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ABSTRACT

Pulse clarity is considered as a high-level musical dimen-

sion that conveys how easily in a given musical piece, or a

particular moment during that piece, listeners can perceive

the underlying rhythmic or metrical pulsation. The objective

of this study is to establish a composite model explaining

pulse clarity judgments from the analysis of audio record-

ings. A dozen of descriptors have been designed, some of

them dedicated to low-level characterizations of the onset

detection curve, whereas the major part concentrates on de-

scriptions of the periodicities developed throughout the tem-

poral evolution of music. A high number of variants have

been derived from the systematic exploration of alternative

methods proposed in the literature on onset detection curve

estimation. To evaluate the pulse clarity model and select

the best predictors, 25 participants have rated the pulse clar-

ity of one hundred excerpts from movie soundtracks. The

mapping between the model predictions and the ratings was

carried out via regressions. Nearly a half of listeners’ rating

variance can be explained via a combination of periodicity-

based factors.

1 INTRODUCTION

This study is focused on one particular high-level dimen-

sion that may contribute to the subjective appreciation of

music: namely pulse clarity, which conveys how easily lis-

teners can perceive the underlying pulsation in music. This

characterization of music seems to play an important role

in musical genre recognition in particular, allowing a finer

discrimination between genres that present similar average

tempo, but that differ in the degree of emergence of the main

pulsation over the rhythmic texture.

The notion of pulse clarity is considered in this study

as a subjective measure that listeners were asked to rate

whilst listening to a given set of musical excerpts. The

aim is to model these behavioural responses using signal

processing and statistical methods. An understanding of

pulse clarity requires the precise determination of what is

pulsed, and how it is pulsed. First of all, the temporal evo-

lution of the music to be studied is usually described with

a curve – denominated throughout the paper onset detection

curve – where peaks indicate important events (considered

as pulses, note onsets, etc.) that will contribute to the evoca-

tion of pulsation. In the proposed framework, the estimation

of these primary representations is based on a compilation

of state-of-the-art research in this area, enumerated in sec-

tion 2. In a second step, the characterization of the pulse

clarity is estimated through a description of the onset detec-

tion curve, either focused on local configurations (section 3),

or describing the presence of periodicities (section 4). The

objective of the experiment, described in section 5, is to se-

lect the best combination of predictors articulating primary

representations and secondary descriptors, and correlating

optimally with listeners’ judgements.

The computational model and the statistical mapping have

been designed using MIRtoolbox [11]. The resulting pulse

clarity model, the onset detection estimators, and the statis-

tical routines used for the mapping, have been integrated in

the new version of MIRtoolbox, as mentioned in section 6.

2 COMPUTING THE ONSET DETECTION
FUNCTION

In the analysis presented in this paper, several models for

onset or beat detection and/or tempo estimation have been

partially integrated into one single framework. Beats are

considered as prominent energy-based onset locations, but

more subtle onset positions (such as harmonic changes) might

contribute to the global rhythmic organisation as well.

A simple strategy consists in computing the root-mean-

square (RMS) energy of each successive frame of the signal

(“rms” in figure 1). More generally, the estimation of the

onset positions is based on a decomposition of the audio

waveform along distinct frequency regions.

• This decomposition can be performed using a bank of

filters (“filterbank”), featuring between six [14], and

more than twenty bands [9]. Filterbanks used in the

models are Gammatone (“Gamm.” in table 1) and two

sets of non-overlapping filters (“Scheirer” [14] and

“Klapuri” [9]). The envelope is extracted from each

band through signal rectification, low-pass filtering

and down-sampling. The low-pass filtering (“LPF”) is

implemented using either a simple auto-regressive fil-
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Figure 1. Flowchart of operators of the compound pulse clarity model, where options are indicated by switches.

ter (“IIR”) or a convolution with a half-Hanning win-

dow (“halfHanning”) [14, 9].

