-
formance was obtained when all three signals were used.
Finally, by choosing the number of MFCCs from each sig-
nal type to be used in the autoregressive modelling, it was
verified that the best performance was reached when the
high MFCCs calculated on the harmonic signal were dis-
carded.

1. INTRODUCTION

Music information retrieval (MIR) is a diverse research
field with many different areas of interest, such as chord
detection, melody extraction etc. One of the popular tasks
is classifying music into genres, which not only serves to
ease organization of large music databases, but also drives
the general development of features for representing the
various important aspects of music. The task of genre clas-
sification draws upon many different kinds of information
which means that one can either use features capable of ex-
pressing the music as a whole, or use many different types
of features, each describing specific aspects of the music,
such as the beat, melody, timbre etc. A low level feature
frequently used for modelling music is the Mel-Frequency
Cepstral Coefficients (MFCC), originally proposed in [1],
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(see [2] for a comprehensive review). The MFCCs are of-
ten calculated on the unaltered spectrum, thus containing
information of all aspects of the music. The MFCCs ef-
fectively function as a lossy compression of a short part
of the music signal into a small number of coefficients. It
may happen that certain characteristics of the music signal
which could be useful for genre classification are blurred
by the compression. A possible way to resolve this issue
is to break down the music signal into several signals, each
containing a specific kind of information about the signal,
and then calculate the MFCCs on the new signals. An ex-
ample could be to separate the instruments and then cal-
culate the MFCCs for the signals, each containing only a
single instrument. However, it is possible that such a sepa-
ration will fail, thus generating unpredictable results which
might actually be worse than just using the original signal
for classification. In this work we have used a simple algo-
rithm that separates the music signal into two signals, one
containing harmonics and the other containing percussion.
The choice of this algorithm is based on some observations
about the nature of the MFCCs, discussed in section 2.

After the music signal has been separated, MFCCs can
be calculated on all three signals (original signal, harmon-
ics and percussion). A classifier can be trained directly on
the MFCCs, or more elaborate models can be constructed
and used for classification. In this paper we investigate if
higher classification performance can be achieved by sep-
arating the music signal as described above. We train a
multivariate autoregressive (MAR) model on the MFCCs
from the three signal types, and use it in a classifier.

The MAR model has proven to be efficient for the task
of genre classification. First of all, the MAR model inte-
grates the short time feature frames temporally, and sec-
ondly it is capable of modelling the covariances between
the MFCCs. Since the ultimate goal of genre classifica-
tion algorithms is to reach an accuracy of 100%, it is most
meaningful to analyse the model with the highest accuracy.
Therefore the article will focus mostly on the results ob-
tained when using the MAR model for classification. Fur-
thermore, by comparing performance of the MAR features
calculated on the different signal types, it can be inferred
which aspects of the music the MAR model analyses.
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2. THE MEL-FREQUENCY CEPSTRAL
COEFFICIENTS

The Mel-Frequency Cepstral Coefficient (MFCC) feature
extraction is a useful way of extracting timbre information.
The music signal is divided into a number of short time
frames. For each frame,Nm coefficients are calculated,
thus yieldingNm time series to be modelled by the MAR
model, described in section 3.

In the following we explain the motivation for includ-
ing a separation step by considering how the MFCCs are
calculated. In the Mel filter-bank analysis, the bandwidth
of each filter is linear for frequencies under around 1 kHz,
and thereafter grows logarithmically. Therefore each of
the lower Mel coefficients is the mean of a relatively nar-
row frequency band. If the spectrum is characterized by
narrow pitch spikes, the difference between two adjacent
Mel coefficients is likely to be large. Since the MFCCs are
obtained by applying the DCT transform, these differences
will be described by the high MFCCs. In other words, the
high MFCCs are capable of closely fitting the pitch present
in the frame on which they are calculated. Pitch is usually
not a very good indicator for music genre, and therefore
the high MFCCs should be discarded. On the other hand, if
the spectrum has a smooth envelope the high order MFCCs
will not model pitch, and therefore may be usable for genre
classification. Most music signals contain both harmonics
(pitch spikes) and percussion (smooth spectral envelope).
Since the presence of pitch is harmful to the information
content of the high MFCCs, it seems feasible to separate
harmonics from percussion.

