
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

ACCELERATING QUERY-BY-HUMMING ON GPU

Pascal Ferraro
LaBRI - U. Bordeaux 1, France

PIMS/CNRS - U. Calgary, Canada
ferraro@cpsc.ucalgary.ca

Pierre Hanna
LaBRI - U. Bordeaux 1,

France
pierre.hanna@labri.fr

Laurent Imbert
Lirmm - CNRS, France

PIMS/CNRS - U. Calgary, Canada
laurent.imbert@lirmm.fr

Thomas Izard
Lirmm - U. Montpellier 2,

France
thomas.izard@lirmm.fr

ABSTRACT

Searching for similarities in large musical databases has
become a common procedure. Local alignment methods,
based on dynamic programming, explore all the possible
matchings between two musical pieces; and as a result re-
turn the optimal local alignment. Unfortunately these very
powerful methods have a very high computational cost.
The exponential growth of musical databases makes exact
alignment algorithm unrealistic for searching similarities.
Alternatives have been proposed in bioinformatics either
by using heuristics or by developing faster implementation
of exact algorithm. The main motivation of this work is to
exploit the huge computational power of commonly avail-
able graphic cards to develop high performance solutions
for Query-by-Humming applications. In this paper, we
present a fast implementation of a local alignment method,
which allows to retrieve a hummed query in a database of
MIDI files, with good accuracy, in a time up to 160 times
faster than other comparable systems.

1. INTRODUCTION

One of the main goal of music retrieval systems is to find
musical pieces in large databases given a description or
an example. These systems compute a numeric score on
how well a query matches each piece of the database and
rank the music pieces according to this score. Computing
such a degree of resemblance between two pieces of mu-
sic is a difficult problem. Three families of methodologies
have been proposed [1]. Approaches based on index terms
generally considerN -grams techniques [2,3], which count
the number of common distinct terms between the query
and a potential answer. Geometric algorithms [4–6] con-
sider geometric representations of music and compute dis-
tances between objects. Techniques based on string match-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

ing [7] are generally more accurate as they can take into
account errors in the query or in the pieces of music of
the database. This property is of major importance in the
context of music retrieval systems since audio analysis al-
ways induces approximations. Moreover, some music re-
trieval application require specific robustness. Query by
humming (QbH), a music retrieval system where the in-
put query is a user-hummed melody, is a very good ex-
ample. Since the sung query can be transposed, played
faster or slower, without degrading the melody, retrieval
systems have to be both transposition and tempo invariant.
Edit distance algorithms, mainly developed in the context
of DNA sequence recognition, have been adapted in the
context of music similarity [8]. These algorithms, based
on the dynamic programming principle, are generalisations
of a local sequence alignment method proposed by Smith
and Waterman [9] in the early 80’s. Applications relying
on local alignment are numerous and include cover detec-
tion [10], melody retrieval [8], Query-by-Humming [11],
Query-by-Tapping [12], structural analysis, comparison of
chord progressions [13], etc. Local alignment approaches
usually provide very accurate results as shown at the recent
editions of the Music Information Retrieval Evaluation eX-
change (MIREX) [14].

Alignment algorithms are powerful and optimal: they
always find the best alignment. However, they are also
very time consuming. This drawback considerably limits
their use for musical applications. For biological applica-
tions, heuristics such as BLAST and FASTA can be used
to speed-up local sequence alignment while allowing for
multiple regions of local similarity. These heuristics are
valuable, but they may fail to report hits or may report false
positives. In order to get more accurate results faster im-
plementations of exact alignment algorithms are therefore
of primary importance.

