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ABSTRACT

In this paper, we present a real-time equalizer to control a
volume balance of harmonic and percussive components in
music signals without a priori knowledge of scores or in-
cluded instruments. The harmonic and percussive compo-
nents of music signals have much different structures in the
power spectrogram domain, the former is horizontal, while
the latter is vertical. Exploiting the anisotropy, our methods
separate input music signals into them based on the MAP es-
timation framework. We derive two kind of algorithm based
on a I-divergence-based mixing model and a hard mixing
model. Although they include iterative update equations,
we realized the real-time processing by a sliding analysis
technique. The separated harmonic and percussive com-
ponents are finally remixed in an arbitrary volume balance
and played. We show the prototype system implemented on
Windows environment.

1 INTRODUCTION

A graphic equalizer is one of the most popular tools on an
audio player, which allows an user to control the volume
balance between frequency bands as its preference by sep-
arating an input audio signal by several band-pass filters
and remixing them with different gains. Recently, based
on other kinds of separation, more advanced audio equal-
izations have been discussed and developed [1, 2, 3], which
increase the variety of modifying audio sounds and enrich
functions of audio players.

In this paper, focusing on two different components in-
cluded in music signals: harmonic and percussive ones, we
present a technique to equalize them in real-time without a
priori knowledge of the scores or the included instruments.
Not only as an extended audio equalizer, the technique should
yield the useful pre-processing for various tasks related to
music information retrieval from audio signals [4]. It can
suppress percussive tones, which often interfere multipitch
analysis, while, suppression of harmonic component will fa-
cilitate drum detection or rhythm analysis. We have cur-
rently applied this technique to automatic chord detection
based on emphasized chroma features [5], rhythm pattern
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extraction and rhythm structure analysis [6], and melody ex-
traction.

For independently equalizing the harmonic and percus-
sive components, it is required to separate them. This kind
of separation problem has been widely discussed in the lit-
erature. Uhle et al. applied Independent Component Anal-
ysis (ICA) to the magnitude spectrogram, and classified the
extracted independent components into a harmonic and a
percussive groups based on the several features like percus-
siveness, noise-likeness, etc [7]. Helen et al. utilized Non-
negative Matrix Factorization (NMF) for decomposing the
spectrogram into elementary patterns and classified them by
pre-trained Support Vector Machine (SVM) [8]. Through
modeling harmonic and inharmonic tones on spectrogram,
Itoyama et al. aimed to an instrument equalizer and pro-
posed separation of an audio signal to each track based on
the MIDI information synchronized to the input audio signal
(1].

The contribution of this paper is to derive a simple and
real-time algorithm specifically for the harmonic/percussive
separation without any pre-learning or a priori knowledge
of score or included instruments of the input audio signals.
We present the formulation of the separation in Maximum
A Priori (MAP) estimation framework, derive the fast iter-
ative solution to it by auxiliary function approach, imple-
ment it with sliding update technique for real-time process-
ing, and examine the performance by experiments to popu-
lar and jazz music songs.

2 FORMULATION OF HARMONIC/PERCUSSIVE
SEPARATION

2.1 MAP Estimation Approach

Let F,, > be a Short Time Fourier Transform (STFT) of a
monaural audio signal f(t), and W, , = |F,, | be a short
time power spectrum, where w and 7 represent frequency
and time bins. Let [, ;- and P, » be a harmonic and a per-
cussive component of W, -, respectively. The variables W,
H, and P denote a set of W,, -, H,, -, and P, -, respec-
tively.
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The separation of W into H and P is a kind of under-
determined blind source separation problem. One way to
mathematically formulate this kind of problems is putting
it on MAP (Maximum A Posteriori) estimation framework
through representing desired source properties as a priori
probabilities. Assuming that H and P are independent, the
objective function of MAP estimation in our problem can be
written as

J(H, P)
= logp(H,P|W)
logp(W|H, P)+logp(H,P) +C
logp(W|H, P)+ logp(H) + logp(P) + C, (1)

where the first term represents the log-likelihood, the second
and the third terms represent the prior probabilities, and C'
is a constant term not including H and P, hereafter, we will
omit it since it is not used for MAP estimation.

A harmonic component on the spectrogram usually has a
stable pitch and form parallel ridges with smooth temporal
envelopes, while the energy of a percussive tone is concen-
trated in a short time frame, which forms a vertical ridge
with wideband spectral envelopes. Then typically, the ver-
tical and horizontal structure emerges in the spectrogram of
audio signals shown in the top of Fig. 3.

Focusing on the horizontal and vertical smoothed enve-
lope of H,, r and P, ;, we model their a priori distribution
as functions of spectrogram gradients as:
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where 0% and 0% are the variance of the spectrogram gradi-
ents, probably depending on the frame length or frame shift
of STFT, and -y represents a range-compression factor such
that (0 < v < 1), which we introduced for increasing the
degree of freedom of our model with holding the assumption
of the Gaussian distribution.

