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ABSTRACT

In folk song research, appropriate similarity measures can
be of great help, e.g. for classification of new tunes. Sev-
eral measures have been developed so far. However, a par-
ticular musicological way of classifying songs is usually
not directly reflected by just a single one of these measures.
We show how a weighted linear combination of different
basic similarity measures can be automatically adapted to
a specific retrieval task by learning this metric based on a
special type of constraints. Further, we describe how these
constraints are derived from information provided by ex-
perts. In experiments on a folk song database, we show that
the proposed approach outperforms the underlying basic
similarity measures and study the effect of different levels
of adaptation on the performance of the retrieval system.

1. INTRODUCTION

Folk song researchers detect and document relations be-
tween folk songs and their performances. This helps to
understand oral transmission. Today, folk song researchers
can digitally encode their transcriptions using common mu-
sic notation editors and use computational methods to de-
tect similarities between songs. However, as there are dif-
ferent ways to detect features in music, there are many dif-
ferent ways to compare songs. Usually, a single compu-
tational similarity value will not match directly with the
classification criteria that a musicologist applies. There-
fore, we choose a weighted linear combination of different
basic similarity measures. Depending on the retrieval task
at hand, the optimal weighting (with best retrieval perfor-
mance) of such a complex similarity measure may differ.

In this paper, we describe a metric learning approach
that can derive a good weighting in a semi-supervised man-
ner. We apply constraint-based metric learning and formal-
ize the weight adaptation as an optimization problem that
is solved by gradient descent. Constraints that guide the
adaptation process can be derived from an existing classi-
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fication of tunes from a collection. We compare different
ways of employing the derived similarities to support dif-
ferent browsing and classification tasks in a system that
accepts both previous classified and unclassified queries.

The main contribution of this paper lies in describ-
ing and evaluating a general methodology that allows folk-
song researches to automatically generate complex task-
specific similarity metrics from basic similarity measures.

2. RELATED WORK

Metric learning has been a topic of interest in general in-
formation retrieval for some time, as using a suitable simi-
larity measure is crucial for the performance of many com-
monly used approaches for clustering, classification or rank-
ing. The general objective is either to get a query closer to
the relevant objects (in a classic retrieval scenario) or to re-
fine the decision boundary between relevant and irrelevant
objects (in a classification scenario which does not nec-
essarily require a query). The highly subjective nature of
perception and the large variety of ways to represent and
compare music in many “plausible” ways make it hard to
manually define and tweak a metric according to the char-
acteristics of the input data and the specific retrieval task.
Consequently, there exist only few approaches for direct
manipulation of the metric as described e.g. in [1] and [2].
In contrast to this, our approach allows a semi-supervised
metric adaptation. This requires some labeled objects as
training data. For the experiments discussed in this paper,
such data was already provided. However, if such informa-
tion is not available a priori, a relevance feedback approach
is usually taken where a user is asked to judge on the rele-
vance of some objects.

The idea of incorporating relevance feedback to improve
the performance of an information retrieval system goes
back to the 1970s [3]. Since, it has been widely applied
and further elaborated – primarily in text but also in im-
age retrieval. Recently, in the field of music information
retrieval, several approaches using explicit feedback have
been presented that adaptively combine the results of dif-
ferent music representation schemes [4], associate differ-
ent music similarity perception models with users [5], learn
to discriminate between similar and dissimilar pieces [6],
adapt to the way of querying by taking into account user-
specific humming errors [7], or generate user-adaptive play
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lists [8–11]. Alternatively, the required information may
be collected through the analysis of user actions such as
the skipping behavior [12] or manual rearrangement of ob-
jects on a map through drag & drop [13].

All these approaches are related to the one presented in
this paper in that they rely on some form of metric adapta-
tion. Our approach differs from these in two ways. First, it
targets a significantly different application scenario. Sec-
ond, none of the above approaches is based on constrained
metric learning, which is applied here, except for the ap-
proach presented in [13] that uses similar constraints to
guide the clustering of a self-organizing map.

3. OUR APPROACH

The goal of this work is to assist a folk song researcher
in classifying new tunes (Section 3.1). Fundamental to
this task is the computation of similarities between tunes.
Different measures were developed in the past (Section
3.2). However, a particular musicological way of classi-
fying songs is usually not directly reflected by just one of
these measures. We show here how a weighted measure
derived from a certain classification scheme can be auto-
matically learned (Section 3.3). Based on this measure, we
can support the classification of new items by presenting
a ranked list (ordered by similarity) of already classified
tunes (Section 3.4).