Graphics Processing Units (GPUs) have recently received
lots of attention thanks to their extensive computing re-
sources. Not only are the latest generations of GPUs very
powerful graphic engines, they can also be used for Gen-
eral Purpose computation (GPGPU) [15]. With the re-
cent evolutions of GPUs’ architecture into a unified, highly

279

Poster Session 2

parallel programmable processor, and the development of
programming tools and high-level programming languages
such as NVIDIA’s CUDA, GPUs have become a very at-
tractive, low-cost alternative to the traditional micropro-
cessors for computationally demanding applications that
can be expressed as data-parallel computations, i.e. the
same program is executed on many data elements in paral-
lel. This type of parallelism is well suited to the problem
of QbH on very large scale music databases, although it
also brings new challenges regarding memory operations
and computational resource allocations. In this paper, we
present an implementation of a variant of Smith-Waterman
based on local transpositions which illustrates the advan-
tages of recent graphic cards as computation platforms.

In Section 2 we present the general concepts of sequence
alignment and a variant based on local transpositions well
suited to musical applications. Our parallel implementa-
tion on GPU is detailed in Section 3. Several tests and
comparisons are presented in Section 4.

2. ALIGNING TWO MUSIC

In this section, we briefly present the QbH system experi-
mented. Following Mongeau and Sankoff [8], any mono-
phonic piece can be represented by a sequence of notes,
each given as a pair (pitch, length). Several alphabets and
sets of numbers have been proposed to represent pitches
and durations [3]. In the following, we are using the in-
terval relative representation, i.e. the number of semitones
between two successive notes reduced modulo 12. In the
context of QbH applications, this representation presents
the huge advantage to be transposition invariant.

2.1 General Sequence Alignment

Sequence alignment algorithms are widely used to com-
pare strings. They evaluate the similarity between two
strings t and q given on an alphabet A, and of respective
sizes |t| and |q|. Formally an alignment between t and q
is a string z on the alphabet of pairs of letters, more pre-
cisely on (A ∪ {ε})× (A ∪ {ε}), whose projection on the
first component is t and the projection on the second com-
ponent is q. The letter ε does not belong to the alphabet
A. It is often substituted by the symbol “-” and is called a
gap. An aligned pair of z of type (a, b) with a, b ∈ A de-
notes the substitution of the letter a by the letter b. A pair
of type (a, -) denotes a deletion of the letter a. Finally, an
aligned pair of type (-, b) denotes the insertion of the letter
b. A score σ(ti, qj) is assigned to each pair (ti, qj) of the
alignment. The score S of an alignment is then defined as
the sum of the costs of its aligned pairs. Computational
approaches to sequence alignment generally fall into two
categories: global alignments and local alignments. Cal-
culating a global alignment is a form of global optimiza-
tion that forces the alignment to span the entire length of
all query sequences. By contrast, local alignments identify
regions of similarity within long sequences that are often
widely divergent overall. In Query-by-Humming applica-
tions, since the query is generally much shorter than the

reference, one favours local alignment methods.
Both alignment techniques are based on dynamic pro-

gramming [9,16,17]. Given two strings t and q, alignment
algorithms compute a (|t| + 1) × (|q| + 1) matrix T such
that:

T [i, j] = S(t[0 . . . i], q[0 . . . j]),

where S(t[0 . . . i], q[0 . . . j]) is the optimal score between
the subsequences of t and q ending respectively in position
0 ≤ i ≤ |t| and 0 ≤ j ≤ |q|. Dynamic programming al-
gorithms can compute the optimal alignment (either global
or local) and the corresponding score in time O(|t| × |q|)
and memory O(min {|t|, |q|}) (see [9] for details).

2.2 Local Transposition

Queries produced by human beings can, not only be totally
transposed, but can also be composed of several parts that
are independently transposed. For example, if the original
musical piece is composed of different harmonic voices,
the user may sing different successive parts with differ-
ent keys. In the same way, pieces of popular music are
sometimes composed of different choruses sung based on
different tonic. A sung query may imitate these character-
istics. Moreover, errors in singing or humming may occur,
especially for users that are not trained to perfectly control
their voice like professional singers. From a musical point
of view, sudden tonal changes are disturbing. However, if
these changes last during a long period, they may not dis-
turb listeners. Figure 1 shows an example of query having
two local transpositions.

