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ABSTRACT

Today, automatic extraction of high-level audio features suf-

fers from two main scalability issues. First, the extraction

algorithms are very demanding in terms of memory and com-

putation resources. Second, copyright laws prevent the au-

dio files to be shared among computers, limiting the use of

existing distributed computation frameworks and reducing

the transparency of the methods evaluation process. The

iSound Music Warehouse (iSoundMW), presented in this

paper, is a framework to collect and query high-level au-

dio features. It performs the feature extraction in a two-step

process that allows distributed computations while respect-

ing copyright laws. Using public computers, the extraction

can be performed on large scale music collections. How-

ever, to be truly valuable, data management tools to search

among the extracted features are needed. The iSoundMW

enables similarity search among the collected high-level fea-

tures and demonstrates its flexibility and efficiency by us-

ing a weighted combination of high-level features and con-

straints while showing good search performance results.

1 INTRODUCTION

Due to the proliferation of music on the Internet, many web

portals proposing music recommendations have appeared.

As of today, the recommendations they offer remain very

limited: manual tagging has proved to be time consuming

and often results in incompleteness, inaccuracy and incon-

sistency; automatic tagging systems based on web scanning

or relying on millions of users are troubled, e.g., by mind-

less tag copying practices, thus blowing bag tags. Automatic

extraction of music information is a very active topic ad-

dressed by the Music Information Retrieval (MIR) research

community. Each year, the Music Information Retrieval

Evaluation eXchange (MIREX) gives to researchers an op-

portunity to evaluate and compare new music extraction meth-

ods [9]. However, the MIREX evaluation process has proved

to be resource consuming and slow despites attempts to ad-

dress these scalability issues [4, 11]. So far, concerns with

copyright issues have refrained the community to distribute

the extraction among public computers as most algorithms

require the audio material to be available in order to per-

form the feature extraction 1 . The features are therefore ex-

tracted from a relatively small music collection that narrows

their generality and usefulness. Additionally, the feature ex-

traction, being run by private computers on a private music

collection, limits the transparency of the evaluation process.

These limitations call for the development of a system able

to extract meaningful, high-level audio features over large

music collections. Such a system faces data management

challenges. Noteworthily, the impressive amount of infor-

mation generated requires an adapted search infrastructure

to become truly valuable.

Our intention is to create a system able to cater for dif-

ferent types of features. Present literature mainly focuses on

features that have either absolute or relative values, thus mo-

tivating the handling of both kinds of features. In this paper,

the exact selection of the features is actually not as impor-

tant as it is to demonstrate how extraction can be handled

on public computers and enabling researchers to compare

results obtained by using different algorithms and features.

The contributions of this paper are two-fold. First, we

propose a framework for collecting high-level audio features

(that were recently proposed by [5, 6, 7, 13]) over a large

music collection of 41,446 songs. This is done by outsourc-

ing the data extraction to remote client in a two-step feature

extraction process: (1) dividing the audio information into

short term segments of equal length and distributing them

to various clients; and (2) sending the segment-based fea-

tures gathered during step one to various clients to compute

high-level features for the whole piece of music. Second, we

propose a flexible and efficient similarity search approach,

which uses a weighted combination of high-level features,

to enable high-level queries (such as finding songs with a

similar happy mood, or finding songs with a similar fast

tempo). Additionally, to support the practical benefits of

these contributions, we propose a short scenario illustrating

the feature extraction and search abilities of the iSoundMW.

For the general public, the iSoundMW music offers rec-

ommendation without suffering from a “cold start”, i.e., new

artists avoid the penalties of not being well known, and new

listeners obtain good music recommendation before being

profiled. For researchers, the iSoundMW (1) offers flexi-

1 https://mail.lis.uiuc.edu/pipermail/evalfest/2008-May/000765.html
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ble search abilities; (2) enables visual comparison of both

segment-based and aggregated high-level features; (3) pro-

vides a framework for large scale computations of features;

and (4) gives good search performances.

