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ABSTRACT

This paper discusses a new approach for clustering mu-
sical bass-line patterns representing particular genres and
its application to audio genre classification. Many musical
genres are characterized not only by timbral information
but also by distinct representative bass-line patterns. So far
this kind of temporal features have not so effectively been
utilized. In particular, modern music songs mostly have
certain fixed bar-long bass-line patterns per genre. For in-
stance, while frequently bass-lines in rock music have con-
stant pitch and a uniform rhythm, in jazz music there are
many characteristic movements such as walking bass. We
propose a representative bass-line pattern template extrac-
tion method based on k-means clustering handling a pitch-
shift problem. After extracting the fundamental bass-line
pattern templates for each genre, distances from each tem-
plate are calculated and used as a feature vector for super-
vised learning. Experimental result shows that the auto-
matically calculated bass-line pattern information can be
used for genre classification effectively and improve upon
current approaches based on timbral features.

1. INTRODUCTION

Due to the increasing size of music collections available on
computers and portable music players, the need for music
information retrieval (MIR) has surged recently. In partic-
ular, automatic genre classification from audio is a tradi-
tional topic of MIR and provides a structured way of eval-
uating new representations of musical content. In this task,
not only instrumental information but also a bass-line in-
formation is thought to be important. For instance, bass
parts in most rock songs consist of root notes of the chords
in a uniform rhythm. In comparison to this, bass parts in
jazz songs have a lot of characteristic movements which
are called walking bass. If such representative bar-long
bass-line patterns in music can be captured automatically
as templates, they can potentially be used to characterize
different music genres directly from audio signals.

In previous research, timbral features, rhythmic features
and pitch features have been used for audio genre classi-
fication [1]. In this work, the timbral features were the
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most dominant and the pitch features used were not lim-
ited to the bass register. Studies more related to bass part
extraction have been presented [2] where musical melodic
and bass notes were modeled with Gaussian mixture model
(GMM) and estimated. Using this pitch estimation method,
Marolt [3] worked on the clustering of melodic lines using
GMM. Researches using bass-line information for genre
classification include McKay [4] and Tsuchihashi [5]. How-
ever the bass-line features discussed were based on overall
statistics and did not represent directly temporal informa-
tion.

In this paper, we discuss an approach for clustering unit
bass-line patterns from a number of audio tracks and pro-
pose a feature vector based on the distances from templates
for the applicationto genre classification. First, we empha-
size only harmonic sounds of the audio tracks and esti-
mate measure segments which divide tracks into measures.
Then we propose a clustering method specialized to bass-
line patterns based on the k-means clustering algorithm.
For the purpose of an application to audio genre classifi-
cation, the scheme to extract feature vector based on the
bass-line patterns which contain temporal information is
suggested. Finally, the effectiveness of the proposed bass-
line pattern information for genre classification is verified
experimentally.

2. BASS-LINE PATTERN CLUSTERING
2.1 Challenges in Bass-line Pattern Clustering

Bar-long bass-line patterns are frequently common and char-
acteristic of a particular genre. In order to extract those
representative patterns from audio signals, there are sev-
eral challenges to be cleared. Especially in modern popu-
lar music, pieces comprise of both harmonic and percus-
sive sounds and percussive components might disturb the
bass-line analysis. Additionally, the bar lines of the mu-
sic pieces need to be estimated. Another problem is that
unit bass-line patterns are shifted in pitch according to the
chord played. For example, a pattern consists of only root
notes in a uniform rhythm, all notes in this pattern need to
be pitch-shifted by the same amount of notes according to
the chord, because the root note changes accompany with
the chord changes.

Therefore the problems in extraction of representative
bar-long patterns can be summarized as the following three
problems:

I. audio signals may contain not only harmonic sounds
but also percussive sounds,
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Figure 1. The flow diagram of the system.

II. measure segmentation is to be estimated, and

III. bass-line patterns are pitch-shifted according to chords.

In the next subsections, we describe our approach to solv-
ing these challenges. Fig. 1 illustrates the flow of the algo-
rithm.

