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ABSTRACT

Rhythmic descriptors are often utilized for semantic mu-

sic classification, such as genre recognition or tempo de-

tection. Several algorithms dealing with the extraction of

rhythmic information from music signals were proposed in

literature. Most of them derive a so-called beat histogram

by auto-correlating a representation of the temporal enve-

lope of the music signal. To circumvent the problem of

tempo dependency, post-processing via higher-order statis-

tics has been reported. Tests concluded, that these statis-

tics are still tempo dependent to a certain extent. This

paper describes a method, which transforms the original

auto-correlated envelope into a tempo-independent rhyth-

mic feature vector by multiplying the lag-axis with a stretch

factor. This factor is computed with a new correlation tech-

nique which works in the logarithmic domain. The pro-

posed method is evaluated for rhythmic similarity, consist-

ing of two tasks: One test with manually created rhythms

as proof of concept and another test using a large real-

world music archive.

1. INTRODUCTION

During the last years the need of new search and retrieval

methods for digital music increased significantly due to the

almost unlimited amount of digital music on users hard

disks and in online stores. An important pre-requisite for

these search methods is the semantic classification, which

requires suitable low- and mid-level features. The ma-

jor goal of many researchers is the computation of mid-

level representations from audio signals, which are des-

tined to capture the rhythmic gist from the music. A huge

amount of work has been done in this field so far by devel-

oping techniques like beat histogram, inter-onset-interval

histogram or rhythmic mid-level features, e.g., [1], [2], [3],

[4], [5]. In general, the beat histogram technique very of-

ten used as feature basis for semantic classification. This

histogram is computed by taking the audio spectrum en-

velope signal, which is differentiated and half/full-wave

rectified. As a final step an auto-correlation function is ap-
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plied, which estimates the periodicities within the modified

envelope. The resulting feature vector is only limited us-

able for pattern recognition. Two similar rhythms are eas-

ily comparable with the beat histogram as feature, if their

tempi are equal. A different tempo leads to a compression

or expansion of the lag-axis, as depicted in Figure 1. This

modification has a disadvantageous effect when perform-

ing a comparison of beat histograms via Euclidean distance

measure. This issue has been raised by Foote [6]. A num-

ber of approaches tried to come up with solutions for that

challenge. Paulus [7] presented a method, which could be

considered reasonable for comparing beat histogram vec-

tors containing different tempi by applying a dynamic time

warping technique. A similar approach has been also pro-

posed by Holzapfel [8]. These techniques require special-

ized classifiers and the beat histogram cannot be used as

feature in conjunction with other low-level features. In or-

der to solve that problem, Tzanetakis [1], Gouyon [2], and

Burred [3] computed descriptive statistics, such as mean,

variance, and kurtosis on the beat histogram. These statis-

tics were used as feature vector for classification. To a cer-

tain degree, these are also tempo-dependent. This paper

suggests a new post-processing method which performs a

transformation of the beat histogram into the logarithmic

lag domain. The transformation into the logarithmic do-

main has not been described for rhythm features, but for

harmonic and chroma features in [9] and [10]. This trans-

formation transfers the multiplicative factor of the tempo

changes into an additive offset. Hence, the transformed

rhythmic feature vector contains a tempo independent part

located on the right-hand side of the vector. An approach

for detection of this tempo independent rhythmic informa-

tion is presented. A number of different features were ex-

tracted and evaluated for the task of rhythmic similarity.

The remainder of this paper will be organized as fol-

lows: Section 2 introduces the proposed algorithm, Sec-

tion 3 describes the evaluation and discusses the results.

Section 4 concludes and indicates further directions in this

area.

2. PROPOSED APPROACH

In this work, the beat histogram is extracted from MPEG-

7 AudioSpectrumEnvelope (ASE) features [11]. Different

variants of the basic feature extraction algorithm have been

reported in literature. Tzanetakis’ [1] work was based on

a wavelet transform, Scheirer [12] used a filter bank. Nev-
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ertheless, both authors extracted an envelope signal from

non-linearly spaced frequency bands, as is the case with

ASE. In the proposed implementation, the different ASE

bands are smoothed in time. Subsequently, the bands are

weighted by enhancing the lower and higher frequency ba-

nds and decreasing the center frequencies. All bands are

accumulated, differentiated in time, and full-wave-rectified.