3.1 Expert classification support

Folk song researchers at the Meertens Institute study and
classify folk song variants. Besides other means, songs
are traditionally classified by assigning them a so called
melody norm. This classification captures aspects of musi-
cal similarity and historical relationships. One tune cannot
be part of more than one class.

The WITCHCRAFT project supports researchers by pro-
viding a system that enables browsing by musical content.
The system’s similarity measures operate on symbolic rep-
resentations of tunes (Humdrum ∗ ∗ kern and MIDI for-
mat). A query melody is usually specified by clicking on a
search link besides a database item. The system then ranks
database tunes according to a chosen similarity measure.

Two types of ranking lists are supported by switching
on/off a filter that is based on tune classification. In unfil-
tered mode, the tune-ranking-list presents all tunes ordered
by similarity. This is handy when looking for all variants
of a given song. In filtered mode, the class-ranking-list
presents only the best ranked melody from each class. 1

Therefore, much fewer items are shown. This is handy
when classifying a previously unclassified song or when
questioning an existing classification.

3.2 Basic tune similarity measures

In this paper, we distinguish between basic similarity mea-
sures simj(t1, t2) as introduced in the following and lin-
ear combinations thereof (Eq. (1)). Note that the basic

1 We found that taking the maximum leads to better results than taking
the average of all the similarities.

similarity measures in this paper are themselves complex
constructions of often more basic musical and mathemati-
cal transformations [14, 15]. However, in future work, we
plan to also use more basic building blocks. In our ex-
periments, we consider 14 similarity measures. However,
the methods proposed in the following work with any set
of measures. 11 of the 14 measures are taken from the
Simile package. 2 These are rawEd, diffEd, nGrSumCo,
nGrUkkon, harmCorE, rhytFuzz, rhytGaus, opti1, opti3,
accents opti1 and accents opti2. Two distance measures
are based on the spectra of Laplacean and Adjacency graphs
[16] and one is an unpublished pitch sequence edit dis-
tance, implemented by us. All distance measures were
transformed to a similarity through sim = (1 + dist)−1.

3.3 Estimating a weighted similarity

Having given a certain number of expert classifications, the
question remains whether we can find an optimal weight-
ing of different tune similarity measures to reflect the simi-
larity underlying these expert classifications. In particular,
we are interested in the following weighted sum of n sim-
ilarity measures:

simw(t1, t2) =
n∑

j=1

wjsimj(t1, t2), (1)

with wj ≥ 0, and
∑n

j=1 wj = 1.
The weight vector w can be learned by methods of con-

strained clustering, which target on learning a metric [17,
18]. In particular, must-link-before (MLB) constraints [18]
can be used. Originally, MLB constraints were proposed
for hierarchical clustering to describe the hierarchical rela-
tion between three different items. The constraint (ix, iy, iz)
states that items ix and iy should be linked on a lower hier-
archy level than items ix and iz . For our problem at hand,
we can use a similarity interpretation instead, i.e., items ix
and iy should be more similar than items ix and iz .

Given a certain query tune q, we know from the expert
classification, which other tunes tr belong to the same (rel-
evant) class and which tunes ti are irrelevant. As the tunes
of the same class should be ranked first and, thus, should
be more similar, we can build MLB constraints of the fol-
lowing form: (q, tr, ti), which implies that

sim(q, tr) > sim(q, ti). (2)

Hence, the goal is to learn a weight vector w, with which
the fewest of the MLB constraints known for a certain
query are violated. This can be achieved with a gradient
descent search similar to the work in [18]. During learn-
ing, all constraint triples (q, tr, ti) are presented to the al-
gorithm several times until convergence is reached. If a
constraint is violated by the current similarity measure, the
weighting is updated by trying to maximize

obj (q, tr, ti) = simw(q, tr)− simw(q, ti), (3)

2 http://doc.gold.ac.uk/isms/mmm/SIMILE_algo_
docs_0.3.pdf
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which can be directly derived from (2). This leads to the
weight update rule of each individual weight wj

wj = wj + η∆wj , with (4)

∆wj =
∂obj (q, tr, ti)

∂wj
= simj(q, tr)− simj(q, ti) (5)

where η is the learning rate defining the step width of each
adaptation step.