2.2 Emphasizing Harmonic Components

Generally, harmonic and percussive sounds are mixed in
the observed spectrograms of audio pieces (the problem
I). Therefore in order to perform bass-line pattern analysis
it is useful to separate these components as a preprocess-
ing step. We utilize the harmonic/percussive sound sepa-
ration (HPSS) technique which we have proposed [6] that
is based on the difference of general timbral features. By
looking at the upper left figure in Fig. 2, a typical instance
of spectrogram, one can observe that harmonic compo-
nents tend to be continuous along the temporal axis in par-
ticular frequencies. On the other hand, percussive compo-
nents tend to be continuous along the frequency axis and
temporally short. Mask functions for separating the two
components (harmonic and percussive) are calculated fol-
lowing a maximum a priori (MAP) estimation approach us-
ing the expectation maximization (EM) algorithm. Apply-
ing this approach to the shown spectrogram, harmonic and
percussive components are separated and harmonic ones
are emphasized (harmonic and percussive components are
shown in the upper right and the lower left of Fig. 2 respec-
tively). In order to capture only the bass part we apply low
pass filtering to the harmonic-only spectrogram.

2.3 Bar Line estimation Using Percussive Clustering
Method

There are many possible ways to solve problem II which is
the estimation of bar lines. One way is beat tracking [8] in
which onset, chord changes and drum patterns are used as
cues. Instead, in the case where it is unknown how many
beats are in one measure or songs do not always start with
the head of the measure, the pattern matching approach is
rather useful to estimate bar lines. Therefore the rhythm
map which we have proposed [9] is employed.

The rhythm map is an approach to estimate representa-
tive bar-long percussive patterns and its segmentation (i.e.
bar lines) simultaneously. This algorithm also requires the
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Figure 2. The original spectrogram (upper left), the

harmonics-emphasized spectrogram (upper right) and the
percussion-emphasized spectrogram (lower left) of a pop-
ular music piece (RWC-MDB-G-2001 No.6 [7]). The
low-pass filtered logarithmic spectrogram calculated us-
ing wavelet transform from harmonics-emphasized spec-
trogram is shown in lower right figure.

source separation method shown in previous subsection as
a preprocessing and deals with the percussive-emphasized
spectrogram. By iterating dynamic programming (DP) match-
ing and updating the templates used for DP matching based
on the k-means-clustering-like update rules, both segmen-
tation and templates themselves are updated. After conver-
gence, the multiple percussive patterns in the input song
are learned and the optimal segmentation is obtained. We
use this estimated segmentation as bar lines.

2.4 Iterative Update of Bass-line Pattern Cluster

If there was no pitch shift (problem III) a simple k-means
clustering approach can be used to estimate the represen-
tative bar-long bass-line patterns: Distances between each
bar-long spectrogram pattern and centroid spectrogram pat-
terns are calculated, and the centroids are updated by aver-
aging the sample patterns. In order to deal with pitch-shift
problem, we propose an new approach where every possi-
ble pitch-shift is compared in k-means framework.

Here we should note that both centroid template spec-
trogram and input spectrogram need to be logarithmic along
frequency axis in order to consider pitch-shift. Because
the musical notes are fashioned logarithmic in linear fre-
quency domain. This kind of logarithmic spectrogram can
be obtained by using wavelet transform. The lower right
of Fig. 2 shows the logarithmic spectrogram which is pro-
cessed low-pass filtering after Gabor wavelet transform whose
frequency resolution is semitone (100 cents). The low-pass
filtering (actually a band-pass filtering) was done by setting
high and low frequency components to be zero. In this fig-
ure, the energy of bass drum is still dominant even after the
source separation. That is because the bass drum sounds
sometimes have long duration and the duration compo-
nents also have the same feature with harmonic sounds
which are continuous along the temporal axis. However
these energies are thought not to be so harmful because
when averaging spectrogram patterns to update templates,
those parts become relatively small.
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Mathematically, we modeled a bass-line template as a
matrix and find out the most matched template for each
bar-long spectrogram by calculating distances over all pos-
sible pitch-shift. The centroid bass-line pattern is defined
as a matrix whose rows represent semitone numbers and
whose columns are time instants. This matrix contains en-
ergy distribution of bar-long harmonic spectrogram. When
the input piece has M measures, mth measure processed
low-pass filtering can be written as X,,, the I x [N matrix,
where NV is the number of semitones to capture in low fre-
quency band and I is the resolution of time that divides a
bar-long. On the other hand, kth bass-line pattern template
can be written as the I x 2N matrix By. Since there are N
notes to pitch-shift potentially, at least N rows of margin
have to be provided.

