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ABSTRACT

This paper focuses on automatic extraction of acoustic

chord sequences from a musical piece. Standard and fac-

tored language models are analyzed in terms of applica-

bility to the chord recognition task. Pitch class profile vec-

tors that represent harmonic information are extracted from

the given audio signal. The resulting chord sequence is

obtained by running a Viterbi decoder on trained hidden

Markov models and subsequent lattice rescoring, applying

the language model weight. We performed several exper-

iments using the proposed technique. Results obtained on

175 manually-labeled songs provided an increase in accu-

racy of about 2%.

1. INTRODUCTION

Among all existing musical styles, western tonal music,

which is one of the most popular nowadays, is known for

its strong relationship to harmony. Harmonic structure can

be used for the purposes of content-based indexing and re-

trieval since it is correlated to the mood, style and genre

of musical composition. Automatic analysis of digital mu-

sic signals has attracted the attention of many researchers,

establishing and evolving the Music Information Retrieval

(MIR) community. One of the largest research areas of the

interdisciplinary science of MIR is music transcription. A

subtask of this problem, which deals with the extraction

of harmonic properties of audio signal, is chord recogni-

tion. Basically, harmony denotes a combination of simul-

taneously or progressively sounding notes, forming chords

and their progressions. In almost all cases the harmonic

structure of a piece of music can be converted into a chord

sequence. A great interest in chords can be indicated by a

number of websites containing chord databases for existing

popular songs. Automatic extraction of harmonic structure

can also be of great use to musicologists, who perform har-

monic analysis over large collections of audio data.

As in the case of speech recognition, one of the most

critical issues in chord recognition is the choice of the
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acoustic feature set to use in order to represent the wave-

form in a compact way. One of the most successfully used

feature set is chromagram, which can be represented as

a sequence of chroma vectors. Each chroma vector, also

called Pitch Class Profile (PCP), describes the harmonic

content of a given frame. The amount of energy for each

pitch class is described by one component in the PCP vec-

tor. Since a chord consists of a number of tones and can be

uniquely determined by their positions, chroma vectors can

be used effectively for chord representation. The chroma

feature was firstly introduced for music computing tasks by

Fujishima [1]. He proposed a real-time chord recognition

system, describing extraction of 12-dimensional chroma

vectors from the Discrete Fourier Transform (DFT) of the

audio signal and introducing a numerical pattern match-

ing method using built-in chord-type templates to deter-

mine the most likely root and chord type. The statistical

learning method for chord recognition was suggested by

Sheh and Ellis [2]. They exploited the Expectation-Maxi-

mization (EM) algorithm to train hidden Markov models,

while chords were treated as hidden states. Statistical in-

formation about chord progressions in their approach is

represented by the state transitions in HMM. The approach

of Papadopoulos and Peeters [3] incorporates simultaneous

estimation of chord progression and downbeats from an au-

dio file. They paid a lot of attention to possible interaction

of the metrical structure and the harmonic information of a

piece of music.

Incorporating statistical information on chord progres-

sions into a chord recognition system is an important issue.

It has been addressed in several works through different

techniques. Mauch and Dixon [4] used one of the simplest

forms of N -grams – the bigram language model. In the

approaches of Papadopoulos and Peeters, Lee and Slaney

[3,5] chord sequence modeling is introduced through state

transition probabilities in HMM. In their case ”language

model” is a part of HMM and is derived from the Markov

assumption, where chord probability is defined by only

one predecessor. Yoshioka et al. [6] presented an auto-

matic chord transcription system which is based on gener-

ating hypotheses about tuples of chord symbols and chord

boundaries, and further evaluating the hypotheses, taking

into account three criteria: acoustic features, chord pro-

gression patterns and bass sounds. This approach was fur-

ther developed by Sumi et al. [7]. They mainly focused on

the interrelationship among musical elements and made an
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attempt to efficiently integrate information about bass lines

into chord recognition framework. They used two 2-gram

models, one for major keys and one for minor keys, which

are obtained in advance from real music. A large study on

the modeling of chord sequences by probabilistic N-grams

was performed by Scholz et al. [8]. Unal et al. [9] used

perplexity-based scoring to test the likelihoods of possible

transcription sequences.

This paper investigates the applicability of standard and

factored language models of high orders (3-gram, 4-gram).

Experiments with different back-off strategies for factored

language models are carried out.