Figure 1. Example of a monophonic query not transposed
(top) and a monophonic query with two local transposi-
tions (bottom).

The two pieces in Figure 1 sound very similar, although
the two resulting sequences are very different. This prob-
lem has been addressed in [18] by defining a local trans-
position algorithm. It requires to compute multiple score
matrices simultaneously, one for each possible transposi-
tion value. The time complexity isO(∆×|q|× |t|), where
∆ is the number of local transposition allowed during the
comparison (for practical applications, ∆ is set up to 12).
Our experiments, presented in section 4, show that the lo-
cal transposition algorithm provides a much better result.

2.3 Pitch/Duration Scoring Scheme

The quality of an alignment-based algorithm heavily de-
pends on the scoring function. Results may differ signifi-
cantly whether one uses a basic scoring scheme or a more
sophisticated scoring function [7]. For our experiments,
we use the scoring schemes introduced in [8] and [7], where
the score between two notes depends on the pitch, the du-
ration and the consonance of both notes. For example,
the fifth (7 semitones) and the third major or minor (3 or

280

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

4 semitones) are the most consonant intervals in Western
music [19]. The score function between two notes is then
defined as a linear combination of a function σp on pitches
(its values are coded into a matrix) and a function σd on
durations as:

σ(a, b) = α · σp(a, b) + β · σd(a, b).

The cost associated to a gap only depends on the note du-
ration. Finally a penalty (a negative score) is also applied
to each local transposition.

3. PARALLEL IMPLEMENTATION

3.1 GPU Architecture

Both AMD and NVIDIA build architectures with unified,
massively parallel programmable units, which allow pro-
grammers to target that programmable unit directly instead
of dividing work across multiple hardware units. More
precisely, a GPU contains many streaming multiproces-
sors (MPs) each containing several elements including sev-
eral cores, also called streaming processors (SPs), and var-
ious types of on-chip shared memories and registers. The
MPs also share some constant memory areas with very
fast access and a global uncached large memory with rel-
atively low throughput and long latency. For example, the
NVIDIA GeForce 9800 GX2 used for our experiments (see
Section 4) is a dual GPU engine with 256 cores (128 per
GPU) running at 1.5 GHz. These cores are regrouped into
2 × 16 MPs which share a global memory of 1GB with
a 512-bit interface width providing a throughput of 128
GB/sec (64 GB/sec per GPU).

The MPs creates, manages, and executes concurrent threads
in hardware with zero scheduling overhead. To manage
hundred of threads running several different programs, the
multiprocessor employs an architecture called SIMT (single-
instruction multiple-thread), which resembles SIMD (single-
instruction multiple-data) vector organizations, i.e., single
instruction controls multiple processing elements. Unlike
SIMD vector machines, SIMT enables programmers to write
thread-level parallel code for independent, scalar threads,
as well as data-parallel code for coordinated threads.

3.2 GPU Computing with CUDA

Our implementation uses CUDA, a general purpose par-
allel computing framework developed and distributed by
NVIDIA for use with their recent GPUs 1 . CUDA can be
seen as an extension of C that allows developers to de-
fine C functions, called kernels to be executed N times
in parallel by N different CUDA threads. CUDA threads
may access data from multiple memory spaces during their
execution. CUDA’s programming model assumes that the
CUDA threads execute on a separate device, whereas the
rest of the program runs on a CPU. In other words, the

1 CUDA was introduced in November 2006 along with the G80 se-
ries. CUDA can be downloaded for free from http://www.nvidia.
com/object/cuda_home.html. A list of CUDA-enabled prod-
uct is available at http://www.nvidia.com/object/cuda_
learn_products.html.