As a distance measure of two bass-line pattern matri-
ces, we use the following distance introduced by Frobenius
norm:

I N
d(X7 Y) = Z Z (‘ri,n - yi,n)2 ,

i=1n=1

6]

where z;,, and y;, are the (i,j)th entries of matrices X
and Y. Considering pitch-shift, we can define the distance
between input spectrogram X,,, and template bass-line pat-
tern B} as

D(Xma Bk) = lggzigN d(Xma Bk,n)

2

where By, ,, is a I x N submatrix of By which is from nth
row to (n + N — 1)th row.

Like k-means algorithm, for every input bass-line pat-
tern X,,, the distances are calculated according to Eq. (2)
and classes and pitch-shift intervals are determined as

km, = argmin D(X,,, By) 3)
1<k<K
and
N = argmin d(X,,, Bj, ). 4)

1<n<N

Then the update rule of a template pattern can be written as
following, just by averaging patterns in a particular class,

Zme{mlk:fcm} Sﬁm EXm

B, =
Zmé {m|k=k.} 1

. ®)

where F is an N x 2N extending matrix and S is a 2N x
2N pitch-shift matrix respectively defined as

10 0
0 1 0

E=|0 ... 0 1 ©6)
0 0 0
0 0 0
0 0 0 0
1 0 0 0

g0 1 o 0 7
0 0 1 0
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This update rule satisfies following equation as far as
Euclidean distance metric is used,

> D(Xp, Bp) <
me{mlk=km}

Z d(va Bl/c,ﬁ)

me{m|k=k.,,}

< Y D(Xpm,Bis),
me{m|k=km}

®)

and convergence of iterative update is guaranteed. After
the convergence, K centroid bass-line patterns By (k =
1,..., K) are obtained.

3. BASS-LINE PATTERN FEATURE EXTRACTION

As the proposed clustering method applied to audio genre
classification, there is a problem that the learned templates
cannot be used directly. Ideally bass-line patterns for a
particular genre would be fixed and would be automati-
cally extracted perfectly. If that was the case then auto-
matic genre classification could be performed simply by
looking at which particular bass-line patterns are used in a
music pieces by calculating the distance defined in Eq. (2).
However in practice there is no guarantee that patterns are
fixed for a particular genre or that their automatic extrac-
tion will be perfect. Therefore in many cases the bass-line
patterns of a particular music piece will belong to more
than one genre. To address these problems simultaneously
we utilize a feature vector based on the distances from each
template followed by statistical machine learning to auto-
matically classify music genre. Supervised learning clas-
sifiers such as support vector machines (SVM) [10] can be
used for this purpose.

One possible way to extract feature vector is calculat-
ing distances between every measure of input spectrogram
and every template pattern following Eq. (2) and averaging
them through whole an input piece. Even though there is
a possibility for a music piece to belong to more than one
genre templates, the distances between spectrogram in the
input piece and learned templates are still affected, e.g.,
one measure spectrogram in blues song is close enough to
the templates learned from blues collection even if its dis-
tance is not the smallest.