This results into a so-called detection function, containing

the the most salient rhythmic information of the music sig-

nal. The detection function is subdivided into snippets of

N successive frames. The auto-correlation inside such a

frame yields the beat histogram, also called rhythmic mid-

level feature, beat spectrum, etc.

The beat histogram may be used in a different num-

ber of applications, such as beat tracking or tempo detec-

tion. As already mentioned in Chapter 1, this vector should

not be directly utilized for classification. If two similar

rhythms are played in different rhythms and there beat his-

tograms are compared, the vectors would look similar, but

one would be a more stretched or compressed (in terms of

the lag-axis) version from the other. Hence, a direct com-

parison of these vectors using common distance measures

(e.g., Euclidean distance) results in large distances. Thus,

it is state of the art to compute descriptive statistics from

the beat histogram and use these measures as features for

classification. Unfortunately, these statistics are also prone

to tempo changes.

In order to create a tempo independent beat histogram,

Foote [6] proposed to stretch or compress the original vec-

tor based on the tempo of the rhythm. The compression of

the beat histogram can be considered as multiplication of a

time-stretching factor f with the argument τ of the under-

lying pattern signal c(τ ′). This pattern signal can be the

mentioned auto-correlation signal. The observed feature

vector can therefore be described with c(τ) = c(τ ′ ∗ f). In

order to obtain the tempo invariant beat histogram c(τ ′),
the stretch factor f needs to be known, but its automatic

computation might be unreliable. One option for solving

this issue is to use a logarithm function. By applying the

logarithm on an arbitrary function, multiplicative terms are

transformed to additive terms. Transferring this theorem to

the lag-axis of the beat histogram c(τ) leads to the equation

(1):

c(log(τ ′ ∗ f)) = c(log(f) + log(τ ′)) (1)

For the logarithmic processing step, a new argument is

estimated by (2):

τlog =
log(τ) ∗max(τ)

log(max(τ))
(2)

Resampling the original beat histogram c(τ) in such a

way, that the values in τ are available on places of τlog

results in a new beat histogram feature with logarithmized

lag-axis (Figure 2 d).

Since τlog consists of non-integer values, the practical

implementation of this variable requires an interpolation.

For this task, a bicubic interpolation method as described

in [13] has been applied.
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Figure 2. This figures shows an example beat histogram

(c) and a rhythmic grid (a) and their logarithmic counter-

parts (d,a, respectively).

Figure 2 c,d shows an example beat histogram and its

transformation into the log-lag domain.

By inspecting a large number of such logarithmized vec-

tors it can be observed, that all vectors consist of a large

decaying slope towards a first local minimum, whose ab-

solute position depends on the tempo of the music. That

slope represents the first maximum lobe of the auto-correlation

function. Due to the fact, that a time-varying signal is al-

ways most similar to itself for small lags, the first lobe

is always the highest and does not carry any significant

rhythmic information. However, the successive minimum

appears to be the point from where on the logarithmized

beat histogram shows similar tempo-independent charac-

teristics if the rhythm is similar. These characteristics are

similar, but they are moved further right or further left, de-

pending on the tempo. The goal is to find the starting point

of these tempo-independent characteristics and to use the

tempo-independent excerpt of the feature vector for classi-

fication. In the original beat histogram the first local min-

imum (or maximum) could be used as starting point for

stretching or compressing the vector in order to receive a

tempo-independent version. Unfortunately, this procedure

is only applicable on a minority of rhythms, since often the

first local minimum is misleading and the stretched vector

results in octave errors. In the log-lag domain the result

would be similar, if only the first minimum is used. The

proposal in this publication is to find the point more re-

liably by taking the evolution of the vector into account.

Therefore, the authors use an artificial rhythmic grid fea-

turing eight successive Gaussian pulses as depicted in Fig-

ure 2 a. The Gaussian pulses are computed as described in

the following Matlab code snippet (Code 1) with the block-

size blksize as functional parameter and tmp acf as result

vector.

This rhythmic grid is transformed into the logarithmic

domain with the same method as described above. In order

to find the tempo-independent characteristics of the loga-

rithmized beat histogram, both vectors, the logarithmized

rhythmic grid and the logarithmized beat histogram are
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Figure 1. These figures depict a beat histogram excerpt for the same rhythm with tempos of 90 Bpm (left), 110 Bpm

(middle), 130 Bpm (right).