• Another method consists in computing a spectrogram

(“spectrum”) and reassigning the frequency ranges into

a limited number of critical bands (“bands”) [10]. The

frame-by-frame succession of energy along each sep-

arate band, usually resampled to a higher rate, yields

envelopes.

Important note onsets and rhythmical beats are charac-

terised by significant rises of amplitude in the envelope. In

order to emphasize those changes, the envelope is differenti-

ated (“diff”). Differentiation of the logarithm (“log”) of the

envelope has also been advocated [9, 10]. The differentiated

envelope can be subsequently half-wave rectified (“hwr”) in

order to focus on the increase of energy only. The half-wave

rectified differentiated envelope can be summed (“+” in fig-

ure 1) with the non-differentiated envelope, using a specific

λ weight fixed here to the value .8 proposed in [10] (“λ=.8”

in tables 1 and 2).

Onset detection based on spectral flux (“flux” in table 1)

[1, 2] – i.e. the estimation of spectral distance between suc-

cessive frames – corresponds to the same envelope differ-

entiation method (“diff”) computed using the spectrogram

approach (“spectrum”), but usually without reassignment of

the frequency ranges into bands. The distances are hence

computed for each frequency bin separately, and followed

by a summation along the channels. Focus on increase of

energy, where only the positive spectral differences between

frames are summed, corresponds to the use of half-wave rec-

tification. The computation can be performed in the com-

plex domain in order to include phase information 1 [2].

Another method consists in computing distances not only

between strictly successive frames, but also between all frames

in a temporal neighbourhood of pre-specified width [3]. Inter-

frame distances 2 are stored into a similarity matrix, and

1 This last option, although available in MIRtoolbox, has not been in-

tegrated into the general pulse clarity framework yet and is therefore not

taken into account in the statistical mapping presented in this paper.
2 In our model, this method is applied to frame-decomposed autocorre-

lation (“autocor”).

a “novelty” curve is computed by means of a convolution

along the main diagonal of the similarity matrix with a Gaus-

sian checkerboard kernel [8]. Intuitively, the novelty curve

indicates the positions of transitions along the temporal evo-

lution of the spectral distribution. We notice in particular

that the use of novelty for multi-pitch extraction [16] leads

to particular good results when estimating onsets from vi-

olin solos (see Figure 2), where high variability in pitch

and energy due to vibrato makes it difficult to detect the

note changes using strategies based on envelope extraction

or spectral flux only.

3 NON-PERIODIC CHARACTERIZATIONS OF
THE ONSET DETECTION CURVE

Some characterizations of the pulse clarity might be esti-

mated from general characteristics of the onset detection

curve that do not relate to periodicity.

3.1 Articulation

Articulation, describing musical performances in terms of

staccato or legato, may have an influence in the apprecia-

tion of pulse clarity. One candidate description of articu-

lation is based on Average Silence Ratio (ASR), indicating

the percentage of frames that have an RMS energy signif-

icantly lower than the mean RMS energy of all frames [7].

The ASR is similar to the low-energy rate [6], except the use

of a different energy threshold: the ASR is meant to charac-

terize significantly silent frames. This articulation variable

has been integrated in our model, corresponding to predictor

“ART” in Figure 1.

3.2 Attack characterization

Characteristics related to the attack phase of the notes can

be obtained from the amplitude envelope of the signal.

• Local maxima of the amplitude envelope can be con-

sidered as ending positions of the related attack phases.

A complete determination of each attack phase re-

quires therefore an estimation of the starting position,
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Figure 2. Analysis of a violin solo (without accompani-

ment). From top to bottom: 1. Frame-decomposed general-

ized and enhanced autocorrelation function [16] computed

from the audio waveform; 2. Similarity matrix measured

between the frames of the previous representation; 3. Nov-

elty curve [8] estimated along the diagonal of the similarity

matrix with onset detection (circles).

through an extraction of the preceding local minima

using an appropriate smoothed version of the energy

curve. The main slope of the attack phases [13] is

considered as one possible factor (called “ATT1”) for

the prediction of pulse clarity.