The remainder of the paper is organized as follows. Re-

lated work is presented in Section 2. Section 3 offers an

overview of the system, explains the process of collecting

the high-level audio features, describes how similarity search

with weighted coefficients is performed, and how the search

can be further optimized by using range searches. Section 4

illustrates the similarity search on a concrete example. Sec-

tion 5 concludes and presents future system improvements

and research directions.

2 RELATED WORK

Research on distributed computing has received a lot of at-

tention in diverse research communities. The Berkeley Open

Infrastructure for Network Computing framework (BOINC)

is a well-known middleware system in which the general

public volunteers processing and storage resources to com-

puting projects [1, 2] such as SETI@home [3]. However, in

its current state, BOINC does not address copyright issues,

does not feature flexible similarity search, and does not en-

able multiple steps processes, i.e., acquired results serve as

input for other tasks. Closer to the MIR community, the On-

demand Metadata Extraction Network system (OMEN) [15]

distributes the feature extraction among trusted nodes rather

than public computers. Furthermore, OMEN does not store

the computed results, and, like BOINC, does not allow sim-

ilarity search to be performed on the extracted features.

Audio similarity search is often supported by creating

indexes [10]. Existing indexing techniques can be applied

to index high dimensional musical feature representations.

However, as a consequence of the subjective nature of mu-

sical perception, the triangular inequality property of the

metric space is typically not preserved for similarity mea-

sures [14, 16]. Work on indexes for non-metric space is

presented in the literature [12, 17]. Although the similarity

function is non-metric, it remains confined in a pair of lower

and upper bounds specifically constructed. Therefore, us-

ing these indexes would impose restrictions on the similarity

values that would limit the flexibility of the iSoundMW.

3 SYSTEM DESCRIPTION

In this section, we present an overview of the system fol-

lowed by a more detailed description of a two-step process

for extracting high-level features. Later, we describe how

flexible similarity searches are performed and how they are

further optimized using user-specified constraints.
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Figure 1. System architecture

3.1 iSoundMW Overview

The iSoundMW system has a client-server architecture, shown

in Figure 1. The server side is composed of a central data

repository and an application server that controls the extrac-

tion and similarity searches. The data repository stores all

the audio collection in MP3 format and uniquely identifies

each by a number. It also contains all the editorial informa-

tion, e.g., the artist name, the album name, the band name,

the song title, the year, the genre, and copyright license, and

the physical information, e.g., the file size, the format, the

bit rate, and the song length, that are stored in the music

information database. Additionally, the Music Information

Database holds all the extracted feature information.

The application server is composed of three distinct com-

ponents. First, the job manager assigns extraction or aggre-

gation tasks to the clients, collects the results, and prepares

progress reports about each extraction process. Second, the

segment handler splits the audio information into short term

segments overlapping or non-overlapping of equal length,

and makes them available to the clients they have been as-

signed. Future versions of the system will have multiple

segment handlers, enabling multiple music collections to be

analyzed without violating copyright for any of them. Third,

the music search engine serves requests such as finding the

most similar song to a given seed song with respect to a

combination of features.

The client side is composed of three different types of

clients. First, the segment extractors are receiving short term

segments, and extracting their high-level features, e.g., the

pitch, or the tempo. Second, the segment aggregators are

performing computations based on the high-level features

of the segments to produce other high-level features requir-

ing features over different segments, e.g., the mood. Third,

the music listeners perform similarity search queries on the

extracted high-level features.
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Figure 2. Two-step extraction process

3.2 Collecting the High-Level Features

The increasingly fast growth of music collections motivates

the adoption of a distributed approach to perform feature

extraction. Such approach, however, brings forward copy-

right issues, i.e., the copyrighted material in the music col-

lection prevents the audio content to be freely distributed.

We propose to address this issue by performing the feature

extraction in a two-step process. In the proposed two-step

extraction process, the full songs are not available to, or re-

constructible by, the computers performing the extraction of

the audio features.

Step 1, as illustrated by the A arrows in Figure 2, consists

of dividing the audio information into short term segments

of equal length and distributing them to the clients. Divid-

ing the songs into segments offers the following advantages.