Code 1 Example Matlab code for the creation of Gaussian

pulses

mu = [29:29:blksize]; sd = 2;
tmp_acf = zeros(1,blksize); lobe=[];
for k = 1:length(mu)
t_exp=-0.5*(((1:blksize)-mu(k))/sd).ˆ2;
lobe(k,:) = exp(t_exp)/(sd*sqrt(2*pi));
lobe(k,:) = lobe(k,:)/max(lobe(k,:));
tmp_acf = tmp_acf + lobe(k,:);
end

cross-correlated. Best results could be achieved by only

evaluating only the first slope (histogram points 200-300 in

2 d). The maximum of the correlation function equals the

point in the vector, where the tempo-independent charac-

teristic starts. A faster tempo results in a shift of the tempo-

independent part to the left, and thus additional peaks ap-

pearing at the right border. In order to process almost iden-

tical beat histograms, regardless of the tempo, the length of

the tempo independent characteristics has to be suitably re-

stricted. This tempo independent vector could be theoreti-

cally used as feature vector for rhythmic similarity. Due to

the interpolation for the logarithmic processing, small vari-

ations lead sometimes to a small movement either to the

right or to the left side of the axis. These small variations

affect the rhythmic similarity negatively. In order to reduce

this effect, statistical measures as proposed by the other

authors have been applied in the tests for this paper. The

following statistics as described by Tzanetakis [1], Gou-

yon [4], and Burred [3] were computed from the tempo

independent vector. All statistics from these authors were

appended and formed the final feature vector for the exper-

iments:

• Tzanetakis: Relative amplitude (divided by the sum

of amplitudes) of the first, and second histogram peak;

ration of the amplitude of the second peak divided

by the amplitude of the first peak; period of the first,

second peak in bpm; overall sum of the histogram

• Gouyon: Mean of magnitude distribution; geometric

mean of magnitude distribution; total energy; cen-

troid; flatness; skewness; high-frequency content

• Burred: Mean; standard deviation; mean of the deri-

vative; standard deviation of the derivative; skew-

ness; kurtosis and entropy.

Since some statistics from Gouyon and Burred partly

overlapped the final feature size consisted of 18 dimen-

sions. For the practical implementation, excerpts of 500

ASE frames were chosen, which corresponds to 5 seconds

in music, given a low-level hop-size of 10 milliseconds.

This size constitutes a trade-off between the length of at

least two repeating patterns and the ability to track abrupt

tempo changes sometimes encountered in real-world mu-

sic. A correlation size of 5 seconds has been also used in

previous approaches (e.g., [14]). Since the test songs con-

tain more than five seconds of audio content, one of such a

feature vector is computed every 0.5 seconds. In order to

compute the Gaussian pulses, a default standard deviation

of 2 has been chosen and and only eight successive pulses

were used in the evaluation. Another standard deviation

could also be chosen, which increases/decreases the width

of the pulses.

For the tests in this paper, the following 4 feature vec-

tors were created:

• Statistics of original beat histogram: The beat his-

togram has been extracted as described in this paper.

Based on that histogram, a feature vector contain-

ing all statistics by Tzanetakis [1], Gouyon [4], and

Burred [3] as described above was extracted.

• Statistics of logarithmized beat histogram: The statis-

tics by Tzanetakis, Gouyon, and Burred were com-

puted from the logarithmized beat histogram tech-

nique as described above.

• Statistics of beat histogram with stretch factor: Based

on the logarithmized beat histogram, a point has been

estimated, where the tempo-independent rhythmic

characteristic begins. This point has been transformed

into the non-logarithmic domain and a stretch fac-

tor (as proposed by Foote) has been computed. The

original beat histogram has been stretched by the
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stretch factor and the statistics from Tzanetakis, Gou-

yon, and Burred were computed from that vector.

• Beat histogram with stretch factor: The original beat

histogram has been stretched as suggested by Foote

with the stretch factor derived from the logarithmic

post-processing.

3. EVALUATION

3.1 Evaluation Procedure

In order to test the logarithmic post-processing of the beat

histogram, two different evaluation strategies were imple-

mented. The first test evaluated a number of manually cre-

ated rhythms in order to prove the theoretic improvement

of the results. The second test evaluates rhythmic similar-

ity based on beat histograms with a large real-world music

set.