The mathematical definition of the feature vector is fol-
lowing. After bass-line pattern templates are learned, we
have K -G templates when K templates are learned from G
genres. Then the distances between input song which have
M measures and learned templates are calculated. The av-
eraged distances are obtained as follows:

M

> D(Xp,B)

m=1

di = )

1
M

where 1 < [ < K@ is the template number. The feature
vector & can be written as

iE:(dl,dg,.. )T.

S drG (10
We use this feature vector for a supervised learning classi-
fication to classify music genre.
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Figure 3. Two examples of learned bass-line templates
from jazz, blues, rock, and hiphop, in descending order.
While a lot of movements of bass notes are shown in jazz
and blues, bass notes in rock are unchanged, and hiphop
bass-line templates are quite sparse.

4. PROCEDURAL SUMMARY OF THE
ALGORITHM

The overall algorithm can be summarized as follows:

1. Preprocessing
(a) Emphasis of harmonic components using HPSS
(b) Apply low-pass filtering
(c) Estimate bar lines using rthythm map

2. Bass-line Pattern Clustering

(a) Provide initial (random value) templates

(b) Match the templates patterns with pitch-shifting
by Eq. (2)

(c) Update the template patterns following Eq. (5)

(d) Iterate steps b and c until the convergence

3. Genre Classification

(a) Calculate the distances between patterns (Eq. (10))

and use it as a feature vector characterizing a
music pieces

(b) Perform classification into genres using a ma-
chine learning technique

5. EXPERIMENTAL RESULTS
5.1 Dataset

Experiments with the proposed algorithms were conducted
on the GTZAN dataset [1]. The dataset had 10 genres:
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Figure 4. Classification accuracy using only bass-line fea-
tures for each number of templates learned from one genre.
The baseline accuracy of random classifier was 10.0%

blues, classical, country, disco, hiphop, jazz, metal, pop,
reggae, and rock. The dataset had 100 songs per genre all
of which were single-channel and sampled at 22.05kHz.
All songs were processed harmonic-percussive sound source
separation and wavelet transform. Then they were pro-
cessed low-pass filtering and obtained the spectrogram only
from 82.4Hz (E1) to 330.0Hz (E3). The reason we didn’t
use the spectrogram under 82.4Hz was the dominance of
the energy of bass drums in that area.

5.2 Template Learning and Feature Extraction

First, common bass-line pattern templates were learned us-
ing the proposed algorithm for each genre. The proposed
algorithm was implemented using audio processing frame-
work Marsyas' which is open source software with spe-
cific emphasis on Music Information Retrieval (MIR) [11].
To generalize the learning templates part, we divided the
dataset 50-50 into two parts randomly and obtained two
sets of templates for each genre. In this experiment, the
number of iteration was fixed to 15 times because it was
enough to converge, and the number of the time resolution
was fixed to 16.

The examples of learned templates of jazz, blues, rock
and hiphop are shown in Fig. 3. While jazz bass patterns
had some movements, rock patterns showed the horizon-
tally straight lines. In blues bass-line templates, a typical
swing rhythm is shown, and in hiphop templates, there are
sparse bass notes because hiphop songs mostly have strong
drum sounds but bass sounds are not so melodic.

After learning templates two sets of templates were ob-
tained, and next, we extracted feature vector (Eq. (10)) us-
ing those template sets. The templates learned from data
1 were used to extract feature vectors of data 2, and vice
versa.

5.3 Classification results

In order to train a classifier in the feature space, the “Weka”
machine learning toolkit [12] was employed. All the re-
sults shown were based on 10-fold cross validation using a
linear SVM as a classifier. The labeled data was split into
10 folds and each fold was used once for testing with the
remaining 9 folds used for training the classifier to gener-
alize the classification, for both of divided data sets.

Uhttp://marsyas.sness.net/
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Figure 5. Classification accuracy using both bass-line and
timbral features for each number of templates learned from
one genre. The baseline accuracy of existing features was
72.4%.

Table 1. Genre classification accuracy using only bass-line
pattern features and merged with timbral features.