First, it limits and normalizes the memory size and proces-

sor time needed on the client side to perform the feature ex-

traction, as most extraction methods require resources pro-

portional to the length of the audio source. Second, it avoids

copyright issues as the audio segments are very short and

distributing them falls under “fair use” since the segments

are only temporally stored in memory on the client, and the

full songs cannot be reconstructed by the clients.

Step 2, as illustrated by the B arrows in Figure 2, consists

of sending the segment-based features gathered during step

one to the clients. Using the features of step 1, the clients

are computing high-level features for the whole piece of mu-

sic. The computation of the aggregated features can be per-

formed over the features obtained from multiple segments,

as they are not subject to copyright issues. While having the

segment based and the aggregated high-level features com-

puted separately represents a potential overhead, it remains

insignificant compared to the resources needed to perform

each of the two feature extraction steps.

A job is the smallest atomic extraction or aggregation

task that a remote client has to perform. Each job is uniquely

identified for each extraction method and is composed of the

following attributes: a song reference, a segment number, a

starting point, an ending point, a lease time, a client ref-

erence, a counter of assignments, and a result holder. The

assignment of jobs to clients is a critical part of the seg-

ment extraction process. Some randomness in the jobs as-

signment prevents clients to reconstruct the full song from

the distributed segments as the segments assigned to a client

will belong to different songs. However, since all the seg-

ments of a song have to be processed by step 1 before mov-

ing to step 2, assigning the segments randomly to clients de-

lays the obtainment of results. Some locality constraints are

therefore enforced in order to quickly acquire preliminary

results and proceed to step 2.

In order to control which job should be assigned next,

jobs are assigned in sequence. To avoid all the clients trying

to obtain the same job, the assignment of a job is relaxed

from being the minimal sequence number to being one of the

lowest numbers in the sequence. Assigning jobs “nearly” in

sequence still allows the application server to control which

jobs should be prioritized for segment extraction and feature

aggregation, e.g., when a similarity search is requested for a

new song without any features extracted.

The current configuration of the system has shown its us-

ability on a music collection of 41,446 songs composed of

2,283,595 non-overlapping 5 seconds segments. In terms of

scalability, the job manager, supported by a PostgreSQL 8.3

database running on an Intel Core2 CPU 6700 @ 2.66GHz,

4GB of RAM under FreeBSD 7.0, was able to handle 1,766

job requests and submissions per second. Running on the

same computer, the job manager and the segment handler

were able to serve 87 clients per second; the bottleneck be-

ing the CPU consumption mostly due to the on-the-fly seg-

mentation of the MP3 files. At this rate, an average band-

width of 13,282 KB/s was consumed to transfer the seg-

mented files of the data collection. Given that, by expe-

rience, the average processing of a segment by a modern

desktop computer takes 5 seconds, the presented configura-

tion would be able to handle over 400 clients. In a setup

where the segment handler is run separately and not consid-

ering network limitations, the job manager could serve close

to 9000 clients.

3.3 Similarity Search

Search among the collected features is a valuable tool to

compare and evaluate extraction results. Similarity search

raises two main challenges. First, similarities are of two

types: similarities that can be computed rapidly on-the-fly

and similarities that have to be pre-computed. Second, each

similarity is tweaked dynamically with different user de-

fined weight coefficients in order to adjust the final similar-

ity value. In the following, we propose to find the 10 songs

the most similar, with respect to a user defined weighted

combination of features, to a given seed song.

Similarities that can be computed on the fly are stored in a

single table, abssim: (“songID”, “abs1”, “abs2”, ...), where
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Figure 3. The absolute and relative similarity tables

the songID is the primary key identifying the song and abs1,

abs2, ..., are the different attributes. The table is composed

of 41,446 songs and 18 attributes, such as the tempo, the

motion, the articulation, the pitch, and the harmonic. Sim-

ilarities that cannot be computed on the fly have to be pre-

computed and stored for each pair of songs as some sim-

ilarities are not symmetric and do not fulfill the triangular

inequality. They are stored in a second table, relsim: (“see-

dID”,“songID”,“rel1”), where the “seedID” and “songID”

refers to a pair of songs and “rel1” is the similarities value

between the two songs. The relsim table has 1.7 billion rows

and a timbre attribute. The abssim and relsim tables are il-

lustrated in Figure 3.