GPU operates as a coprocessor to the host running the C
program. Both the host and device maintain their own
memory areas, allowing for concurrent programming be-
tween the CPU and the GPU(s). CUDA kernels must be
compiled into binary code using nvcc, a C compiler for
CUDA. Note that nvcc supports C++ programming for
host functions but kernels must be written in C, possibly
with templates. nvcc also supports device emulation.

3.3 CUDA implementation of QbH

The process of evaluating how well each piece of music in
a database match a query (sung or hummed in the case of
QbH), and rank the music pieces according to this score
can be parallelized at different levels. As explained ear-
lier, our implementation uses a variant of Smith-Waterman.
Although it is possible to do so [20], our choice was not
to parallelize the implementation of Smith-Waterman it-
self, as this approach could only provide significant im-
provements for extremely large sequences. In contrast, our
CUDA implementation optimizes the arithmetic intensity
(the ratio of arithmetic operations to memory operations)
by computing in parallel all the scores of a query with ev-
ery piece of music in the database. If the database contains
N pieces of music, our program virtually launches N ker-
nels executing the Smith-Waterman algorithm in parallel.
The main challenges are therefore to optimize the resource
allocations and the memory operations.

After the query has been converted from its original
format (typically a wave audio file), we store it in a spe-
cial memory area called the texture memory, which allows
for very fast read/write operations. The texture memory is
shared among all threads (Fig. 2). The database usually
contain too many pieces of music to be stored in any of the
cached, fast memories (texture, constant, shared memory).
Therefore, all the pieces of music are stored in the global
memory. On a GPU, the global memory is not cached, so
it is extremely important to follow the right access pattern
to get maximum memory bandwidth. Throughput of mem-
ory operations is 8 operations per clock cycle, plus 400 to
600 clock cycles of memory latency. Under some size and
alignment conditions, the device is capable of reading data
from global memory in a single load instruction. More-
over, the memory bandwidth can be used most efficiently
when the simultaneous memory access by all the active
threads can be coalesced into a single memory transaction.
(For more details, see [21].)

In order to satisfy all these constraints, the pieces of
music of the database are store in an array of float2, a
CUDA structure containing two 32-bit floats, which stores
the pitch and duration of each note. Although the size and
alignment properties are fulfilled by this data type, storing
the pieces of music sequentially, one after the other, would
be very inefficient since simultaneous reading by all the
threads in a single transaction would be impossible. In-
stead, if the database contain N pieces of music, we orga-
nize the data in memory as a one dimensional array, such
that its firstN entries correspond to the first note (pitch, du-
ration) of each piece; then, the next N entries correspond

281

Poster Session 2

to the second note of each piece, etc.
Each thread performs its computations on its own ma-

trix, more exactly on its ∆ = 12 transposition matrices. In
order to minimize the amount of required memory, we only
store the current row of each matrix. Moreover, to optimize
memory alignment, allocation is based on the query’s fixed
size rather than the pieces of music’s variable sizes. Fi-
nally, in order to allow simultaneous read/write operations
by the active threads, the matrices are not stored at con-
secutive addresses but rather using the same strategy as the
database. Fig. 2 describes the device architectures.

Figure 2. nVidia GPUs architecture. Each multi-processor
executes both the conversion of queries from audio files to
a vector of notes (stored in the texture memory) and the
comparison between the query and each reference (stored
in the device memory). Each processor store its interme-
diate Smith-Waterman matrices (only one row) in its own
shared memory space. Constants costs and intermediate
values are respectively stored in constant and shared mem-
ories.

4. TESTS AND RESULTS

4.1 Benchmark

Our experiments are based on the query data corpus pro-
posed for the QbH tasks at the MIREX 2007 and 2008
and three different noise databases. Roger Jang’s corpus
is composed of 2797 queries, along with 48 ground-truth
MIDI files 2 , with the particularity that all queries start at
the beginning of the references. The first database (called
DB1) consists of the 48 ground-truth MIDIs and a sub-

2 http://www.cs.nthu.edu.tw/˜jang

set of 2000 MIDI noise files from the Essen Collection 3 .
The whole Essen Collection, made of 5982 files together
with the 48 ground-truth MIDIs files, is called DB2. Fi-
nally, since the ground-truth MIDIs are rather short while
Essen collection mainly consists of long data files, we also
consider a third database, called DB3, proposed during the
MIREX 2005, which is a subset of the RISM A/II (Interna-
tional inventory of musical sources) collection, composed
of 17433 short excerpt of real world compositions.