• Alternatively, attack sharpness can be directly collected

from the local maxima of the temporal derivative of

the amplitude envelope (“ATT2”) [10].

Finally, a variability factor “VAR” sums the amplitude

difference between successive local extrema of the onset de-

tection curve.

4 PERIODIC CHARACTERIZATION OF PULSE
CLARITY

Besides local characterizations of onset detection curves,

pulse clarity seems to relate more specifically to the degree

of periodicity exhibited in these temporal representations.

4.1 Pulsation estimation

The periodicity of the onset curve can be assessed via auto-

correlation (“autocor”) [5]. If the onset curve is decomposed

into several channels, as is generally the case for ampli-

tude envelopes, the autocorrelation can be computed either

in each channel separately, and summed afterwards (“sum

after”), or it can be computed from the summation of the

onset curves (“sum bef.”). A more refined method consists

in summing adjacent channels into a lower number of wider

band (“sum adj.”), on each of which is computed the auto-

correlation, further summed afterwards (“sum after”) [10].

Peaks indicate the most probable periodicities. In order

to model the perception of musical pulses, most perceptually

salient periodicities are emphasized by multiplying the au-

tocorrelation function with a resonance function (“reson.”).

Two resonance curve have been considered, one presented

in [15] (“reson1” in table 1), and a new curve developed for

this study (“reson2”). In order to improve the results, redun-

dant harmonics in the autocorrelation curve can be reduced

by using an enhancement method (“enhan.”) [16].

4.2 Previous work: Beat strength

One previous study on the dimension of pulse clarity [17]

– where it is termed beat strength – is based on the compu-

tation of the autocorrelation function of the onset detection

curve decomposed into frames. The three best periodici-

ties are extracted. These periodicities – or more precisely,

their related autocorrelation coefficients – are collected into

a histogram. From the histogram, two estimations of beat

strength are proposed: the SUM measure sums all the bins

of the histogram, whereas the PEAK measure divides the

maximum value to the main amplitude.

This approach is therefore aimed at understanding the

global metrical aspect of an extensive musical piece. Our

study, on the contrary, is focused on an understanding of

the short-term characteristics of rhythmical pulse. Indeed,

even musical excerpts as short as five second long can easily

convey to the listeners various degrees of rhythmicity. The

excerpts used in the experiments presented in next section

are too short to be properly analyzed using the beat strength

method.

4.3 Statistical description of the autocorrelation curve

Contrary to the beat strength strategy, our proposed approach

is focused on the analysis of the autocorrelation function it-

self and attempts to extract from it any information related

to the dominance of the pulsation.

• The most evident descriptor is the amplitude of the

main peak (“MAX”), i.e., the global maximum of the

curve. The maximum at the origin of the autocorre-

lation curve is used as a reference in order to normal-
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ize the autocorrelation function. In this way, the ac-

tual values shown in the autocorrelation function cor-

respond uniquely to periodic repetitions, and are not

influenced by the global intensity of the total signal.

The global maximum is extracted within a frequency

range corresponding to perceptible rhythmic period-

icities, i.e. for the range of tempi between 40 and 200

BPM.
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Figure 3. From the autocorrelation curve is extracted,

among other features, the global maximum (black circle,

MAX), the global minimum (grey circle, MIN), and the kur-

tosis of the lobe containing the main peak (dashed frame,

KURT).

• The global minimum (“MIN”) gives another aspect of

the importance of the main pulsation. The motivation

for including this measure lies in the fact that for pe-

riodic stimuli with a mean of zero the autocorrelation

function shows minima with negative values, whereas

for non-periodic stimuli this does not hold true.