The rest of the paper is organized as follows: section 2

describes the front-end processing. In section 3 the here

adopted HMM-based classification engine is briefly out-

lined. Language modeling is presented in section 4. Sec-

tion 5 is devoted to the description of the whole proposed

chord recognition system. The experimental results and

conclusion are then given in section 6 and section 7, re-

spectively.

2. FRONT-END PROCESSING

Before extracting features, the tuning procedure described

in [10] is applied in order to find the mis-tuning rate and

set the reference frequency fref for the ”A4” tone. The

necessity of tuning appears when audio was recorded from

instruments that were not properly tuned in terms of semi-

tone scale.

The feature extraction process starts with downsam-

pling the signal to 11025 Hz and converting it to the fre-

quency domain by a DFT applying Hamming window of

185.7 ms with 50% overlapping. The harmonic content is

extracted from the frequency range between 100 Hz and 2

kHz only. The main reason for this is the fact that in this

range the energy of the harmonic frequencies is stronger

than non-harmonic frequencies of the semitones. A se-

quence of conventional 12-dimensional Pitch Class Profile

(PCP) vectors, known as chromagram is used as acoustic

feature set. Each element of PCP vector corresponds to the

energy of one of the 12 pitch classes. The process of PCP

extraction can be decomposed into several steps. After ap-

plying DFT, the energy spectrum is mapped to the chroma

domain, as shown in (1).

n(fk) = 12log2

(

fk

fref

)

+69, n ∈ℜ+ (1)

where fref denotes the reference frequency of ”A4”

tone, while fk and n are the frequencies of Fourier trans-

form and the semitone bin scale index, respectively. To

reduce transients and noise we apply smoothing over time

using median filtering, similarly to Peeters [11] and Mauch

et al. [4]. At the last stage semitone bins are mapped

to pitch classes, which results in the sequence of 12-

dimensional PCP vectors:

c(n) = mod(n, 12) (2)

Cmaj

Begin End

BmagC#maj

Dmaj

Bmin

Insertion penalty

Figure 1. Connection scheme of trained models for decod-

ing.

3. HIDDEN MARKOV MODELS

Hidden Markov models, which have been successfully

used for modeling temporal sequences, are utilized in the

proposed approach.

In contrast to many existing approaches [2, 3, 5], where

chord is represented as a hidden state in one ergodic HMM,

a separate left-to-right model is here created for each

chord. In the given system configuration each model con-

sists of 3 hidden states. The entry and exit states of a

HMM are non-emitting, while the observation probabili-

ties are identical for all emitting states. Observation vector

probabilities in the emitting states can be approximated by

a number of Gaussians in 12 dimensions, described by a

mean vector and a covariance matrix. The feature vector

components are assumed to be uncorrelated with one an-

other, so the covariance matrix has a diagonal form. For

each observation we use a mixture of 512 12-dimensional

Gaussians. Songs from the training set are segmented ac-

cording to the ground-truth labels so that each segment

represents one chord. Chromagrams extracted from these

segments are used for training, which is based on the ap-

plication of the Baum-Welch algorithm.

Before running the recognition task, we extract a chro-

magram for each song from the test data. There is no

preliminary segmentation as done on the training data for

which a chroma vector sequence is extracted for each

chord segment; only one chromagram is obtained for the

whole test song. The trained chord HMMs are connected

as shown in figure 1. Such parameter as insertion penalty

is introduced, which allows for obtaining labels with dif-

ferent degrees of fragmentation. The Viterbi algorithm is

then applied to the test data by using the resulting con-

nected trained model in order to estimate the most likely

chord sequence for each song and to produce a chord lat-

tice.

4. LANGUAGE MODELING

A lot of different statistical language models have been

proposed over years. The most successful among them

appeared to be finite state transducers. In Natural Lan-

guage processing N-grams are used for word prediction.

Given N − 1 predecessors, it can provide the probability

of N -th element appearing. Language models have a va-

riety of applications such as automatic speech recognition
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and statistical machine translation. The main goal of lan-

guage modeling can be explained as follows: having a sen-

tence, which consists of K words (w1, w2, ...wK ), gener-

ate a probability model p(w1, w2, ...wK). In most common

cases it can be expressed as (3).

p(w1, w2...wK) =
∏

t

p(wt|w1, w2...wt−1) =
∏

t

p(wt|ht)

(3)

where ht is the history sufficient for determining the

probability of wt word. In standard N -gram models the

history consists of the immediately adjacent N − 1 words.