The distance function, the similarity search is based on,

is as follows:

dist(x, y) = a× | pitch(x, y)|+ b× | tempo(x, y)|
+ c× | timbre(x, y)|+ . . .

where x and y are two songs, tempo, pitch, and timbre are

the computed differences between x and y for each fea-

ture, and a, b, and c are their respective coefficients. The

pitch difference, like the tempo, can be computed on the fly:

pitch(x, y) = x.pitch − y.pitch. The timbre difference is

pre-computed and requires a lookup in the relsim table.

Assume the following query: find the 10 songs with the

lowest distance from a given seed song. First, we compute

the difference between the values of the seed song and the

values of all the other songs in the table “abssim”. This re-

quires a random disk access using an index on the “songID”

to read the values of the seed song, followed by a sequen-

tial scan to compute on the fly all the similarity values from

the “abssim” table. Second, using an index on the “seedID”,

we select all the pre-computed similarities that correspond

to the query songs. The song pairs with an identical “see-

dID” are contiguous on disk to minimize the number of disk

accesses. Third, the 41,446 similarities from both resulting

sets have to be joined. Fourth, the final distance function is

computed and the 10 closest songs are returned.

Table 1 shows the average query processing time of the

most costly operations involved in queries run on the MW

described in Section 3. The performance is acceptable;

Hash join 123 ms

Merge join 141 ms

Nested loop 163 ms

Top K 405 ms

Total runtime 575 ms

Table 1. Time Cost of

Similarity Search

most of the query process-

ing time is cause by the join

(20%) and the ordering (75%)

operations. Hash joins have

shown slightly better perfor-

mance than, merge sort and

nested loop joins. Merge

joins should provide the per-

formance results if the sort operation can be avoided by re-

specting the data organization on disk.

3.4 Similarity Search within a Range

The query cost is mainly due to the join and the Top-K op-

erations over the whole music set. We introduce similarity

searches within ranges to reduce the size of the set on which

the join and the Top-K are performed, thus decreasing the

search time. We propose to search, within a user specified

range for each feature, for the most similar songs to a given

seed song.

The abssim table is used for each similarity search. Its

small size allows sequential scans to be performed fast. There-

fore, filtering out the values outside the query range effec-

tively reduces the search time. Similarly, performing a filter-

ing of the selected rows from relsim contributes to reducing

the search time. However, several additional improvements

can be made, they are illustrated in Figure 4.

First, a partial index on the seedID for the similarity val-

ues that are below a given threshold can be created. If the

partial index has a good selectivity, speed is gained by trad-

ing the sequential scan for a few random disk access. This

is of critical importance as the database grows larger. Using

a threshold with a too high selectivity reduces the chances

of the partial index being used.

Second, to further improve the search, one can create ar-

rays containing pairs of songID and similarity value for each

seedID. Arrays offer the following advantages. As the par-
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Figure 4. Range queries with arrays or a partial index
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Table Array Table + PI

Query time (ms) 130 15 54

Query time (%) 100 12 42

Size (MB) 70000 71550 70200

Size (%) 100 112 100

Table 2. Cost of Similarity Search within a Range

tial index, only the similar values are accessed, thus greatly

reducing the cost of filtering. The similar values are clus-

tered on disk for each seed song, similarity values are stored

in the array in ascending order, and the array itself is com-

pressed, therefore allowing a complete array to be retrieved

in a single disk access. Accessing similarity values is done

in an efficient way: one index lookup for locating the array,

and one disk access to read the pairs of songID and value.

Table 2 presents the costs in search time and in disk space

of each approach for the same set of constraints. As ex-

pected, specifying ranges for the similarity search signifi-

cantly improves the response time compared to searching

in the complete music collection; a simple filtering can im-

prove the response time by a factor of 4. Using a partial

index or arrays, further decreases the search time but come

with a storage cost [8]. The search time improvements are

dependent on the selected range as well as the selectivity of

the threshold chosen for both the array and the partial index.