2.2 Method 1: I-divergence-based mixing model

Although H,, , and P, ; are the power spectrograms the ad-
ditivity of them is not rigorously hold, H,, » + P, , should
be close to the observation W, . In several power-spectrogram-
based signal processing methods NMF [9, 10, 11], the dis-
tance between power spectrograms A, - and B,, ; can be
measured by I-divergence:
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which is almost equivalent to the assumption that p(W|H , P)
is Poisson distribution [11]. Assuming that observation at
each time-frequency is independent, the log-likelihood term
can be written as

logp(W|H, P) - C
= - Z {Ww,‘r lOg

where C'is a constant term for normalization.

In the MAP estimation, the balance between a log-likelihood
term and a prior distribution term is significant. Specifically
in our problem, the relationship between them should be in-
variant for scaling. The property is satisfied by setting the
range-compression factor as v = 0.5. Then, the objective
function can be written as

Jl(H7 P)

- ; {Ww log %
fiwﬂi — VHa.)

—iwp— VPP,

Note that, when H,, -, P,, -, and W, - are multiplied by a
scale parameter A, the objective function is also just multi-
plied by A and the function form is invariant.
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2.3 Method 2: hard mixing model

Since the intersection of the horizontal and vertical ridges
is small, we can make a more strong assumption that they
are approximately disjoint. In the case, W, , = H,, r or
W, » = P, are exclusively satisfied at each (w, 7). How-
ever, the sparse mixing model leads us to a large number of
combination problem. For avoiding it and obtaining an ap-
proximative solution, we cast it to a hard mixing model on
the range-compressed power spectrum as

[—:rw,-r + PUJ,Ty

Wer = N

where
WUJ,T = WJJ—-, Hw,‘r = fjw.,‘r = PLZ,T' (3

Eq. (7) is hold if H,, » and P, , are actually disjoint. Al-
though the model is rough, this assumption leads us to sim-
ple formulation and solution. Since the deterministic mixing
model of eq. (7) vanishes the log-likelihood term, the objec-
tive function is given by

w,T?
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under the constraint of eq. (7).
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3 DERIVATION OF UPDATE EQUATIONS
THROUGH AUXILIARY FUNCTION

3.1 Method 1

Maximizing eq. (6) is a nonlinear optimization problem. In
order to derive an effective iterative algorithm, we introduce
an auxiliary function approach, which has been recently uti-
lized in several signal processing techniques such as NMF
[9] and HTC (Harmonic Temporal Clustering) [10].

Note that the following auxiliary function:

Ql(HapampamH)

w TWw T
= =Sy, W log (L)

w,T Pw,'r
mu W,
- Z me,TWw,T IOg (H’i"”—)

1
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- VR - VR (10)
holds
Ji(H,P) > Q(H, P,mp,mu), (1)
for any H, P, mp, and m g under the condition that
Mpor +Mur =1, (12)

where mp,, . and mp,, , are auxiliary variables and mp
and m gy are sets of mp,, ; and mgy,, ,, respectively. The
equality of eq. (10) is satisfied for

Xw,v'
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Mmxwr =
for X = H or X = P. Then, updating m g and mp by eq.
(13) increases the auxiliary function (J; and it achieves to J.
After that, updating H and P by solving 0Q1/0P, » = 0
and 0Q1/0H,, ; = 0 increases ()1 again and J; increases
together because of the inequality of eq. (10). Hence, the
iterations increases J; monotonically.

From 0Q1 /0P, = 0,0Q1/0H,, ; = 0, and eq. (13),
we have the following update equations:
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where
2
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3.2 Method 2

Since eq. (9) is a quadrature form of H,, » and P, » with a
linear constraint, the optimal H and P, m can be obtained
by solving a simultaneous equation but it includes a large
number of variables equal to the number of time-frequency
bins. To avoid it and derive a simple iterative solution, we
derived the following auxiliary function:

QQ(Ha P7 U7 V)
1 N N
= 7% ; {(Hw,T—l - Uw,‘r)2 + (Hw,r - Uu.),T)Q}
- 12 Z {(Pw—ln' - Vw,T)Z + (Pw,‘r - Vw,'r)2}22)

satisfies

J2(H, P) > Q2(H,P,U, V), (23)

where U, - and V,, , are auxiliary variables and U and V'
are sets of U, » and V,, ., respectively. The equality of
eq. (10) is satisfied for U, , = (H,,_1 + H,..)/2 and
Vor = (owlﬂ' + PMT)/Q. By taking the constraint of eq.
(7) into consideration and organizing variables, we have the
following update rules, which guarantees to monotonically
increase the objective function J,. The detailed derivation
is presented in [12].

Aw,-r — a <Hw,'rl - QHUJ,T + Hw,7'+1>
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In method 2, any ~ is allowable. According to our experi-
ments, setting 7y to be about 0.3 gives a good performance.
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Figure 1. The process of the sliding block analysis

4 REAL-TIME PROCESSING BY SLIDING BLOCK
ANALYSIS

Although the objective functions eq. (6) and eq. (9) should
include all time-frequency bins, the iterative updates for the
whole bins are much time-consuming. In order to obtain
an approximate solution in real-time, we propose a sliding
update algorithm. Based on the assumption that the separa-
tion of a certain time-frequency bin is weakly affected by far
bins, we limit the processed frameston <7 <n+ B — 1,
where B is the size of the analysis block, and slide n itera-
tively. The real-time version of the Method 1 is summarized
as follows.