• Another way of describing the clarity of a rhythmic

pulsation consists in assessing whether the main pul-

sation is related to a very precise and stable period-

icity, or if on the contrary the pulsation slightly os-

cillates around a range of possible periodicities. We

propose to evaluate this characteristic through a di-

rect observation of the autocorrelation function. In the

first case, if the periodicity remains clear and stable,

the autocorrelation function should display a clear peak

at the corresponding periodicity, with significantly sharp

slopes. In the second and opposite case, if the period-

icity fluctuates, the peak should present far less sharp-

ness and the slopes should be more gradual. This

characteristic can be estimated by computing the kur-

tosis of the lobe of the autocorrelation function con-

taining the major peak. The kurtosis, or more pre-

cisely the excess kurtosis of the main peak (“KURT”),

returns a value close to zero if the peak resembles

a Gaussian. Higher values of excess kurtosis corre-

spond to higher sharpness of the peak.

• The entropy of the autocorrelation function (“ENTR1”

for non-enhanced and ”ENTR2” for enhanced auto-

correlation, as mentioned in section 4.1) characterizes

the simplicity of the function and provides in partic-

ular a measure of the peakiness of the function. This

measure can be used to discriminate periodic and non-

periodic signals. In particular, signals exhibiting peri-

odic behaviour tend to have autocorrelation functions

with clearer peaks and thus lower entropy than non-

periodic ones.

• Another hypothesis is that the faster a tempo (“TEMP”,

located at the global maximum in the autocorrelation

function) is, the more clearly it is perceived by the

listeners. This conjecture is based on the fact that

fast tempi imply a higher density of beats, supporting

hence the metrical background.

4.4 Harmonic relations between pulsations

The clarity of a pulse seems to decrease if pulsations with

no harmonic relations coexist. We propose to formalize this

idea as follows. First a certain number N of peaks 3 are se-

lected from the autocorrelation curve. Let the list of peak

lags be P = {li}i∈[0,N ], and let the first peak l0 be re-

lated to the main pulsation. The list of peak amplitudes is

{r(li)}i∈[0,N ].

 

l0 l1 l2 

r(l0) 

r(l1) r(l2) 

Figure 4. Peaks extracted from the enhanced autocorrela-

tion function, with lags li and autocorrelation coefficient

r(li).

A peak will be inharmonic if the remainder of the eu-

clidian division of its lag li with the lag of the main peak l0
(and the inverted division as well) is significantly high. This

defines the set of inharmonic peaks H:

H =
{

i ∈ [0, N ]
∣∣∣∣ li ∈ [αl0, (1− α)l0] (mod l0)

l0 ∈ [αli, (1− α)li] (mod li)

}
where α is a constant tuned to 0.15 in our implementation.

The degree of harmonicity is thus decreased by the cumu-

lation of the autocorrelation coefficients related to the inhar-

monic peaks:

HARM = exp
(
− 1

β

∑
i∈H r(li)
r(l0)

)
where β is another constant, initially tuned 4 to 4.

3 By default all local maxima showing sufficient contrasts with respect

to their adjacent local minima are selected.
4 As explained in the next section, an automated normalization of the
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5 MAPPING MODEL PREDICTIONS TO
LISTENERS’ RATINGS

The whole set of pulse clarity predictors, as described in the

previous sections, has been computed using various meth-

ods for estimation of the onset detection curve 5 . In order to

assess the validity of the models and select the best predic-

tors, a listening experiment was carried out. From an initial

database of 360 short excerpts of movie soundtracks, of 15

to 30 second length each, 100 five-second excerpts were se-

lected, so that the chosen samples qualitatively cover a large

range of pulse clarity (and also tonal clarity, another high-

level feature studied in our research project). For instance,

pulsation might be absent, ambiguous, or on the contrary

clear or even excessively steady. The selection has been

performed intuitively, by ear, but also with the support of a

computational analysis of the database based on a first ver-

sion of the harmonicity-based pulse clarity model.

25 musically trained participants were asked to rate the

clarity of the beat for each of one hundred 5-second ex-

cerpts, on a nine-level scale whose extremities were labeled

“unclear” and “clear”, using a computer interface that ran-

domized the excerpt orders individually [12]. These ratings

were considerably homogenous (Cronbach alpha of 0.971)

and therefore the mean ratings will be utilized in the follow-

ing analysis.