We have tested our implementation on three different
platforms. Their characteristics are given in Table 1. For

OS CPU GPU
W1 NVidia Tesla

Worksta-
tion running
Linux, CUDA
v2.1

3GHz Intel
Core 2 Duo

NVidia
GeForce
9800 GX2, 512
MB memory

W2 Mac Pro
running Mac
OS X 10.5,
CUDA v2.2

Two 2.8GHz
Intel Xeon
Quad Core

NVidia
GeForce
8800 GT, 512
MB Memory

L1 MacBook Pro
running Mac
OS X 10.5,
CUDA v2.2

2.53 GHz
Intel Core 2
Duo

NVidia
GeForce
9400 M, shared
memory with
CPU

Table 1. Characteristics of our three platforms

each algorithm we have measured the time on both the
CPU alone and the CPU together with the GPU used as
a parallel coprocessor.

Regarding the algorithms, we have implemented the orig-
inal Smith-Waterman algorithm (SW) and our extension
based on local transposition alignment (LT). Since the queries
are known to be at the beginning of the references, we have
implemented variants of the above algorithms that only
compare the query with the beginning of each MIDI files
(in Table 2 we only report timings for size of the query plus
10 notes). These variants are respectively called SW10 and
LT10.

We evaluate the quality of our music retrieval system
using two measures. The Mean Reciprocal Rank (MRR),
i.e. the average of the reciprocal ranks of the first correct
answer, computed for a sample of N queries as

MRR =
1
N

N∑
i=1

1
ri
,

where ri is the rank of the first correct answer for the ith
query. And the top-X ratio which reports the proportion of
queries for which ri ≤ X .

4.2 Smith-Waterman vs Local Transposition
Alignment

We first evaluate the quality, given in terms of MRR and
top-5 ratio, of SW and LT on the three databases. For

3 http://www.esac-data.org/

282

10th International Society for Music Information Retrieval Conference (ISMIR 2009)

DB1, SW reaches a MRR of 0.274 and a top-5 ratio of
30.3%, while LT reaches a MRR of 0.684 and a top-5 ratio
of 75.4%. The MRR increases when the size of the query is
taken into account during the comparison: SW10 reaches
a MRR of 0.295 and a top-5 ratio of 32.3%, while LT10
reaches a MRR of 0.732 and a top-5 ratio of 79.4%. We ob-
serve the same behaviour for DB2 and DB3. Fig. 3 shows
that the MRRs obtained for databases of different sizes re-
mains roughly the same. The local transposition alignment
method provides better results than Smith-Waterman.

For a suggestive comparison, the method submitted by
Wu and Li, which performed best at MIREX 2008 reaches
a MRR of 0.9 on a well choosen subset of 2000 MIDI files
from the Essen collection. However, since we could not
find the original database used for the MIREX 2008 com-
petition, our DB1 consists of 2000 randomly chosen MIDI
files from the Essen collection. It therefore contains several
copies of the same noise files, which automatically impacts
the quality of our results.

0 5000 10000 15000 20000
Database size

0.0

0.2

0.4

0.6

0.8

1.0

M
R

R

Smith Waterman 10
Smith Waterman
Local Transposition 10
Local Transposition

Figure 3. MRRs obtained for SW, SW10, LT, LT10 on our
three databases

4.3 CPU vs GPU

Although LT provides very good results in terms of qual-
ity, it is very time consuming. On our fastest CPU (W2),
a Mac Pro equipped with two 2.8 GHz Intel Xeon Quad
Core processors, the analysis on DB1 takes more than 326
minutes with LT10 (∼ 7 sec. per query) and more than 595
minutes with LT (∼ 13 sec. per query). This computation
time even reaches 1282 minutes for LT10 (∼ 27.5 sec. per
query) on the largest database DB3, which contains more
than 17000 MIDI files.