1. Set the new frame as H, nyp—1 = Ponyp-1 =
Wem+B—1/2.

2. Update variables by eq. (14), eq. (15), eq. (16), and
eq. (17 forn<7<n+ B —1.

3. Convert the nth frame to a waveform by the inverse-
STFT.

4. Increment n to slide the analysis block.

The real-time version of the Method 2 is in the same way.
In step 3, the original phase is used for converting the STFT
domain to the time domain. Note that the overlap of the
frame shift should actually be considered for the conversion.

Each time-frequency bin is updated only once at step 2.
Then, it is totally updated B times after passing through the
analysis block shown in Fig. 1. Although the larger block
size B shows better performance, the processing time from
step 1 to step 4 must be less than the length of the frame
shift for real-time processing.

5 IMPLEMENTATION AND EVALUATIONS

We implemented our algorithms in VC++ on Microsoft Win-
dows environment. The GUI of the prototype system is
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shown in Fig. 2. After clicked a start button, the separa-
tion process begins. The processing steps are as folllows.

1. Loading a frame-shift-length fragment of the input
audio signal from a WAV-formated file.

2. Calculating FFT for a new frame.

3. Updating stored frames as described in the previous
section.

4. Calculating inverse FFT for the oldest frame.
5. Overlap-adding the waveform and playing it.
6. Goto Step 1.

The two bar graphs shown in Fig. 2 represent the power
spectra of the separated harmonic and percussive compo-
nent. The sliding bar named “P-H Balance” enables an user
to change the volume balance between the harmonic and
percussive components on play. The examples of the sep-
arated two spectrogram sequences are shown in Fig. 3. We
can see that the input power spectrogram is sequentially sep-
arating in passing through the analysis block. In auditory
evaluation, we observed:

e The pitched instrument tracks and the percussion tracks
are well separated in both of method 1 and 2.

e Under the same analysis block size, the method 1 gives
a little better performance than method 2.

e The method 1 requires about 1.5 ~ 2 times compu-
tational time than the method 2 because of the calcu-
lation of square root. Thus, the method 2 allows the
larger block size.

e The separation results depend on several parameters
as o, op, the frame length, and the frame shift. But
the dependency is not so large.

In order to quantitatively evaluate the performance of the
harmonic/percussive separation and the relationship to the
block size, we prepared each track data of two music pieces
(RWC-MDB-J-2001 No.16 and RWC-MDB-P-2001 No.18
in [13]) by MIDI-to-WAV conversion and inputed the sum-
mation of all tracks to our algorithms. As a criterion of the
performance, the energy ratio of the harmonic component
h(t) and the percussive component p(t) included in each
track was calculated as

rh:i, rp:i, (28)
Ey + Ep En + Ep
where
Eyp =< f;(t),h(t) >%,  E, =< fi(t),p(t) >, (29

and <> represents the cross correlation operation and f;(t)
represents a normalized signal of each track. The results
are shown in Fig. 4. The pitched instrument tracks and the
percussion tracks are represented by solid and dotted lines,
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Figure 2. The GUI of the harmonic/percussive equalizer

Table 1. Experimental conditions

signal length 10s
sampling rate 16kHz
frame size 512
frame shift 256
range-compression factor (method 1) v=0.5
range-compression factor (method 2) v=0.3
gradient variance op=ocg =0.3

respectively. We can see that the separation was almost well
performed. Only the bass drum track has a tendency to be-
long to the harmonic component, which can be considered
due to the long duration. Fig. 4 also shows that a large
block size is not required and the separation performance
converges at the block size of 30 or 40 frames in this condi-
tion.

6 CONCLUSION

In this paper, we presented a real-time equalizer of harmonic
and percussive components in music signals without any a
priori knowledge of score and included instruments. In au-
ditory evaluation and experiments, we confirmed the good
performance. Based on our equalizer, applying existing au-
dio modification technique as conventional equalizing, re-
verb, pitch-shift, etc., to harmonic/percussive components
independently will yield more interesting effect. Applying
it as pre-processing for multi-pitch analysis, chord detec-
tion, thythm pattern extraction, is another interesting future
work.
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Figure 4. The energy ratio of the separated harmonic com-
ponent in each track (r) for different block sizes. Their re-
sults from top to bottom are obtained by method 1 for RWC-
MDB-J-2001 No.16, by method 2 for RWC-MDB-J-2001
No.16, by method 1 for RWC-MDB-P-2001 No.18, and by
method 2 for RWC-MDB-P-2001 No.18, respectively.

Figure 3. The spectrograms of separated harmonic compo-
nent (left) and percussive component (right) by sliding block
analysis. The first frame of the analysis block is 0, 10, 50,
100, 150, 200, and 250 from top to bottom, respectively.
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