Features | data 1 data 2

Baseline (random classifier) | 10.0% | 10.0%
Only bass-line (400 dim.) | 42.0% | 44.8%
Existing (Timbre, 68 dim.) | 72.4% | 72.4%
Merged (468 dim.) | 74.4% | 76.0%

The number of templates learned for each particular genre
were decided experimentally. Fig. 4 shows the results us-
ing only the bass-line pattern features whose dimension
was 10K when the number of templates learned from one
genre was K. As can be seen the proposed features had
enough information for genre classification and the accu-
racy improved as the number of templates was increased.

An existing state-of-the-art genre classification system
which uses 68 dimensional timbral features like MFCC
and spectrum centroids proposed by Tzanetakis was used
for comparison. The system performed well on several au-
dio classification tasks in MIREX 2008 [13]. Merging this
timbral features and bass-line features, the classification
accuracies shown in Fig. 5 were obtained. When the num-
ber of templates K was 40 the performance was the best,
and when we increased the number K more than that the
performance got worse. That was because the dimension
of feature space became larger and curse of dimensional-
ity was thought to occur. In particular case the number
of templates K was fixed to 40 for each particular genre,
the precise result is shown in Table 1 and the confusion
matrices are shown in Table 2 and Table 3. These results
were higher than existing genre classification systems that
rely on timbral information and verify the effectiveness of
the proposed bass-line patterns. One can see that classical
was the most distinguished by the system and some reggae
songs were mistaken for disco.

6. CONCLUSIONS

We discussed an approach for clustering common bar-long
bass-line patterns for particular genres, and proposed a fea-
ture vector which represented relations to learned bass-
line templates. We used HPSS technique to extract har-
monic components from audio signals and rhythm map
to estimate measure segmentation. After processing low-

pass filtering, bass-line patterns were clustered using a new
clustering method based on k-means clustering with pitch-
shift. For audio genre classification, a new feature vec-
tor was defined as averaged distances from each template.
Experiments over music pieces from various genres con-
firmed that the proposed algorithm can improve the accu-
racy of classification systems based on timbral informa-
tion.

Future work includes more experiments with the param-
eters of the algorithms such as the resolution of time in
templates. Additionally, other features than pattern dis-
tance vector can be devised. Combination with other fea-
tures like percussive pattern can be done to improve further
genre classification as well.
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Table 2. The confusion matrix of data 1 in the case 40
templates learned from each genre

classifiedas | bl | ¢l | co | di | hi | ja | me | po | re | ro
bl: blues | 38 | 0 5 0 0 2 1 0 1 3
cl: classical | O | 48 | O 0 0 0 0 0 0 2
co: country | 3 0 30| 1 1 2 1 31019
di: disco | O 0 1 136 1 1 1 2 2 6
hi: hiphop | O | O 1 6 34| 0 1 2 1 4|2
ja:jazz | 4 2 1 1 0 |41] O 0|0 1
me: metal | O 0 2 1 0 043 ] 0] 0| 4
po: pop | 1 01| 3 3 312 0 |34 | 0| 4

re: reggae | 0 0| 4] 4 2 0 0 0 |37| 3
ro: rock | 3 0| 4 3 2 1 3 0 3 |31

Table 3. The confusion matrix of data 2 in the case 40
templates learned from each genre

classifiedas | bl | cl | co | di | hi | ja | me | po | re | rO
bl:blues [ 38 | O | 5 | 2 | O | 2 2 0 1 0
cl:classical | O |47 | O | O | O 3 0 0] 010
co:country | 4 | O [ 40| O | O | O 0 0] 0|6
dizdisco | 3 | 0| 0 |[34] 1 0 1 2 1316
hi: hiphop | 1 00| 3 41| 0 0 0510
jarjazz | 3 1 00| 0 |43] 2 010 1
me: metal | 1 O] 0] 0] O 1 14410 1 3
po: pop | 4 0 1 2 1 0 0 [35)| 3 4

re: reggae | 4 0 0 9 4 2 0 3127 1
ro:rock | 6 0 3 5 0 0 3 2 0 | 31
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