For example, in 3-gram model the probability of current

word can be expressed as: p(wt|wt−1, wt−2).
While estimating language model parameters, there ex-

ists the problem of sparse data. It is caused by the impos-

sibility of producing maximum likelihood estimate of the

model, because all combinations of N -word sequences are

unlikely to be found in the training corpus. Since any train-

ing corpus is limited, some acceptable sequences can be

missing from it, which leads to setting zero probability to

plenty of N -grams. In order to cope with the problem, dif-

ferent techniques, such as back-off, smoothing and inter-

polation are used [12–14]. The main principle of back-off

is to rely on lower-order model (e.g p(wt|wt−1)) if there

is zero evidence for higher-order (e.g. p(wt|wt−1, wt−2))
model. The order of dropping variables is known as back-

off order. In the case of standard language models it is ob-

vious that information taken from older predecessor will

be less beneficial and it should be dropped prior to other

predecessors.

In the proposed approach we draw direct analogy be-

tween a sentence in speech and a tune in a piece of mu-

sic. The above-described strategy can be successfully used

in chord sequences modeling. In this case a chord is the

equivalent of a word and the sequence of chords can be

modeled by means of the same technique.

4.1 Factored language models

Western music is known to be highly structural in terms of

rhythm and harmony. In order to take advantage of mutual

dependency between these two phenomena, we have stud-

ied the interrelationship between beat structure and chord

durations. The number of occurrences as a function of

chord duration in beats histogram is shown in figure 2. It

is clearly seen that a greater part of chord durations is cor-

related to the metrical structure (2, 4, 8, 12, 16, 24, 32

beats), which suggests that including also chord durations

in the language model is more convenient than analyzing

just a sequence of chord symbols. This can be easily done

with the help of factored language models (FLMs), which

treat a word (chord) as a set of factors. FLMs have been re-

cently proposed by Bilmes and Kirchoff [15] and showed

promising results in modeling highly inflected languages,

such as Arabic [16].

In a factored language model, a word (chord) can be

represented as a bundle of factors: wt = {f1
t , f2

t , ..., fK
t }.

The probability for FLM is given in (4), where π(fk
t ) is

0
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Figure 2. Chord Duration Histogram.

a set of variables (parents), which influence the probabil-

ity of fk
t . In our case to model chord sequences we use

two factors: chord label Ct and chord duration Dt: wt =

{Ct,Dt}.

p(wt|ht) =
∏

k

p(fk
t |π(fk

t )) (4)

As opposed to standard language models, where older

predecessors give less relevant information at the given

time instant, in FLMs there is no obvious order to drop

parents π(fk
t ). There are a lot of possibilities to choose

less informative factors to drop among the others. More-

over, keeping some factors of older predecessors can be of

greater benefit than keeping the value of some other fac-

tors, which are more relevant to the given time instant.

One of the possible solutions is to use ”generalized parallel

back-off”, which was initially proposed and well described

by Bilmes and Kirchoff [15]. The main idea is to back-off

factors simultaneously. The given set of back-off paths is

determined dynamically based on the current values of the

variables. (For a more detailed description, see [15]).

At the experimental stage we explore the standard back-

off (a) and the parallel back-off (b) techniques, whose

graphs are presented in figure 3. In both cases the chrono-

logical order is kept, while in the standard back-off case a

higher priority to the factor of chord symbol is assigned.

The arrows are marked with the factor being dropped at

the current back-off step; blocks include the variables that

influence the probability of chord label being estimated.

5. CHORD RECOGNITION SYSTEM

The full scheme of chord recognition system is depicted in

figure 4.

Feature extraction part has been described in section 2.

The beat extraction algorithm used here is introduced by

Dixon [17] and is exploited as a separate module, called

563



Oral Session 7: Harmonic & Melodic Similarity and Summarization

1, 1 2 2( | , , )
t t t t t

P C C D C D
− − − −

2t
D

−

1, 1 2( | , )
t t t t

P C C D C
− − −

2t
C

−

1, 1( | )t t tP C C D
− −

1t
D

−

1( | )t tP C C
−

1t
C

−

( )
t

P C

1, 1 2 2( | , , )
t t t t t

P C C D C D
− − − −

2t
D

−

1, 1 2( | , )
t t t t

P C C D C
− − −

2t
C

−

1, 1( | )t t tP C C D
− −

1t
D

−

1( | )t tP C C
−

1t
C

−

( )
t

P C

1, 1 2( | , )t t t tP C C D D
− − −

1( | )t tP C D
−

a) b)

Figure 3. Standard back-off (a) and parallel back-off (b)

graphs for tri-gram LM.