Table 1. Best factors correlating with pulse clarity ratings,

in decreasing order of correlation r with the ratings. Factor

with cross-correlation κ exceeding .6 have been removed.

var r κ parameters

MIN .59 Klapuri, halfHanning,

log, hwr, sum bef., reson1

KURT .42 .55 Scheirer, IIR, sum aft.

HARM1 .40 .53 Scheirer, IIR, log, hwr, sum aft.

ENTR2 -.4 .54 Klapuri, IIR,

log, hwr(λ=.8), sum bef., reson2

MIN .40 .58 flux, reson1

The best factors correlating with the ratings are indicated

in table 1. The best predictor is the global minimum of the

autocorrelation function, with a correlation r of 0.59 with

the ratings. Hence one simple description of the autocorre-

lation curve is able to explain already r2 = 36 % of the vari-

ance of the listeners’ ratings. For the following variables,

κ indicates the highest cross-correlation with any factor of

distribution of all predictions is carried out before the statistical mapping,

rendering the fine tuning of the β constant unnecessary.
5 Due to the high combinatory of possible configurations, only a part has

been computed so far. More complete optimization and validation of the

whole framework will be included in the documentation of version 1.2 of

MIRtoolbox, as explained in the next section.

better r value. A low κ value would indicate a good in-

dependence of the related factor, with respect to the other

factors considered as better predictors. Here however, the

cross-correlation is quite high, with κ > .5. However, a

stepwise regression between the ratings and the best predic-

tors, as indicated in table 2, shows that a a linear combina-

tion of some of the best predictors enables to explain nearly

half (47%) of the variability of listeners’ ratings. Yet 53%

of the variability remains to be explained...

Table 2. Result of stepwise regression between pulse clar-

ity ratings and best predictors, with accumulated adjusted

variance r2 and standardized β coefficients.

step var r2 β parameters

1 MIN .36 .97 Klapuri, halfHanning,

log, hwr, sum bef., reson1

2 TEMP .43 -.5 Gamm., halfHanning,

log, hwr, sum aft., reson1

3 ENTR1 .47 -.55 Klapuri, IIR,

log, hwr(λ=.8), sum bef.

6 MIRTOOLBOX 1.2

The whole set of algorithms used in this experiment has

been implemented using MIRtoolbox 6 [11]: the set of op-

erators available in the version 1.1 of the toolbox have been

improved in order to incorporate a part of the onset extrac-

tion and tempo estimation approaches presented in this pa-

per. The different paths indicated in the flowchart in figure

1 can be implemented in MIRtoolbox in alternative ways:

• The successive operations forming a given process

can be called one after the other, and options related

to each operator can be specified as arguments. For

example,

a = miraudio(’myfile.wav’)

f = mirfilterbank(a,’Scheirer’)

e = mirenvelope(f,’HalfHann’)

etc.

• The whole process can be executed in one single com-

mand. For example, the estimation of pulse clarity

based on the MIN heuristics computed using the im-

plementation in [9] can be called this way:

mirpulseclarity(’myfile.wav’,

’Min’,’Klapuri99’)

6 Available at http://www.jyu.fi/music/coe/materials/mirtoolbox

525



ISMIR 2008 – Session 4c – Automatic Music Analysis and Transcription

• A linear combination of best predictors, based on the

results of the stepwise regression can be used as well.

The number of factors to integrate in the model can

be specified.

• Multiple paths of the pulse clarity general flowchart

can be traversed simultaneously. At the extreme, the

complete flowchart, with all the possible alternative

switches, can be computed as well. Due to the com-

plexity of such computation 7 , optimization mecha-

nisms limit redundant computations.

The routine performing the statistical mapping – between

the listeners’ ratings and the set of variables computed for

the same set of audio recordings – is also available in version

1.2 of MIRtoolbox. This routine includes an optimization

algorithm that automatically finds optimal Box-Cox trans-

formations [4] of the data, ensuring that their distributions

become sufficiently Gaussian, which is a prerequisite for

correlation estimation.

