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ABSTRACT

Content-based prediction of musical emotions and moods
has a large number of exciting applications in Music In-
formation Retrieval. However, what should be predicted,
and precisely how, remain a challenge in the field. We pro-
vide an empirical comparison of two common paradigms
of emotion representation in music, opposing a multidi-
mensional space to a set of basic emotions. New ground-
truth data consisting of film soundtracks was used to as-
sess the compatibility of these models. The findings sug-
gest that the two are highly compatible and a quantitative
mapping between the two is provided. Next we propose a
model predicting perceived emotions based on a set of fea-
tures extracted from the audio. The feature selection and
transformation is given special emphasis and three sepa-
rate data reduction techniques are compared (stepwise re-
gression, principal component analysis, and partial least
squares regression). Best linear models consisting of 2-
5 predictors from the data reduction process were able to
account for between 58 and 85% of the variance. In gen-
eral, partial least squares models performed the best and
the data transformation has a significant role in building
linear models.

1. INTRODUCTION

Emotional impact of music is one of the most important
reasons for listening to music. A reliable content-based
prediction of emotions in music would be a highly useful
application of MIR, as suggested by the promising proto-
types recently been put forward. It seems however that an
improvement of the study would require a precise clarifi-
cation of the concept under study, which is difficult due to
the inherent fuzziness of the topic. Previous research de-
fined mood as “sound and feel” of music (AlIMusicGuide),
of “feeling inspired by the music pieces” (Last.fim) [1].
Such broad opening of the study to a large realm of seman-
tic expression, although interesting by itself, makes how-
ever the problem particularly difficult to tackle. Dealing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.

(© 2009 International Society for Music Information Retrieval.

621

with the concept of emotion instead, which is rooted on a
large background of scientific research, would enable on
the contrary a better controlled study of research.

However, robust and generalizable prediction of emo-
tions has been difficult for several reasons, namely due to
their conceptual elusiveness, their highly contextual de-
pendencies on situation, context and musical style, and
the limitations of the computational approaches utilised to
date, which emphasize mainly on low-level acoustic fea-
tures. The conceptual elusiveness of emotions is apparent
in both the multitude of theoretical approaches taken, as
well as the high individual variability in the subjective self-
reports of emotional experiences. During the past decade,
basic emotion model, dimensional models, and domain-
specific emotion models have all received support in stud-
ies of music and emotion [2]. However, it still remains
to be clarified whether models and theories designed for
everyday emotions — such as the basic emotion model —
can also be applied in an aesthetic context such as music.
It has been argued, for example, that a few primary basic
emotions seem inadequate to describe the richness of the
emotional effects of music [3].

Current computational efforts of modelling polyphonic
timbre seem to have reached what Aucouturier has called a
‘glass-ceiling’ effect, probably due to their strict reliance
on low-level audio features. This ceiling appears to be
around 50-60% of the variance explained [4]. Out of these
three shortcomings, we aim to provide advances in two of
them, namely by carrying simultaneous conceptual com-
parison of basic emotions and the circumplex model, and
by performing the selection of relevant audio and musical
features by means of multivariate methods.

2. BACKGROUND
2.1 Mood, emotion, and affect terms

Mood ontologies structure emotional adjectives and labels
into a set of various mood clusters. Following purely the-
oretical studies [5, 6], more systematic approaches attempt
to automatically infer the set of clusters based on analysis
of large set of mood labels that are further reduced with the
help of statistical tools: agglomerative hierarchical cluster-
ing of 179 AMG mood labels [1], consensus among a set of
candidate labels used in literature [7, 8] collected through
psychological experiments [9, 10], etc.
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Representation of emotion in a dimensional affective
space has gained support among researchers in music and
emotion [2]. Instead of claiming that independent neural
system exists for every basic emotion, the two-dimensional
circumplex model [7] proposes that all affective states arise
from two independent neurophysiological systems: one re-
lated to valence (a pleasure-displeasure continuum) and
the other to activity (activation-deactivation). In contrast,
Thayer [11] suggested that the two underlying dimensions
of affect were two separate arousal dimensions: energetic
arousal and tense arousal. However, the two-dimensional
models have been criticized for their lack of differentiation
when it comes to emotions that are close neighbours in the
valence-activation space, such as anger and fear. It has also
been discovered, that the two-dimensional model is not
able to account for all the variance in music-mediated emo-
tions [12] and three-dimensional variant containing valence,
energy arousal and tension arousal has given better empir-
ical results [13].

2.2 Ground truth collection

Extensive work has been carried out for the collection of
ground truth related to mood ontology [10, 14]. Concern-
ing the dimensional paradigm, Kim et al [15] have col-
lected dynamic ratings expressed on the valence-activity
space from thousands of songs drawn randomly from the
uspop2002 database via a customized online game.