Furthermore it is possible that the shape of the spec-
tral envelope of harmonics and percussion when they have
been separated is useful for genre classification, and that
the information content of the lower MFCCs will be im-
proved by separating the music signal.

3. THE MULTIVARIATE AUTOREGRESSIVE
MODEL

The MAR model is similar to the normal autoregressive
model, in that it predicts the next sample of a time series
as a linear combination of past samples. The MAR model
extends the capabilities of the normal AR, as it capable
of making predictions for multiple time series and utilizes
correlations between time series for prediction. The pre-
diction of then’th Nm time series is calculated as

xn =

P∑

p=1

Apxn−I(p) + un (1)

wherexn is aNm×1 vector containing the predictions, and
n is the frame index.P is the model order which specifies
the number of time lags used for prediction. The MAR
model is not constrained to using only time lags1 . . . P ,
but an arbitrary set of time lagsI = {τ1 . . . τP } can be
chosen.A1 . . . AP are theNm × Nm weight matrices for
time lagsτ1 . . . τP . Element[A]i,jp is the weight that con-
trols how much of signalj, time-laggedτp samples, is used

for prediction of signali. un is the offset vector and can be
omitted if each time series is subtracted by it’s mean before
estimating the coefficient matrices. The model parameters
can be estimated by using the least mean squares approach.
TheP weight matricesA1 . . . AP and the the offset vector
un are stacked into aPN2

m + Nm dimensional vector, and
this constitutes the feature vector used for classification.

A basic assumption of the MAR model is that the time
series upon which it is calculated has a stationary distribu-
tion. At first glance this assumption does not seem to go
well with the nature of the percussive signal since it does
not have a smooth time envelope. However, over longer pe-
riods roughly the same percussion sounds and thus MFCCs
will appear again and again, which can be interpreted as
stationarity. On the other hand, even though the harmonic
signal has a smooth time envelope for a given note, mean-
ing that the MFCCs will have a stationary distribution dur-
ing the note, the distribution will change as the next note is
struck. Since the exact same combination of harmonics, or
in other words the same pitch spikes which are modelled
by the high order MFCCs, is unlikely to occur more than
maybe a few times, the distribution cannot be assumed sta-
tionary.

High order models are characterized by a high variance
which gives them the power to fit closely to a time series,
but also makes them prone to over-fitting. Low order mod-
els are more dominated by bias which makes them more
suitable in cases where the signal envelope is the desired
target. In [3], the MAR model was found to perform best
with P = 3 when the task was genre classification, but the
optimal value might differ according to the application for
the reasons listed above.

4. HARMONIC-PERCUSSION SIGNAL
SEPARATION

The Harmonic-Percussion Signal Separation (HPSS) algo-
rithm proposed in [5], is a simple and fast method of di-
viding a musical signal,N, into two signals,H andP, each
containing only the harmonic and percussive elements re-
spectively. HPSS can be thought of as a two-cluster soft
clustering, where each spectrogram grid-point is assigned
a graded membership to a cluster representing harmonics
and a cluster representing percussion. The algorithm uses
the fact that percussion has a short temporal duration and is
rich in noise, while harmonic elements have a long tempo-
ral duration with most of the signal energy concentrated in
pitch spikes. Thus in the spectrogram, percussion appears
as vertical lines of high power, whereas harmonic elements
appear as horizontal lines.