Similarity searches using the partial index are slower than

arrays due to the random disk accesses that are required to

read the values. However the partial index offers two major

advantages. First, it does not require any backstage process-

ing; the partial index is updated as new data is entered in the

relsim table. Updating the arrays requires some additional

processing that could be performed automatically with trig-

gers. Second, the choice of using the partial index or not is

delegated to the query planner, all queries are treated trans-

parently regardless of the range chosen, i.e., no extra manip-

ulation is needed to handle the array organization of the data

when a threshold is reached.

4 THE ISOUNDMW

A web interface is connected to the iSoundMW. It offers a

visual understanding of the functioning of the system and

gives an opportunity to observe the information extracted

from different songs and compare the result with the music

being played simultaneously.

The setup is as follows. The music collection has a size of

41,446 songs in MP3 format, segments are non-overlapping

and have a 5 seconds length. The Music Information Database

is partially loaded with some segments information and some

aggregated feature information, but some segments still have

to be extracted and aggregated. Some clients are connected

to the application server and are processing some segment

extraction and feature aggregation jobs. If all the segments

have not been extracted, the corresponding jobs will be pri-

[

"

\

�

]

Z

Figure 5. Web interface

oritized. to ensure that the extracted features are available.

The user interface, as shown in Figure 5, consists of a music

player and a graph showing the content of the extraction as

the music is being played.

The main steps of a short scenario are presented below.

Step 1: A user searches for a famous song and provides

its title, artist name, or album name, e.g., the user enters

“Madonna” for the artist and “Like” for the title. The sys-

tem retrieves a list of maximum 20 candidates present in the

database based on the ID3 tags of the MP3 in the music col-

lection, 3 songs in this scenario. The song “Like a Prayer”

is listed twice, as it belongs to two different albums. The

user selects one of the two “Like a Prayer” songs.

Step 2: The system searches for the 10 most similar songs to

the song selected, places them in the playlist, and starts play-

ing the songs. The most similar song to the song selected is

generally the song itself, therefore the song appears first in

the generated playlist. At this stage, the search is based on
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default coefficients and one the complete database. The sec-

ond version of the song “Like a Prayer” appears further in

the generated playlist.

Step 3: As the song is being played, the tempo analysis

based on the extracted segments and the aggregated features

is displayed in the graph. For each 5 seconds (corresponding

to a segment length), new points are placed on the graph. If

the segments have not been extracted, a request is sent to the

application server to prioritize the corresponding jobs. The

graph updates as new extraction results are arriving from the

extraction and aggregation clients.

Step 4: Any extracted features given on an absolute scale

can be displayed on the graph, e.g., the user has selected to

display the mood features.

Step 5: Moving to the playlist configuration panel, the user

can select, for each of the extracted features, the weight to

be used as a coefficient for the similarity search, e.g., we

choose to put a high coefficient on the pitch and the mood.

Once the tuning of the weights is done, when the user selects

a new song, the system searches for the songs that, with the

given coefficients, are the most similar to the song currently

being played. Additionally, the user can select a range of

values in which the search should be performed.

Step 6: When similar songs are being played, the user can

select to compare the currently played song with the song

originally selected to generate the playlist, e.g., the main

difference between the two versions of “Like a Prayer” rely

in the harmonic feature.

5 CONCLUSION AND FUTURE WORK

The automatic extraction of high-level features over a large

music collection suffers from two main scalability issues:

high computation needs to extract the features, and copy-

right restrictions limiting the distribution of the audio con-

tent. This paper introduces the iSoundMW, a framework

for extracting high-level audio features that addresses these

scalability issues by decomposing the extraction into a two-

step process. The iSoundMW has successfully demonstrated

its ability to efficiently extract high-level features on a mu-

sic collection of 41,446 songs. Furthermore, the iSoundMW

proves to be efficient and flexible for performing similarity

searches using the extracted features. This is done by allow-

ing users to constrain the search within a range and specify a

weighted combination of high-level features. To further op-

timize the search, three different approaches are compared

in terms of query time and storage. The threshold for build-

ing the partial index and arrays are decisive parameters to

obtain good search performance.

Future work encompasses integrating different similarity

functions in the features search, providing comparison be-

tween them, and enabling user feedback and its reuse for

user specific recommendation.
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