3.1.1 Tests based on manually created rhythms

The first test scenario examined the tempo dependence of

the described feature sets based on different rhythms. A

number of 18 different base rhythms were established, which

can be divided into 9 rhythm genres, e.g., electro, drum’n’base

or hip hop. The rhythms were played without any addi-

tional instruments in order to test the tempo dependence of

only the base rhythms. Each of these rhythms was played

in six different tempo variations ranging from 90 Bpm to

190 Bpm in 20 Bpm steps. Each base rhythm was repeated

a number of times, whereby the duration of one single

rhythm pattern was less than 5 seconds. A total of 108

rhythms were collected and the low-level ASE features as

well all four versions of the described mid-level features

were extracted. Since the window length of the described

mid-level features consisted of 5 seconds, the base rhythm

of every rhythm class is contained in every frame of the

feature matrix. Therefore, an arbitrary frame from the fea-

ture matrix can be chosen for comparison. In the evalua-

tion for this paper, the second consecutive vector was used

as mid-level feature. Prior to the classification, a mean and

a variance normalization step over all data was applied.

A simple k-nearest neighbor classifier with Euclidean dis-

tance was set up using the features and the rhythm class

information as ground-truth. k for the k-nearest neigh-

bor classifier has been chosen to be one. Subsequently,

all features were consecutively used as query to the classi-

fier, whereby it has been ensured, that the query item was

not contained in the reference set. The evaluation method

returned the distance and the closest class to each of the

108 rhythms. The average accuracy has been estimated per

class. The minimum, maximum and average of the over-

all test set has been estimated by using the class-dependent

accuracy. Based on the results of this simple classifier a

base-line assumption can be made about the accuracy of

the tempo independent rhythmic classification. One might

raise concerns that the comparison of base rhythms is not

very practice relevant, since popular music contains addi-

tional polyphonic properties in the signal, which may in-

terfere with the beat histogram. In order to prevent this

”distortion” it has been shown, e.g. in [15], that drum tran-

scription algorithms as preprocessing steps have a positive

effect on beat histogram.

3.1.2 Tests based on a large test set

To evaluate the performance on real world data instead of

the rather artificial data, a diverse set of 753 songs from

60 different genres and sub-genres was compiled. Rhyth-

mic similarity measures are hard to evaluate by using real

world data. An option for testing rhythmic similarity mea-

sures can be based on the assumption, that songs from the

same genre have similar rhythms, while songs from dif-

ferent genres have different rhythms. But similar rhythms

might be also available across genres and the results would

not directly predicate rhythmic similarity. To cope with

that, another approach was chosen. A rhythm similarity

ground truth was manually created for the used dataset.

First, for each song, a representative rhythm pattern was

annotated by hand, then a similarity matrix from all pairs

of rhythms was calculated.

Representative rhythm pattern: For each song, one rep-

resentative rhythm pattern was manually annotated. Five

different classes of rhythmical events were differentiated:

base drum, snare drum, hi hats, further percussive events,

and non-percussive events. A quantization could be freely

chosen, but in general, events have been quantized onto

1/16 bar length in case of a 4/4 bar and 1/12 bar length in

case of a 3/4 bar. Similarity between patterns: The dis-

tance between two characteristic patterns was calculated

by performing the following steps. First, both of the pat-

terns have been stretched onto the same length. Then, all

the simultaneous occurrences of an event of a certain class

in both patterns were summed up. Finally, the resulting

value was normalized by the length of the pattern. For each

of the mentioned percussion classes, the 753x753 distance

matrix was computed. Afterwards, the mean distance ma-

trix was estimated by equally weighting all distances of the

distance matrices from each percussion class.

Also, for each song in the database the features de-

scribed above were extracted whereby the mean value for

all feature frames of a song was calculated. Using Eu-

clidean distance, the 5 closest songs to each song excluding

the query itself were determined. The list of the 5 closest

songs to the query song C are denoted LC . Incorporating

both the ground-truth rhythm similarity matrix and the list

of the 5 closest songs for each of the 753 queries, the dif-

ferent feature sets were compared using the following pro-

cedure: For each query song C, a list TC of all the other

songs, was generated. This list was sorted in ascending or-

der of the distances derived from the manually annotated

rhythm patterns. Then, for each song c in LC the number

of songs in TC have been counted, which were closer to C
than c. By averaging over these numbers, a value r is cal-

culated. This value describes the mean number of songs

in TC that are closer to the query song than the retrieved

songs. In order to obtain a statement about the accuracy

of the system in such a way, that higher numbers refer to

better results, a score has been computed by Si = |S − 1|.
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Figure 3. Average accuracy for rhythmic classification of

the first test based on different feature vectors in percent.