As shown in Table 2, our CUDA implementations pro-
vide impressive speed-ups. The local transposition algo-
rithms (LT and LT10) which gives the highest MRRs and
top-X ratios, are up to 162 times faster than their CPU
counterpart. This is achieved for DB3 on our Mac Pro con-
figuration W2; the analysis of more than 17000 MIDI files
using LT10 was completed in 473 seconds (∼ 0.16 s per
query). Note also that the local transposition algorithm is

perfectly adapted to parallel implementations as it is only
slightly slower than SW.

It is important to remark that our CUDA implementa-
tion leads to significant improvements even on our lightest
configuration (L1), a laptop not designed to perform heavy
graphic computations and which embeds a cheap, on-chip
graphic card (NVidia 9400 M). The analysis of DB1 only
takes 470 seconds, i.e. ∼ 0.16 s per query. During the
MIREX 2008, the fastest implementation for the analy-
sis of a database similar to DB1 was performed in 1699
seconds on a AMD Athlon XP 2600+ running at 1.9GHz.
Our fastest implementation, running on W1, completed the
analysis of the 2797 queries in only 301 seconds, that is al-
most 6 times faster.

Config. SW10 SW LT10 LT

DB1
L1 7:33 7:33 7:50 40:54
W1 4:12 5:05 5:01 20:16
W2 6:00 6:00 6:01 14:42

DB2
L1 7:53 7:51 15:10 79:45
W1 6:55 6:54 6:10 25:46
W2 6:18 6:18 6:16 20:40

DB3
L1 9:20 9:19 41:31 44:48
W1 5:15 6:05 10:09 25:27
W2 7:25 7:27 7:53 21:15

Table 2. Timings of the different algorithms on various
GPUs and databases in mm:ss

5. CONCLUSIONS

Local transposition alignment algorithms are very power-
ful. Using QbH as an experimental application, our variant
of Smith-Waterman lead to very good results. We believe
that this type of algorithm would give even better results
for other music retrieval systems, such as cover detection,
where the query is significantly larger and contains fewer
errors than a sung or hummed query. Our implementation
takes advantage of the immense computing resources of-
fered by the most recent graphic cards. These low-cost de-
vices regroup hundreds of cores that can operate in parallel
and sufficient memory to store large musical databases. A
great care must be taken when programming memory op-
erations as a bad allocation strategy can have a significant
impact on the computation time. At this time, we have not
yet optimized the pre-processing phase of the system. In
particular, the analysis and conversion of the queries (wave
audio files) is running exclusively on the CPU and takes
between 75-90% of the overall computation time. Our
next task will be to implement this stage on GPU using
the CUDA CUFFT library. We anticipate significant im-
provements in terms of speed.

6. ACKNOWLEGMENT

This work has been partially sponsored by the French ANR
SIMBALS (JC07-188930) and ANR Brasero (ANR-06-BLAN-
0045) projects.

283

Poster Session 2

7. REFERENCES

[1] N. Orio. Music retrieval: A tutorial and review. Foun-
dations and Trends in Information Retrieval, 1(1):1–
90, 2006.

[2] S. Doraisamy and S. Rüger. Robust polyphonic music
retrieval withN -grams. Journal of Intelligent Informa-
tion Systems, 21(1):53–70, 2003.

[3] A. L. Uitdenbogerd. Music Information Retrieval Tech-
nology. PhD thesis, RMIT University, Melbourne, Vic-
toria, Australia, July 2002.