BeatRoot 1 .

The key detection module utilizes the approach sug-

gested by Peeters [11], where trained HMMs are used to

find the best score from 24 possible keys for the given se-

quence of chroma vectors for each test song. In the sug-

gested system the key is assumed to be constant.

On the training stage, features extracted from wave-

forms are used to train hidden Markov models, while chord

labels from training corpus are used as an input for lan-

guage model parameter estimation. Language model train-

ing includes training either standard LMs or FLMs. For

training standard LMs chord sequences taken from the

training labels are used as input. For building text for

FLM the information combined from beat extraction mod-

ule and the training labels is used. For each chord symbol

from ground-truth labels we estimate the duration in beats

and produce an output in the form: ”C-(chord type):D-

(duration)”. To minimize the problem of sparse data, all

duration values are quantized by a relatively-small set of

or integer values. Our codebook consists of the following

values: 1, 2, 3, 4, 6, 8, 12, 16, 24 and 32 beats. The sug-

gested codebook is supposed to be well-suited for the pop

songs. This assumption is made on the basis of metrical

analysis of the Beatles data (see fig. 2). The suggested

scheme however might not be sufficient while modeling

jazz or other genres.

In order to make our system key invariant, a key trans-

formation technique is proposed here. In fact, the training

corpus might not contain some type of chords and chord

transitions due to the fact that keys with a lot of accidentals

are much less widespread (G# maj, Ab min). Moreover,

while estimating chord transition probabilities the relative

change in the context of the given key (e.g. tonic – dom-

inant – subdominant) is more relevant than exact chord

names. For training data we have ground-truth table of

1 http://www.elec.qmul.ac.uk/people/simond/beatroot/index.html

keys for each song, while for test data we estimate key in

the key detection module. Then, similar to training HMMs,

by applying circular permutation, features and labels are

converted to the Cmaj (in case of major key) or to Amin

(in case of minor key). After the decoding procedure in

order to produce final labels (in the original key of the an-

alyzed song) obtained labels are converted back using the

same scheme.

Similar to the approach of multiple-pass decoding,

which has been successfully used in speech recognition

[14], the decoding procedure consists of two steps. Dur-

ing the first step time-and-space efficient bigram language

model is applied on the stage of Viterbi decoding, produc-

ing a lattice. A lattice can be represented by a directed

graph, where nodes denote time instants and arcs are dif-

ferent hypotheses. Since lattices contain the information

on the time boundaries, it is possible to make an estima-

tion of duration in beats for each hypothesis. During the

second step the obtained lattice is rescored applying more

sophisticated language models (trigram and higher) on the

reduced search space. Since the main problem is to ex-

tract chord labels, it is not necessary to model chord dura-

tion probabilities explicitly. Our decoding scheme, apply-

ing language modeling, is based on Viterbi decoding and

subsequent lattice rescoring, where lattices contain the in-

formation on possible chord boundaries. Chord durations

are used only to define chord label probabilities and the

resulting chord boundaries are obtained from the lattices.

Generally, standard LMs do not take into account duration

factor at all, the only important thing here is just a sequence

of labels. The advantage of FLM is that when applying the

language model weight on the stage of lattice rescoring,

chord durations contribute to the probabilities of different

hypotheses in the lattice.

Standard LMs are manipulated using HTK 2 tools,

while FLMs are managed using SRILM [18] toolkit, since

HTK does not support this type of language models.

6. EXPERIMENTS

Evaluation of the proposed system was performed on the

songs taken from 12 Beatles albums, ground-truth annota-

tions for which were kindly provided by C. A. Harte [19].

The system can distinguish 24 different chord types (major

and minor for each of 12 roots). 7th, min7, maj7, minmaj7,

min6, maj6, 9, maj9, min9 chords are merged to their root

triads; suspended augmented and diminished chords are

discarded from the evaluation task. The percentage of du-

ration of discarded chords results to be 2.71% of the whole

material. In order to prevent the lack of training data (some

chord types can appear only few times in the training cor-

pus) only two models are trained: C-major and C-minor.