2.3 Mood and emotion prediction

Previous computational works attempt to predict mood clus-
ters [16, 17] and emotion categories [18, 19]. Lu, Liu, and
Zhang [20] studied mood detection and tracking using a
variety of acoustic features related to intensity, timbre, and
rhythm. Their classifier used Gaussian Mixture Models
(GMMs) for Thayer’s four principal mood quadrants in the
valence-activity representation. The system was trained
using a set of 800 classical music clips, each 20 seconds
in duration, hand labeled to one of the 4 quadrants. Their
system achieved an accuracy of 85% when trained on 75%
of the clips and tested on the remaining 25%.

We believe that linear models are more useful than clas-
sifications for understanding emotion in music. Indeed,
music is often emotionally ambiguous and listeners are not
particularly certain of the emotion categories if given com-
plex examples. Valence and activity mapping has been
previously done [21,22], but selecting the optimal set of
features is more challenging, due to statistical constraints
imposed by linear models.

3. NEW GROUND-TRUTH SET: SOUNDTRACKS

In the present work, both discrete and dimensional mod-
els of emotions are simultaneously investigated in order to
clarify their mutual relationship and applicability to mu-
sic and emotions. The three-dimensional model is used to
collect data regarding the dimensional approach as it en-
compasses both lower dimensional models. In order to
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Figure 1. Average ratings of the three dimensions and ba-
sic emotions for the 360 soundtrack excerpts.

obtain a large sample of unknown yet emotionally stim-
ulating musical examples, a selection of film soundtracks
was used. Soundtracks are composed for the purpose of
conveying powerful emotional cues, and may serve as a
relatively ‘neutral’ musical material in terms of music pref-
erences and familiarity. A three-part selection process was
utilized. First, 12 experts chose 360 excerpts representing
Happy, Sad, Tender, Scary and Angry emotions as well as
different quadrants in the 3D affect space.

3.1 Evaluation

The expert panel (music students with extensive musical
background) rated the examples, using both basic emotion
concepts and dimensional ratings, on Likert scales (cf. Fig-
ure 1). Then a sampling of the 360 excerpts using both
conceptual frameworks was carried out.

e For the basic emotion examples, the excerpts were
categorized and ranked according to the basic emo-
tion concept that received highest rating. From these
ranked lists, the top five examples and five mod-
erately high examples were chosen for each basic
emotion (happiness, sadness, tenderness, anger and
fear), yielding 50 basic emotion examples ([5 top +
5 moderate] x 5 categories).

For the dimensional model, each dimension was sam-
pled at 4 percentiles along its axis whilst the other
two dimensions were kept constant, resulting in 60
audio examples that cover the affect space.

This set of 110 examples will be called Soundtrackl10 set
hereafter. The mean duration of the excerpts was 15.3 sec-
onds (SD 1.9 s).

In the next phase, 116 university students aged 18-42
years rated the Soundtrack110 set using both 3D set and
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3D 2D

R (B) R (B)
Happiness .89 (V.93,A.79,T_,35) .89 (V'85,A'49)
Sadness .63 (V_20,A.84,T.22) | .63 (V_05.A.69)
Tenderness 77 (V,33,A-_45,T_,5g) 74 (V_50,A_.51)
Fear 87 (V_83.A07.T3) | .87 (V._90,A24)
Anger .64 (V_52,A3,T35) | .68 (V_s5,A3;5
Mean .76 .76

Table 1. Ridge regression summary of dimensional mod-
els explaining basic emotion model categories. For in-
stance, 89% of the variance (R?) of Happiness can be ex-
plained with Valence (V) and Activity (A), with respective
linear coefficient (3) .85 and .49.

basic emotions (on Likert scales). For the ensuing anal-
yses, the means of the ratings across the participants were
used as high consensus existed (Cronbach o > .99 for each
concept).

3.2 Basic emotions vs. dimensional ratings

As could be seen from the Figure 1, at least two emotion
dimensions correlated heavily. In numerical terms, tension
and valence correlate highly (r = —.83) and activity and
tension in moderate way (r = .57), while valence and ac-
tivity do not exhibit such a relation (r = —.08). The high
correlation has implications in the task of constructing re-
gression models for predicting categorical ratings based on
the dimensional rating data, because multicollinear vari-
ables are problematic for standard versions of the regres-
sion. Hence we employed ridge regression since this tech-
nique is less influenced by collinearity due to the inclusion
of constant variance parameter. This enables to attenuate
the influence of collinearity in the calculation of the least
squares optimization in regression. Ridge regression was
used to predict the dimensional ratings from the categori-
cal ratings and vice versa. The results — displayed in Ta-
bles 1 and 2 — demonstrate that the basic emotion model
can more accurately explain the results obtained with the
three-dimensional model than contrariwise. Nevertheless,
the difference is not large (17%, the difference between the
mean R? from the Tables 1 and 2) and this high degree of
overlap between the conceptual frameworks suggests that
the conceptual frameworks are highly compatible.