However, this computation does not ensure the bounds
on wj given earlier. To achieve this, an additional step is
added that, first, sets all negative weights to 0 and then
normalizes the weights to sum up to 1. The complete algo-
rithm is summarized in Figure 1.

learnWeights(query tune q, tunes T , expert classifi-
cation C, ∀k = 1..n : similarity simk)
Determine constraints MLB from T and C
Initialize w: ∀j : wj := 1/n
repeat

for all (q, tr, ti) ∈ MLB do
if simw(q, tr) ≤ simw(q, ti) then
∀j : compute ∆wj

∀j : wj := max(0, wj + η∆wj)
sumw =

∑
j wj

∀j : wj := wj/sumw

end if
end for

until convergence
return w

Figure 1. The weight learning algorithm

This algorithm learns an individual weighting wq based
on the set of MLB constraints for a single query q. How-
ever, a weighting that works well for several queries would
be more useful. In specific, it is interesting to learn class
weightings wcl(t) that hold for all queries of the same class
cl(t) of a tune t and an overall weighting wa that holds
for all queries. These can be computed by the same algo-
rithm using the combined constraint sets from all consid-
ered rankings.

3.4 Querying with unclassified tunes

The approach from the previous section can learn an op-
timal similarity measure based on an expert classification.
If new tunes are added to a collection, no expert classifica-
tion is available at first and, hence, no weights optimized
for this query are available based on which a ranking list
could be build. If there is no perfect global measure that
can be applied to all queries, a different strategy can be
followed for this query to build the ranking.

This is based on the already known good weightings of
all database tunes, which were determined by the method
described in the previous section. If we assume that similar
songs also have a similar optimal weighted similarity, we
can estimate a weighting for the new query tune q by pick-
ing the weighting scheme of the closest tune tbest in the
database. This can be seen as a case-based approach [19]

where each tune in the database and its associated weighted
similarity correspond to a case and these stored cases are
used to decide how to handle the new case, i.e., how to
weight concerning the query tune.

However, this does not yet fully solve the problem, be-
cause a weighting scheme is already required to find the
closest tune tbest for a query. A straight forward approach
is to use an overall weighting wa. Alternatively, the more
specific class weighting wcl(t) or the individual tune weight-
ing wt associated with each database tune t can be used,
because we already know that these similarities are well
suited for comparing any tune with t. 3 We will select the
case with the largest (local) similarity and use its weight-
ing to finally rank all tunes in the database according to the
query tune q: wbest = arg maxwt simwt(q, t).

For ranking, we can also use any of the weightings asso-
ciated with the closest case tbest, i.e., wtbest , wcl(tbest) and
wa, where the latter is obviously the same for any database
tune. In Section 4.4, we use the notation w2 ◦ w1 to in-
dicate that the first step (closest case selection) was per-
formed using a similarity based on w1 and the second step
(ranking) is based on w2.

4. EXPERIMENTS

We conducted experiments to study how well the different
weighting techniques perform for already classified (Sec.
4.2) and unclassified tunes (Sec. 4.4) with respect to the
two different ranking lists (Sec. 4.1). Further, we analyzed
the stability of the learned weighting schemes (Sec. 4.3).

4.1 Dataset and measure evaluation method

Our evaluation is done on 360 well understood single melo-
dic strophes (one strophe per recording) described in [20].
The tunes are classified into 26 disjunct classes. For each
pair of tunes all 14 basic similarity measures are consid-
ered. These 14 · 3602 similarity values are precalculated
and need not be recomputed in the learning algorithm and
in the construction of ranking lists.

As in the application system (Sec. 3.1), our algorithms
produce for each (combined) similarity measure and query
tune a tune-ranking-list of all database tunes and a class-
ranking list. Both are ordered by decreasing computed
similarity. All tunes with the same class as the query are
marked as being a relevant result. This gives the ground
truth for evaluating the ranked lists. As measures, we com-
pute the average precision and average recall per rank on
the tune-ranking-lists for the set of evaluated queries. For
evaluation of class-ranking lists, we are interested in the
position of the correct class in such a list. We present
here the number of misclassifications at rank 1, the average
rank of the correct class and the average inverse rank over
all considered queries. The latter average is less sensitive
for single extremely bad class retrievals.

3 Please note that in this case different weightings are used to compute
the similarity to different database tunes, which leads to local distortions
of the similarity space around each case. While such a locally distorted
metric is unsuitable for the computation of the entire ranking, it may still
be useful to retrieve only tbest as shown in the experiments in Sec. 4.4.
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4.2 Querying with classified tunes

In this section we study the retrieval performance of learned
weights (cf. Sec. 3.3) and, thus, whether an automatically
determined combination of different existing similarity mea-
sures performs better than the individual ones. We con-
sider three weightings of different specificity as motivated
in Section 3.3: query-specific weighting wq , class-specific
weighting wcl(q) and overall weighting wa. The preci-
sion/recall curves for these cases are shown in Fig. 3 (left).
Additionally, the performance plots of the two best basic
similarity measures, rawEd and opti1 have been included
into the figure for comparison. Table 1 (top) shows the cor-
responding evaluation of the class-ranking-lists, ordered
by best performance, which gives the same order for all
three measures, i.e., average rank of correct class (smaller
is better), average inverse rank (larger is better), and the
number of wrong classifications (inspecting the first rank).