In broad terms, the HPSS algorithm works by assuming
independence betweenH andP, and using Bayes formula
to calculatep(H, P|N)

log p(H, P|N) = log p(N|H, P)+log p(H)+log p(P) (2)

The prior distributionsp(H) andp(P) are defined as func-
tions that measure the degree of smoothness in time and
frequency respectively.
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log p(H) =
∑

ω,τ

−1

2σ2
H

(H
γ
ω,τ−1 − Hγ

ω,τ )2 (3)

log p(P) =
∑

ω,τ

−1

2σ2
P

(P
γ
ω−1,τ − P γ

ω,τ )2 (4)

WhereσH , σP andγ has been manually specified as in
[5]. Thus the prior forH will be high when each row of
the spectrogram is characterized by slow fluctuations, and
similarly the prior forP will be high when this is the case
for columns of the spectrogram. The likelihood function
has been defined by measuring the I-divergence between
N andH + P:

log p(N|H, P) = (5)

−
∑

ω,τ

(
Nω,τ log

Nω,τ

Hω,τ + Pω,τ

− Nω,τ + Hω,τ + Pω,τ

)

and so the likelihood is maximized whenNω,τ = Hω,τ +

Pω,τ for all ω andτ . The log-likelihood function is max-
imized by using the EM-algorithm. The update equations
have been omitted in this work, but can be found in [5].

It is important to realize that since the HPSS algorithm
is not a source separation algorithm but rather a decompo-
sition of the original signal, no criteria of success has been
defined, and so the algorithm cannot fail unless it fails to
converge.

5. DATASET

We used the TZGENRE dataset proposed in [8]. The dataset
hasNs = 1000 songs divided equally into 10 genres: blues,
classic, country, disco, hip-hop, jazz, metal, pop, reggae
and rock. Each song is a 30s sound snippet, and only one
MAR model is calculated for the whole song. Other meth-
ods for calculating multiple MAR models on a single song
and combining them afterwards can be found in [3] and [4].

6. EXPERIMENTAL SETUP

First the music signal was separated by using HPSS, and
MAR features were calculated for each signal. If the MAR
model is capable of using both harmonics and percussive
elements at the same time, such a decomposition will not
result in higher performance. However, if for instance the
MAR model analyses the harmonic elements, then remov-
ing percussion will enable the MAR features to perform
better. In the following, MAR features calculated on the
harmonics, percussion and normal signals will be referred
to asmh, mp, mn respectively, whereas MFCCs will be
referred to asch, cp andcn. In addition to the three sin-
gle signal feature types, four combinations features of the
MAR features and four combinations of the MFCCs were
constructed:mhp, mhn, mpn, mhpn, chp, chn, cpn and
chpn.

The sample-rate of the songs was 22.05 kHz. The MFCCs
were calculated on 20 ms windows with an overlap of 10 ms.
40 filter-banks were used in the MFCC calculation. Since

the number of MFCCs used to calculate the MAR features
has a great influence on performance, each combination
of features was evaluated with 19 different values ofNm.
For each combination anNs × D data matrix was created
by stacking theNs features vectors, each of dimensionD.
For features containing only MAR combinations, the di-
mension isD = c(PN2

m +Nm), wherec ∈ {1, 2, 3} is the
number of stacked MAR models.

The classifier used was a support vector machine with
a Gaussian kernel. Kernel parametersσ andC were not
tuned, but each column of the data matrix was normalized
with respect to standard deviation. 500-fold cross valida-
tion was used for each of the 19 values ofNm, resulting
in aNs × 19 matrix, where each column contained the av-
erage accuracy for each song for a givenNm. The overall
performance for a givenNm was obtained by taking the
mean of that column.

7. RESULTS

In this section the results of the experiments described in
section 6 are presented and discussed.

7.1 Combining features from the separated signals

Figure 1 shows the classification performance of the seven
combinations when the classifiers were trained directly on
the MFCCs. The difference between the classifier trained
on the MFCCs calculated on the original signal to the best
performing feature,chp, is 7.5%, corresponding to a rel-
ative error rate reduction of 20.0%. This is a significant
improvement, and confirms that the MFCCs have prob-
lems expressing both harmonic and percussive information
when present at the same time.

ch reaches its near peak performance for lowNm. This
means that for the harmonic signal, very little usable infor-
mation is contained in the high MFCCs. The MFCCs are
fairly low-dimensional which means that the SVM classi-
fier is still able to achieve optimal performance, and thus
performance only degrades slightly. Performance ofcp

keeps increasing when including more MFCCs, meaning
that the higher MFCCs in the percussion signal contains
usable information. Furthermore, the performance gained
by including higher MFCCs is more than for the harmonics
signal but less than for the percussion signal. This confirms
that the presence of harmonics degrades the information
quality of the higher MFCCs.