[4] E. Ukkonen, K. Lemström, and V. Mäkinen. Geomet-
ric algorithms for transposition invariant content-based
music retrieval. In Proceedings of the 4th International
Conference on Music Information Retrieval, ISMIR
2003, pages 193–199, 2003.

[5] R. Typke, R. C. Veltkamp, and F. Wiering. Search-
ing notated polyphonic music using transportation dis-
tances. In Proceedings of the ACM Multimedia Confer-
ence, pages 128–135, 2004.

[6] R. Typke and A. Walczak-Typke. A tunneling-vantage
indexing method for non-metrics. In Proceedings of
the 9th International Conference on Music Information
Retrieval, ISMIR 2008, pages 351–352, 2008.

[7] P. Hanna, P. Ferraro, and M. Robine. On optimizing the
editing algorithms for evaluating similarity between
monophonic musical sequences. Journal of New Mu-
sic Research, 36(4):267–279, 2007.

[8] M. Mongeau and D. Sankoff. Comparison of musical
sequences. Computers and the Humanities, 24(3):161–
175, 1990.

[9] T. F. Smith and M. S. Waterman. Identification of com-
mon molecular subsequences. Journal of Molecular
Biology, 147(1):195–197, 1981.

[10] J. Serrà, E. Gómez, P. Herrera, and X. Serra.
Chroma binary similarity and local alignment applied
to cover song identification. IEEE Transactions on Au-
dio, Speech and Language Processing, 16:1138–1151,
2008.

[11] R. B. Dannenberg, W. P. Birmingham, B. Pardo, N. Hu,
C. Meek, and G. Tzanetakis. A comparative evaluation
of search techniques for query-by-humming using the
MUSART testbed. Journal of the American Society for
Information Science and Technology, 58(5):687–701,
2007.

[12] P. Hanna and M. Robine. Query by tapping system
based on alignment algorithm. In Proceedings of the
IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP, 2009. (to appear).

[13] J. P. Bello. Audio-based cover song retrieval using ap-
proximate chord sequences: Testing shifts, gaps, swaps

and beats. In Proceedings of the 8th International Con-
ference on Music Information Retrieval, ISMIR 2007,
pages 239–244, September 2007.

[14] J. S. Downie, M. Bay, A. F. Ehmann, and M. C. Jones.
Audio cover song identification: MIREX 2006-2007
results and analyses. In Proceedings of the 9th Inter-
national Conference on Music Information Retrieval,
ISMIR 2008, pages 51–56, 2008.

[15] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E.
Stone, and J. C. Phillips. GPU computing. Proceedings
of the IEEE, 96(5):879–899, May 2008.

[16] S. Needleman and C. Wunsch. A general method ap-
plicable to the search for similarities in the amino acid
sequences of two proteins. Journal of Molecular Biol-
ogy, 48:443–453, 1970.

[17] D. Gusfield. Algorithms on Strings, Trees and Se-
quences – Computer Science and Computational Bi-
ology. Cambridge University Press, Cambridge, 1997.

[18] J. Allali, P. Ferraro, P. Hanna, and C. Iliopoulos. Lo-
cal transpositions in alignment of polyphonic musi-
cal sequences. In String Processing and Information
Retrieval Symposium, 14th International Symposium,
SPIRE 2007, Proceedings, volume 4726 of Lecture
Notes in Computer Science, pages 26–38. Springer,
October 2007.

[19] F. J. Horwood. The Basis of Music. Gordon V. Thomp-
son Limited, Toronto, Canada, 1944.

[20] Y. Liu, W. Huang, J. Johnson, and S. Vaidya. GPU ac-
celerated Smith-Waterman. In Computational Science,
ICCS 2006, volume 3994 of Lecture Notes in Com-
puter Science, pages 188–195. Springer, 2006.

[21] NVIDIA CUDA. Programming Guide, April 2009.
Version 2.2. Available at http://www.nvidia.
com/object/cuda_home.html.

284