To further examine the validity of the three-dimensional
model, its underlying coefficients of determination were
also compared with the 2-dimensional circumplex model
[7]. The results suggest that these two-dimensional mod-
els can explain the results obtained with the basic emo-
tion model virtually as accurately as the three-dimensional
model, with the exception of anger and tenderness (minor
differences in R? values, see Table 1). It is worth point-
ing out that sadness was explained equally modestly (R?
= .63), in comparison to other emotion categories, by all
the dimensional models. This may reflect the participants’
difficulty to rate the valence of sad music, for sadness in
music is rarely perceived to represent an unpleasant emo-

Basic emotion model

R*(B)

Valence | .97 (H3s, S..11, T20, Fo50, AL 14)
Activity | .88 (H47, S.32, T_42, F_05, A36)
Tension .93 (H_‘29, S_'23, T_,55, F,]g, A'lg)
Mean 93

Table 2. Ridge regression summary of dimensional mod-
els explained by basic emotion model categories: Happi-
ness (H), Sadness (S), Tension (T), Fear (F) and Anger (A).
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Figure 2. General design of the methodology.

tion. Despite this irregularity, these analyses suggest fairly
high mutual correspondence between the two conceptual
frameworks and stimulus sets.

4. AUDIO AND MUSIC FEATURE EXTRACTION
AND TRANSFORMATION

The methodology proposed in this study is summarised in
Figure 2: The Soundtrackl 10 collection has been analysed
using MIRtoolbox [23], and a set of features has been se-
lected, explained below. We assume that a theoretical se-
lection of features combined with a suitable data reduction
techniques will result to the most parsimonious model. In
addition, the features may require transformation to linear-
ity before statistical mapping, described in the final sec-
tion.

4.1 Theoretical selection of features

First, a theoretical selection is made based on the tradi-

tional categories of musical elements (rhythm, timbre, pitch,
form, etc.) and by representing these categories by a few,

non-redundant (non-correlating) features, in total 29. A

synthetic description of the complete feature extraction pro-
cess is given in Figure 3.

4.1.1 Timbre

Based on a spectrogram with a frame length of .046 s and
half overlapping, three timbral descriptions are computed:
centroid, spread and entropy, the latter predicting the pres-
ence of strong peaks. The mean correlation between fea-
tures, computed using the sountrackl 10 set, is v = .10.

4.1.2 Harmony

The peaks configuration in the spectrogram enables to es-
timate a measure of roughness [24]. The entropy of each
spectrum, collapsed into one single octave, indicates the
presence of important chroma components. Or more pre-
cisely, the spectrum is turned into a chromagram, wrapped
into one octave, and tonal information is computed — such
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Figure 3. Flowchart of predictor extraction.

as key clarity or harmonic change [25] — based on tonal
profile [26,27]. We also designed a new measure of ma-
jorness, related to the difference of amplitude, observed on
the tonal profile, between the best major score and the best
minor score. For this dimension we obtain a within-feature
correlation of r = .04

4.1.3 Register

Broad description of the localisation of pitch energy is per-
formed through an estimation of the centroid and deviation
of the unwrapped chromagram, and also in parallel a statis-
tic description of pitch component based on advanced pitch
extraction method [28]. r = .27

4.1.4 Rhythm

Rhythmic periodicity is estimated both from a spectral anal-
ysis of each band of the spectrogram, leading to a fluctu-
ation pattern [29], and based on the assessment of auto-
correlation in the amplitude envelope extracted from the
audio. The clarity of the pulsation can also be assessed
through an observation of the global characteristic of the
autocorrelation function [30]. r = .03

4.1.5 Articulation

Onsets indicated by peaks picked from the amplitude enve-
lope leads to the estimation of the relative amount of event
density. For each successive onset, the slope and tempo-
ral duration of the corresponding attack phase is also esti-
mated. r = —.23

4.1.6 Structure

The multidimensional structure of the pieces of music is
estimated through the computation of novelty curves [31]
based on various functions already computed such as the
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spectrogram, the autocorrelation function and the chroma-
gram. r = .85

As a whole, the features represent the categories in a
non-redundant way, as within-feature correlation is lower
than .30, except for structural features.