Next, we use the MAR model for classification and test
performance ofmh, mp andmn, and of the combinations
of them. The performance of the seven combination fea-
tures is shown on Figure 2.mn is the most powerful of the
three single model features peaking with a performance of
74.1%. Pleasingly, all three single model features have a
lower performance than the combination features.mhnp

had a peak performance of 77.6%, a gain of 3.6% com-
pared to the best single signal model.

As was also seen when using the MFCCs in the clas-
sifier, mhp performs significantly better thanmn. This
shows that the autoregressive modelling of the MFCCs cal-
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Figure 1. Performance curves for the classifier trained on
MFCCs

culatedon the original signal cannot compensate for the
MFCCs’ inability to handle the mixture of harmonic and
percussive information.

An important difference between using MFCCs or MAR
features in the classifier is thatmhpn outperformedmhp,
whereaschpn andchp had the same level of performance.
Thus the MAR model is capable of modelling some prop-
erties of the original signalN, which are present in neither
H nor P. More specifically, the MAR model can in some
cases predict percussion from harmonics or vice versa, due
to the autoregressive modelling. This is a reasonable claim
when keeping in mind that the HPSS algorithm is not a
source separation algorithm, and that some instruments will
produce both harmonics and percussive sounds.

As an example, when a note is played on a piano the
hammer hits the string causing it to vibrate, resulting in a
sound with a high attack part and a slowly declining en-
velope. Since this will happen every time the piano is
used, the MAR model can use the attack part to make a
prediction about the rest of the sound. When using HPSS
to separate the signal however, percussion is assumed to
be independent from harmonics, and the attack part, which
is rich in noise and has a short temporal duration, is as-
signed to the percussion signal while the rest of the sound
is assigned to the harmonic signal. When this happens the
MAR model can no longer model the dependencies, so in-
cluding MAR features calculated on the original signal in-
creases performance.

7.2 Differences between the signal type MAR features

In this section we analyse some of the differences between
the MAR features calculated on each of the separated sig-
nals.

An important step towards understanding the MAR fea-
tures and specify their application domain is to investigate
to which degree features calculated on the different signal
types classify the same songs or not. In the former case,
classification accuracy with different signal types is largely
genre dependent, and in the latter case there will be some
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Figure 2. Performance curves for the classifier trained on
MAR features
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Figure 3. Examples of genre specific performance, only
MAR features

easy songs which can be classified by all signal models,
and some hard songs that only the features with an overall
high performance can classify.

Analysis is carried out by finding the point where all
signal models have approximately the same accuracy, and
calculating the correlation between theNs × 1 song accu-
racy vectors. It was observed that there is a low correlation
between which songsmh andmp classify. This suggests
that the two signal models contains different information
which allows for the classification of different songs, and
thus are efficient with different kinds of music. For most
genresmn is slightly better thanmp, with mh being the
worst performing of the three. However, for some genres
mh achieves the best performance when the high MFCCs
were discarded, as can be seen on Figure 3. Furthermore,
the fact that the correlation of the song classification vec-
tors ofmp andmn was high, means that they classify more
of the same songs thanmh and mn, which is consistent
with the fact thatmhn andmp classify more of the same
songs thanmpn andmh. These results suggest that MAR
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Feature Performance Relative ERR
cn 61.1% N/A
chp, Constr. 68.9% 20.0%
mn 74.1% N/A
mhpn, Constr. 77.6% 13.5%
mhpn, N.Constr. 78.3% 16.2%

Table 1. Overview of the best performing features. Constr.
or N.Constr. refer to the constraint onNm.

features calculated on the original music reflect the per-
cussive elements to a higher degree than the harmonics el-
ements.

The fact thatmpn is even higher thanmhp seems like
a contradiction to the statement made earlier thatmn is
more correlated withmp than withmh. The explanation
to this is most likely that the gains from combining un-
correlated features, i.e.mhp andmhn, cannot match the
penalty caused by the low performance ofmh. Although
mp andmn are somewhat correlated, there are still some
differences in what songs they classify, and this seems to
results in a performance gain when combined.