Mean Min Max

Stat. Original Beat Hist. 25.93 0.00 83.33

Stat. Logarithm. Beat Hist. 57.41 0.00 100.00

Stat. Stretched Beat Hist. 51.85 16.67 66.67

Stretched Beat Hist. 66.67 33.33 100.00

Table 1. Accuracy measures (first test) for rhythm classi-

fication based on different feature vectors in percent.

This score is referred to the term similarity index. For sig-

nificance purposes a random score has been established by

generating a random result list for each of the 753 songs.

This result list has been evaluated in a similar procedure as

the described mid-level features.

Other rhythmic similarity measures were described in

literature by Hofman-Engl [16] and Toussiant [17]. These

measures are established when it comes to the compari-

son of actual rhythmic descriptions. In this paper features

based on rhythms are to be compared. Therefore, these

methodologies could not be applied.

3.2 Results and Discussion

3.2.1 Test based on manually created rhythms

The following table (Table 3.2.1) shows the results for the

first test containing the manually created rhythms. This

table shows minimum, maximum and mean accuracy. In

order to get a quick overview about the results in general,

the mean is also plotted in Figure 3.

The state of the art methodology by computing statis-

tics over the beat histogram achieves an average accuracy

of approx. 26%. This is based on the fact, that the statis-

tic measures are by far not tempo independent. Better re-

sults could be obtained by the logarithmic post-processing

step. The statistics computed on the logarithmized beat

histogram and over the stretched beat histogram performed

reasonably well with 57.4% and 51.9%, respectively. The

best results could be obtained by the stretched beat his-

togram with the stretch factor computed from the logarith-

mized beat histogram. This methodology leads to an aver-

age accuracy of 66.7%. An intuitive guess would be, that

identical rhythms in different tempos should always return

an accuracy of 100%. In practice, the results look differ-
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Figure 4. Similarity index (second test) expressing the

rhythmic similarity for different feature vectors.

ent due to windowing effects. The minimum accuracy of

the algorithms ranges from 0% to 33.3%. This is based on

the fact, that the separability between some of the 18 base

rhythms is strongly restricted. The highest accuracy is ob-

tained by the stretched beat histogram also in case of the

minimum. This might imply that postprocessed beat his-

togram performs better as feature than the statistics over

postprocessed beat histograms. A similar statement can

be also made by evaluating the maxima of the four fea-

ture vectors. These tests prove, that the tempo independent

version of the beat histogram (stretched beat histogram)

outperforms the statistics over the beat histogram.

3.2.2 Test based on a large real-world music set

The following figure (Figure 4) shows the accuracy for

the test with real-world music. Additionally, these num-

bers are depicted in Table 3.2.2. The similarities between

manually annotated base rhythms and the beat histogram

features are expressed by a similarity index. The higher

the index is, the better is the similarity between the man-

ually annotated rhythms and the automatically extracted

rhythms. The figure shows, that a random generation of

similarities results with a similarity index of 0.632. Most

of the observed feature vectors obtained a similarity in-

dex around 0.65, including the statistics over the beat his-

togram, the statistics over the logarithmized beat histogram

and the stretched version of the beat histogram. The statis-

tics computed from the stretched beat histogram outper-

form all other results by a similarity index of 0.03.

The first test, which was based on the manually cre-

ated rhythms, showed the best results on the stretched beat

histogram. In this second test, these results cannot be val-

idated in every case. This may be based on the fact that

the point in the logarithmic domain, which separates the

tempo dependent and tempo independent parts is inaccu-

rate in a few cases. These inaccuracies have influence on

the stretched beat histogram and may result in octave er-

rors, which affect the rhythmic similarity. However, com-

puting the descriptive statistics over the resulting vectors

improves the results. These statistics seem to neglect the

slight deviations significantly. This test on real world data

might be not optimal, since rhythms in real songs might
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Feature Name Similarity Index

Random 0.632

Stat. Original Beat Hist. 0.658

Stat. Logarithm. Beat Hist. 0.650

Stat. Stretched Beat Hist. 0.687

Stretched Beat Hist. 0.648

Table 2. Similarity index of the second test expressing the

rhythmic similarity for different feature vectors.

change and the evaluation was performed on one repre-

sentative rhythm of the song. But this methodology gives

a rough indication of the performance of the logarithmic

processing.