7 ACKNOWLEDGEMENTS

This work has been supported by the European Commission

(BrainTuning FP6-2004-NEST-PATH-028570), the Academy

of Finland (project 119959) and the Center for Advanced

Study in the Behavioral Sciences, Stanford University. We

are grateful to Tuukka Tervo for running the listening exper-

iment.

8 REFERENCES

[1] Alonso, M., B. David and G. Richard. “Tempo and beat

estimation of musical signals”, Proceedings of the In-
ternational Conference on Music Information Retrieval,
Barcelona, Spain, 2004.

[2] Bello, J. P., C. Duxbury, M. Davies and M. Sandler. “On

the use of phase and energy for musical onset detection

in complex domain”, IEEE Signal Processing. Letters,

11-6, 553–556, 2004.

[3] Bello, J. P., L. Daudet, S. Abdallah, C. Duxbury, M.

Davies and M. Sandler. “A tutorial on onset detection in

music signals”, Transactions on Speech and Audio Pro-
cessing., 13-5, 1035–1047, 2005.

[4] Box, G. E. P., and D. R. Cox. “An analysis of transfor-

mations” Journal of the Royal Statistical Society. Series
B (Methodological), 26-2, 211–246, 1964.

[5] Brown, J. C. “Determination of the meter of musical

scores by autocorrelation”, Journal of the Acoustical So-
ciety of America, 94-4, 1953–1957, 1993.

7 In the complete flowchart shown in figure 1, as many as 4383 distinct

predictors can be counted.

[6] Burred, J. J., and A. Lerch. “A hierarchical approach

to automatic musical genre classification”, Proceedings
of the Digital Audio Effects Conference, London, UK,

2003.

[7] Y. Feng and Y. Zhuang and Y. Pan. ”Popular music re-

trieval by detecting mood”, Proceedings of the Inter-
national ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, Toronto, Canada,

2003.

[8] Foote, J., and M. Cooper. “Media Segmentation using

Self-Similarity Decomposition”, Proceedings of SPIE
Conference on Storage and Retrieval for Multimedia
Databases, San Jose, CA, 2003.

[9] Klapuri, A. “Sound onset detection by applying psy-

choacoustic knowledge”, Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing, Phoenix, AZ, 1999.

[10] Klapuri, A., A. Eronen and J. Astola. “Analysis of the

meter of acoustic musical signals”, IEEE Transactions
on Audio, Speech and Langage Processing, 14-1, 342–

355, 2006.

[11] Lartillot, O., and P. Toiviainen. “MIR in Matlab (II): A

toolbox for musical feature extraction from audio”, Pro-
ceedings of the International Conference on Music In-
formation Retrieval, Wien, Austria, 2007.

[12] Lartillot, O., T. Eerola, P. Toiviainen and J. Fornari.

“Multi-feature modeling of pulse clarity from audio”,

Proceedings of the International Conference on Music
Perception and Cognition, Sapporo, Japan, 2008.

[13] Peeters, G. “A large set of audio features for

sound description (similarity and classification) in the

CUIDADO project (version 1.0)”, Report, Ircam, 2004.

[14] Scheirer, E. D. “Tempo and beat analysis of acoustic

musical signals”, Journal of the Acoustical Society of
America, 103-1, 588–601, 1998.

[15] Toiviainen, P., and J. S. Snyder. “Tapping to Bach:

Resonance-based modeling of pulse”, Music Perception,

21-1, 43–80, 2003.

[16] Tolonen, T., and M. Karjalainen. “A Computationally

Efficient Multipitch Analysis Model”, IEEE Transac-
tions on Speech and Audio Processing, 8-6, 708–716,

2000.

[17] Tzanetakis, G.,G. Essl and P. Cook. “Human perception

and computer extraction of musical beat strength”, Pro-
ceedings of the Digital Audio Effects Conference, Ham-

burg, Germany, 2002.

526