7.3 Selecting Nm for each signal type

Figure 2 in section 7.1 shows that the MAR features cal-
culated on the different signal types perform best for dif-
ferent values ofNm. In this section we investigate if per-
formance can be improved by removing the constraint that
the number of MFCCs used to calculate the MAR model
must be the same for all signal types. Since it is possible
that simply combining the best performing models does
not achieve the highest performance, the five best models
of each signal type were used to form a number of combi-
nation features.

Figure 4 shows the performance plotted versus the di-
mensionality of the feature vector, using the same number
of MFCCs, and with different number of MFCCs. The fig-
ure makes it easy to compare feature efficiencies, as a point
that is situated higher and on the left side of another point
of the same type, means that a feature of lower dimension-
ality had higher performance.

From Figure 4 it seems that the method of selectingNm

for each single MAR model is not particularly capable of
producing low dimensional features, but the method do
achieve the highest overall performance. However, since
it is in general infeasible to try all combinations ofNm

before selecting the best one, a general tendency must be
discovered. In section 2 it was suggested that the high
MFCCs calculated on the harmonics signal should be dis-
carded, whereas high MFCCs from the percussion signal
could be used. This was the case when the classifier was
trained directly on the MFCCs, and when the classifier was
trained on the MAR features. It is not surprising therefore,
that the best performance of 78.3% was obtained by dis-
carding the high MFCCs for the harmonic signal and using
high MFCCs from the percussion signal.
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Figure 4. Performance and dimensionality of combination
models

8. PERFORMANCE DEMONSTRATION

This section contains a short demonstration of the perfor-
mance obtained when combining the improved features with
two other features types, each describing different aspects
of music. The first type is the Rhythm Map features, pro-
posed in [6], which are calculated on the percussion signal.
A song is represented as a ten dimensional vector, each el-
ement describing the membership to a rhythmic template
extracted from the entire dataset. The second feature type,
henceforth referred to as TZ-features, represents a song as
an 68-dimensional vector containing a set of timbre related
features proposed in [8]. The Rhythm Map is of special
interest since it is calculated on the percussive signal pro-
vided by the HPSS algorithm, and thus provide no infor-
mation about the harmonics. The TZ-features were cho-
sen because they were tested in combination with Rhythm
Map (see [7]), where it was shown that the two feature
types compliment each other well. An accuracy of 75.0%
was obtained on the dataset by the combination of Rhythm
Map and TZ-features. When the MAR features calculated
on the original signal were included as well, a performance
of 80.1% was achieved. Finally, by separating the signal
with HPSS and calculating MAR features on the three sig-
nals as proposed, a performance of 82.46% was obtained,
corresponding to a relative error rate reduction of 12.0%.

9. CONCLUSION

In this work we proposed that separating the music signal
into more signals, each containing certain characteristics
of the original signal, could produce better features, lead-
ing to increased performance in the task of music genre
classification. Based on the observation that the presence
of harmonics causes the high MFCCs to be noisy, we used
the HPSS algorithm to separate the signal into two signals,
one containing harmonics and the other containing percus-
sion. The separation increased performance significantly,
both when the classifier was trained on the MFCCs and
when it was trained on the MAR features. The best perfor-
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mance obtained with the MAR features was 78.3%, corre-
spondingto a relative error rate reduction of 16.2%. It was
seen that the MAR model uses both harmonic and percus-
sive information to make predictions, but that the percus-
sive information seems to be the dominating. The fact that
the best performance was reached when the MAR features
from the separated signals were combined with the origi-
nal signal showed us that the MAR-model could, to some
extend, model dependencies between harmonic and per-
cussive elements. The combination of MFCCs calculated
on the harmonics signal and MFCCs calculated on the per-
cussion signal performed better than MFCCs calculated on
the original signal, and this was interpreted as an inability
of the MFCCs to model the presence of both harmonics
and percussion in the same signal. An important conclu-
sion of this is that separating the music signal as proposed
simply creates better low level features, which means that
models trained on these features will also be improved.
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