Not surprisingly, using wq for similarity computation
results in the best retrieval performance. It marks the upper
bound of what can be achieved with the learning algorithm.
Further, it can be observed that wcl(q) indeed performs bet-
ter than wa. However, if weights get more specific, the
danger of overfitting exists. We will discuss this problem
in Section 4.4. Nevertheless, this evaluation indicates that
there might not be a single perfect overall similarity mea-
sure that can be used in general. Instead data/problem spe-
cific measures might be needed, which are especially inter-
esting if they can be determined automatically as through
our presented method.

It is interesting to see, that the overall weight performs
worse than the best basic similarity measure (rawEd) in
most precision/recall regions (although only slightly) but
that rawEd performs worse than all shown measures for
the class-ranking-lists. This is caused by the convergence
behavior of the algorithm, which is not guaranteed to find
a global optimum but a local one.

4.3 Stability of the weighting scheme

In order to assess the stability of the individual weighting
schemes throughout the different classes, we conducted
two experiments. In the first experiment, we analyzed the
individual weightings obtained for the classified tunes (cf.
Section 4.2) with respect to the classes. The following two
measures were computed for each class:

The average pairwise inner-class similarity is computed
as the average of the similarity of the weightings for all
pairs of tunes within the specific class:

siminner(C) = average
t1,t2∈C,t1 6=t2

{
simcos

(
wt1 ,wt2

)}
. (6)

Analogously, the average pairwise cross-class similarity is
computed as the average of the similarity of the weightings
for all pairs of tunes where one tune belongs to the specific
class and the other to a different class:

simcross(C) = average
t1∈C,t2 /∈C

{
simcos

(
wt1 ,wt2

)}
. (7)
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Figure 2. Average pairwise inner- and cross-class similar-
ity of the individual weightings per class (sorted).

For the comparison of two weightings the cosine similarity

simcos

(
wt1 ,wt2

)
=

wt1 ·wt2

‖wt1‖‖wt2‖
(8)

was used. Fig. 2 shows the computed values for all classes
(sorted by descending inner-class value for better readabil-
ity). The inner-class value is always significantly higher
than the respective cross-class value. It can be concluded
that the individual weightings of tunes belonging to the
same class are in general distinct from those belonging
to others which explains the usefulness of class weights
(wcl(q) in Sec. 4.2). The generally high cross-class values
(above 0.5) can be interpreted as an indicator for the exis-
tence of a useful overall weighting scheme (wa in Sec. 4.2).

For the second experiment, we left out one to five rel-
evant tunes selected randomly from a ranking during the
learning process for individual weights. The procedure
was repeated ten times for each number of excluded tunes.
We then compared the 5 · 10 resulting weighting schemes
with the one learned with all available information. To save
time, we limited the number of tunes used as queries to two
for each of the 26 classes resulting in 2 · 26 · 5 · 10 = 2600
samples compared.

The number of excluded tunes did not seem to have a
large observable effect in our experiment. The different
weights learned for the same tune with a differing set of
relevant tunes were almost identically with an average sim-
ilarity of 0.969 (σ = 0.086). Only a few outliers could be
measured, the worst with a minimal similarity of 0.278.
From the results we can conclude that the learning algo-
rithm still produces stable results even if almost half of the
relevant tunes are removed.

4.4 Querying with unclassifed tunes

In this section we study the retrieval performance for pre-
viously unclassified tunes, i.e., for which no previously
learned weight wq or wcl(q) exists. Following the case-
based approach described in Sec. 3.4, Fig. 3 (middle and
right) shows the respective precision/recall curves. We there-
by consider two different real-world situations.

In the first case (Fig. 3; middle) the query tune repre-
sents a new tune and is therefore not part of the weight
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learning. However, the other tunes of the same class are
already in the database and therefore used for learning.
But of course, the system does not know during ranking
which ones these are. In the other case (Fig. 3; right) all
tunes from the query tune’s class were not used for learn-
ing, simulating an entirely new class that shall be added
to the database. Thus, no information on this class was
available for learning. This is of course an even harder
case. For computation of the precision and recall values,
all tunes were ranked according to the query tune, includ-
ing the songs of the unknown class. For both scenarios, we
used weights with different specificity in the two steps of
the case-based approach (cf. Sec. 3.4).