For this purpose, all chroma vectors obtained from labeled

segments are mapped to the C-root using circular permuta-

tion. After that mean vectors and covariance matrices are

estimated for the two models. All the other models can be

obtained by a circular permutation procedure.

2 http://htk.eng.cam.ac.uk/
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Figure 4. Chord recognition system.

For evaluation, the recognition rate measure was used,

which in the given case corresponds to the total duration of

correctly classified chords divided by the total duration of

chords, as reported in the following:

rec.rate =
|recognized chords| ∩ |ground− truth chords|

|ground− truth chords|
(5)

The evaluation was performed frame by frame, as it

was done under the MIREX 3 competition. In our ex-

periments 3-gram and 4-gram language models were used.

While working with FLMs, we exploited standard and gen-

eralized parallel back-off strategies (see figure 3; 4-gram

graphs have the same structure and can be obtained from

3-gram graphs by adding one level).

It is worth mentioning that applying different language

model weights on the stage of lattice rescoring one can

obtain different recognition rates. Figure 5 indicates how

recognition rate depends on the LM weight. In this case the

curves correspond to the LM- and FLM-based systems; ex-

periments were conducted on the fold 1 with 4-gram con-

figuration.

In order to estimate the increase in performance intro-

duced by including LM block and in order to compare effi-

ciency of standard and factored language models, a 5-fold

cross-validation was accomplished on the given data set.

The folds were built in a random way and there is high al-

bum overlap. The recognition rates are shown in Table 1.

Here ”bl” is baseline system, ”3lm” ”3flm” ”3flmgpb” are

trigram configurations with key transformation for stan-

dard LM, FLM, and FLM with generalized parallel back-

off respectively, ”4lm” ”4flm” ”4flmgpb” are 4-gram con-

figurations. For any of the given configurations, an aver-

age standard deviation of about 15% was also observed,

3 http://www.music-ir.org/mirex/2008/index.php/Main Page
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Figure 5. Recognition rate as a function of LM weight.

which was derived from the recognition rates computed on

a song-by-song basis.

Experimental results showed that introducing language

modeling increases the performance of the system, while

generalized parallel back-off strategy for FLM did not

show any advantages over standard back-off for the chord

recognition task. Meanwhile, using FLM show very slight

improvement (0.25 %) in comparison to standard LM.

The differences in the output labels for LMs and FLMs

are mainly on the junctions of chords. While using stan-

dard LM one can get a slight boundary deviation from its

ground-truth value (e.g. 1 beat), using FLM fixes this in

most cases because it takes into account the duration fac-

tor. That is why the difference in recognition rates is so

small.

7. CONCLUSION

In this paper a set of experiments on chord recognition

task including language modeling functionality as a sep-

arate layer has been conducted. The experimental results

in a 5-fold cross-validation were conducted on a com-

monly used database of the songs by the Beatles. Factored

language models were compared with standard language

models and showed small increase in performance for the

task. The main advantage of FLMs is that they possess

a better chord recognition ability on the chord junctions.

Comparing back-off techniques, we can assume that using

generalized parallel back-off for the chord recognition task

does not result in better performance.

However, the suggested system has a number of limita-

tions: assuming the key of the song constant, one can not

cope with key changes. A deeper study on different model

smoothing and selection techniques as those addressed by

Scholz et al. [8] could be reprised.

In general, experimental results showed that utilizing

language models leads to an increase in accuracy by about

2%. This relatively small difference in performance may

be due to the size of vocabulary for the chord recognition

task in comparison with that of many speech recognition

applications. The performance of chord recognition sys-
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data bl 3lm 3flm 3flmgpb 4lm 4flm 4flmgpb

fold 1 70.81 72.22 72.55 72.56 72.39 72.53 72.27

fold 2 70.23 70.78 71.15 71.51 71.09 71.38 71.25

fold 3 65.87 66.81 66.59 67.01 67.22 66.89 67.17

fold 4 66.20 67.15 67.60 67.61 67.64 67.62 67.51

fold 5 66.19 69.73 69.72 68.55 68.55 69.72 69.77

average 67.86 69.34 69.52 69.45 69.38 69.63 69.59

Table 1. Evaluation results: recognition rates.

tems is perhaps influenced primarily by relevance and ac-

curacy of the extracted features and related acoustic mod-

eling.
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