4. CONCLUSIONS AND FUTURE WORK

The rhythmic information from music is captured by the

commonly used beat histogram. This paper presented a

post-processing technique for the beat histogram, which is

based on logarithmic re-sampling of the lag axis and cross-

correlation with an artificial rhythmic grid. This technique

seems to improve the applicability of the beat histogram

technique as feature for music information retrieval tasks.

The practical tests on a large music archive were based on

a mean feature vector per song. In order to be more accu-

rate, future tests should perform a rhythmic segmentation

and analyze the segments individually. The logarithmic

processing methodology as described in this paper may

be also beneficial for beat tracking and tempo detection.

Future tests will provide an evaluation, if the tempo esti-

mation results can be improved when using the proposed

algorithm.

5. ACKNOWLEDGMENT

This work has been partly supported by the PHAROS Inte-

grated Project (IST-2005-2.6.3), funded under the EC IST

6th Framework Program. Additionally, this project has

been funded by the MetaMoses project (nr. 183217) from

the Norwegian research council.

6. REFERENCES

[1] G. Tzanetakis and P. Cook. Musical genre classifica-

tion of audio signals. IEEE Transactions on Speech,
Audio, and Language Processing, 10(5):293–302,

2002.

[2] F. Gouyon and S. Dixon. A review of automatic rhythm

description systems. Computer Music Journal, 29(1),

2005.

[3] J. Burred and A. Lerch. A hierarchical approach to au-

tomatic musical genre classification. In Proceedings of
the 6th International Conference on Digital Audio Ef-
fects (DAFx-03), 2003.

[4] F. Gouyon, S. Dixon, E. Pampalk, and G. Widmer.

Evaluating rhythmic descriptors for musical genre clas-

sification. In Proceedings of the 25th AES International
Conference, 2004.

[5] S. Dixon, F. Gouyon, and G. Widmer. Towards charac-

terisation of music via rhythmic patterns. In Proceed-
ings of the 25th AES International Conference, 2004.

[6] J. Foote and S. Uchihashi. The beat spectrum: A

new approach to rhythm analysis. In Proceedings of
the International Conference on Multimedia and Expo
(ICME), 2001.

[7] J. Paulus and A. Klapuri. Measuring the similarity of

rhythmic patterns. In Proceedings of the 3rd Interna-
tional Symposium on Music Information Retrieval (IS-
MIR), 2002.

[8] A. Holzapfel and Y. Stylianou. A scale transform based

method for rhythmic similarity of music. In Proceed-
ings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), 2009.

[9] S. Saito, H. Kameoka, T. Nishimoto, and S. Sagayama.

Specmurt analysis of multi-pitch music signals with

adaptive estimation of common harmonic structure. In

Proceedings of the 6th International Conference on
Music Information Retrieval, 2005.

[10] J. Jensen, M. Christensen, D.P.W. Ellis, and S. Jensen.

A tempo-insensitive distance measure for cover song

identification based on chroma features. In Proceed-
ings of the IEEE International Conference on Audio,
Acoustics, and Signal Processing (ICASSP), 2008.

[11] M. Casey. Mpeg-7 sound recognition. IEEE Transac-
tion on Circuits and Systems Video Technology, special
issue on MPEG-7, 11:737–747, 2001.

[12] E. Scheirer. Tempo and beat analysis of acoustic musi-

cal signals. Journal of the Acoustical Society of Amer-
ica, 103(1):588–601, 1998.

[13] William H. Press, Saul A. Teukolsky, William T. Vet-

terling, and Brian P. Flannery. Numerical Recipes in C.

Cambridge University Press, 1992.

[14] S. Dixon, E. Pampalk, and G. Widmer. Classification of

dance music by periodicity patterns. In Proceedings of
the 4th International Symposium on Music Information
Retrieval (ISMIR), 2003.

[15] M. Gruhne and C. Dittmar. Improving rhythmic pattern

features based on logarithmic preprocessing. In Pro-
ceedings of the 126th Audio Engineering Society (AES)
Convention, 2009.

[16] L. Hofmann-Engl. Rhythmic similarity: A theoretical

and empirical approach. In Proceedings of the Sev-
enth International Conference on Music Perception
and Cognition, 2002.

[17] G.T. Toussaint. A comparison of rhythmic similarity

measures. In Proceedings of the 5th International Con-
ference on Music Information Retrieval, 2004.

182