As expected, the comparison of both diagrams shows
that the performance of the learned measures is lower for
the harder case of a new class than in the case of a new
tune from a known class. The rawEd measure can thereby
be used as a point of comparison, because it has the same
curve in both cases. It showed that the more specific weight-
ings, most notably wt ◦wt, are much better in the middle
graph than in the right one. This is because members of the
same tune family can be detected as a case, if they are al-
ready in the database. However, specific weightings from
other tune families are less fitting. Thus, the approach fails
for a new tune family, where no good specific measures
are in the database yet. In the middle graph, wa is best
used to establish a case and wt of that case to finally rank:
wt ◦ wa. This approach is also quite good in the right
graph, although using only wa is slightly better. rawEd
is better at the end of the ranking, while it is worse at the
beginning. This is also reflected in the evaluation of class-
ranking-lists (Tab. 1). Here, rawEd performs worst. With
respect to automatic classification, wa performs best with
the fewest errors in the first rank. A comparison of wt◦wa

with wcl(t)◦wa would be interesting, but the experimental
data for wcl(t) ◦wa is not available, yet.

As a remark it shall be noted that the described method-
ology of simulating new tunes is very time-consuming be-
cause for each considered query the learning has to be re-
done without the respective information. Therefore, the
experiments were done with only 78 query melodies, three
melodies from each melody norm. For the development of
new similarity measures, the biased evaluation without re-
sampling as used in Section 4.2 can be used to get a rough
idea of which measure might be more promising. How-
ever, it can never replace a final unbiased evaluation as in
this section. Furthermore, the choice of melodies showed a
significant impact on the results. Using, e.g., only the ref-
erence melodies from [20], the learned measures perform
much better in comparison to rawEd - also in the most
challenging case, while other query tunes are harder to
handle. For our evaluations we used the reference melody
and two randomly picked other melodies.

5. CONCLUSION

We described an adaptive metric learning approach based
on constrained clustering that can be used in folk song re-
search to learn a task-specific similarity measure in form of

Table 1. Evaluation of the class-ranking-lists. Top: clas-
sified tunes (Sec. 4.2). Middle: unclassified tunes of a
known class (Sec. 4.4). Bottom: unclassified tunes of an
unknown class (Sec. 4.4).

Measure Rank Inverse 1st Wrong
wq 1.042 0.989 6 / 360
wcl(q) 1.083 0.985 9 / 360
opti1 1.169 0.975 14 / 360
wa 1.172 0.974 14 / 360
rawEd 1.233 0.967 16 / 360
wt ◦wa 1.218 0.969 4 / 78
wa 1.231 0.981 2 / 78
wt ◦wt 1.244 0.957 5 / 78
wcl(t) ◦wcl(t) 1.346 0.976 2 / 78
rawEd 1.410 0.946 5 / 78
wa 1.218 0.982 2 / 78
wt ◦wa 1.244 0.971 3 / 78
wt ◦wt 1.282 0.942 7 / 78
wcl(t) ◦wcl(t) 1.359 0.970 3 / 78

a weighted linear combination of several basic similarity
measures. Individual, class and overall weightings provide
different levels for specificity of the adaptation. Experi-
ments on a data set of pre-classified folk songs showed that
the combined similarity measures using these weightings
can outperform the original basic similarities for ranking
and automatic classification.

Future experimental work comprises incorporating more
basic similarity measures that capture different aspects of
the tunes to be classified. Further, the impact of the dif-
fering value distributions (within the fixed [0, 1] interval)
for the different basic similarities needs to be studied in
further experiments as it might cause a bias in the learned
weighting schemes.

Future musicological work includes studying clusters of
similar weightings. As different weightings represent dif-
ferent metrics, they select different features that separate
melody classes. Within a melody norm, several distinct
weight clusters suggest the introduction of sub-melody-
norms that might be helpful for folk song research. On
the other hand, weight clusters shared by different melody
norms could be studied to improve the case-based approach.
If, e.g., rhythmically ragged melodies generally lead to
higher weighted rhythmical similarity measures, then rag-
gedness should be used to select weights instead of rhyth-
mical similarity. For a better support of folk song research-
ers, the algorithm should be integrated into a graphical user
interface. In this context, possible interaction scenarios,
e.g., for expert-driven development of new similarity mea-
sures, could be examined.
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Figure 3. Precison / Recall plots for tune-ranking-lists. Left: classified tunes. Middle: unclassified tunes of a known class.
Right: unclassified tunes of an unknown class.
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