4.2 Statistical selection of features

The second selection is based on statistical selection of rel-
evant features, in which we compare Multiple Linear Re-
gression (MLR) with a stepwise selection principle, Prin-
cipal Component Analysis (PCA) followed by a selection
of an optimal number of components, and Partial Least
Squares Regression (PLS). Linear mapping via regression
is known to be problematic as the predictors-to-cases ratio
should be 1:10 or larger (we have 29 features, we would
need at least 290 observations or more). Moreover, high
number of predictors will probably be highly collinear, which
is problematic for the establishment of a linear modeling of
the data. Principal component analysis will eliminate the
problem of collinearity, as the components are orthogonal
and enables to use a low number of predictors (PCA com-
ponents) in the regression. However, this data reduction
method is not sensitive to the covariance between the fea-
tures and the predicted data and thus may discard important
features. The third technique, PLS regression [32], car-
ries out simultaneous data reduction and maximization of
covariance between features and predicted data, thus pre-
serving any interesting correlational pattern between them.
The output from the PLS is similar to PCA, individual, or-
thogonal components. To select the optimal number of fea-
tures, Bayesian Information Criterion (BIC) was used.
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Prediction rate (R?)
Model | Valence | Activity | Tension
MLR | .64 5 .67
PCA 42 74 51
PLS .70 77 71
MLR, | .66 74 .69
PCA, | .51 .73 .63
PLS, | .72 .85 79

Table 3. Prediction rates of the different models for cir-
cumplex model of emotions. » denotes Box-Cox trans-
formed variables.

Prediction rate (R?)
Model | Angry | Scary | Happy | Sad | Tender
MLR | 46 .55 46 38 | .38
PCA .66 .67 .60 59 | 54
PLS .66 .62 .61 .61 | .50
MLR, | .56 .55 .63 54 | 45
PCA, | .56 47 .53 52 | 45
PLS, | .70 74 .68 .69 | .58

Table 4. Prediction rates for the 5 basic emotions.

4.3 Data Transformation

To apply linear least-squares models, the distribution of
the data should be approximately normal. Each feature
was tested for normality (Lilliefors p <.001) and each non-
normally distributed feature was transformed by means of
Box-Cox power transform [33] by testing A values between
-2 and 2 in .1 increments and taking the one that yielded the
maximal normality. Finally, all features were normalized.

5. RESULTS AND DISCUSSION

Table 3 displays the prediction rate of linear regression
models using first 5 components in stepwise linear regres-
sion (MLR), and first 5 PCA components, and 2 first com-
ponents from PLS, with or without data transformations
(»). S-fold cross-validation (80% for training, 20% for
prediction) was used in all cases to avoid overfitting. In
general, about 70 % of the variance in participants rat-
ings could be predicted with features extracted from the
audio. Data transformation has an important contribution
to the models. MLR provides fairly successful model but
it is problematic due to the serious over optimization step-
wise regression does when using 29 predictors to explain
110 observations. PCA with 5 components has less power
to predict the ratings but is nevertheless fairly adequate
model. It suffers especially from the skewness and lack
of normalization of the data. Finally, PLS (normalized)
provides the highest prediction rate with only two com-
ponents. The model adequacy is largely similar for basic
emotions, displayed in Table 4.

The resulting predictive models vary depending on the
chosen mapping method. Table 5 shows for instance the
important features contributing to the perception of the cat-

625

Anger Tenderness
Feature I] Feature I)
Fluctuation peaks -.14 | RMS variance | -.44
Key clarity -.07 | Key clarity .08
Roughness .05 | Majorness -.08
Sp. centroid variance | -.04 | Sp. centroid -.05
Tonal novelty .004 | Tonal novelty | -.01

Table 5. Components and standardized beta weights of the
MLR , model for two chosen basic emotions.

egories of anger and tenderness, as predicted by the MLR
method. The predictive models given by the PCA and PLS
methods are less easy to represent clearly, are their under-
lying dimensions are formed by a high number of audio
and musical features.

When mapping the dimensional ratings onto each of
the five basic emotions, the regression models could ex-
plain 63 to 89 percent of the variance. No significant im-
provement was observed with the 3D model over the 2D
model, with the exception of anger, for which adding the
third dimension increased the variance explained by five
per cent. When mapping basic emotions onto the emotion
dimensions, even higher proportions of variance could be
explained by the models, these ranged from 88 to 97 per
cent. These results suggest that there is a high mutual cor-
respondence between the two emotion spaces.

Using a five-fold cross-validation, about 70% of the vari-
ance in the participants ratings could be explained by the
PLS models. The highest proportion of variance explained
(85%) was obtained when predicting activity with the PLS
model using transformed features. We examined the effect
of the Box-Cox transform on the predictive power of the
regression models. In most cases this transform improved
the models significantly. This observation suggests that the
distributions of the extracted features are a crucial factor in
the performance of such predictive models.

The emotion prediction model has been written in Mat-
lab and has been integrated into the new version (1.3) of
MIRtoolbox [23].
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