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ABSTRACT

This paper presents a new approach to multipitch analysis

by utilizing the Harmonic Nonnegative Matrix Approx-

imation, a harmonically-constrained and penalized ver-

sion of the Nonnegative Matrix Approximation (NNMA)

method. It also includes a description of a note onset, off-

set and amplitude retrieval procedure based on that tech-

nique. Compared with the previous NNMA approaches,

specific initialization of the basis matrix is employed – the

basis matrix is initialized with zeros everywhere but at po-

sitions corresponding to harmonic frequencies of conse-

quent notes of the equal temperament scale. This results in

the basis containing nothing but harmonically structured

vectors, even after the learning process, and the activity

matrix’s rows containing peaks corresponding to note on-

set times and amplitudes. Furthermore, additional penal-

ties of mutual uncorrelation and sparseness of rows are

placed upon the activity matrix. The proposed method

is able to uncover the underlying musical structure better

than the previous NNMA approaches and makes the note

detection process very straightforward.

1 INTRODUCTION

The problem of automatic polyphonic music transcription

(extracting underlying musical structure from sampled mu-

sic) has been addressed numerous times, and it still seems

there is a long way to go before arriving at a robust and

universal technique. This paper tries to lay another brick

towards this goal.

Automatic music transcription of recorded music is usu-

ally a two stage process. The first stage is the event detec-

tion phase, where music events (note onsets, note offsets,

pitch changes) are detected and identified. In the second

stage, these events are transformed into a musical score.

This paper focuses on the event detection stage, main part

being multipitch analysis, which aims to uncover the fun-

damental frequencies of simultaneously played harmonic

sounds. It is a difficult task, since each sound, besides

the fundamental tone, consists of many harmonic tones,

some of them having the same frequencies as the funda-

mental frequencies of other sounds (e.g. in the case of
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tonal music). It is necessary to distinguish between the

fundamental tones and their overtones.

A large variety of methods has been used to tackle the

multipitch analysis problem (e.g. [1], [2], [4], [9], [11],

[12], [13]; an exhaustive list of methods would be very

long and we are not going to include it here, but for a

good summary, see [6]), but so far none of them solv-

ing the problem in a satisfactorily precise and universal

way. While our lab has recently developed a powerful

method based on Harmonic Temporal Structured Cluster-

ing (HTC) for this purpose [4], the procedure proposed in

this paper is built upon a method from the family of Non-

negative Matrix Approximations (NNMA), which, under

different names and in different varieties, has recently re-

ceived much attention, also from the music transcription

community. To the best of our knowledge, however, none

of the NNMA-based methods were developed specifically

for analysis of musical signals. As it will be shown later in

this paper, nature of music can be exploited to increase the

transcription potential of the algorithm. The goal of this

paper was to propose a NNMA variation most suitable for

multipitch analysis.

Different variations and extensions of the NNMA algo-

rithm have been used for multipitch analysis: the regular

NNMA [13], its penalized versions, such as the Nonneg-

ative Sparse Coding (NNSC) [2, 1], or NNMA with basis

vectors extended to contain spectrotemporal signatures (a

number of consequent data frames), such as Nonnegative

Matrix Factor 2-D Deconvolution (NMF2D) and Sparse

Nonnegative Matrix Factor 2-D Deconvolution (SNMF2D)

[11]. These methods have, however, a few drawbacks.

They do not guarantee to yield basis vectors with har-

monic structure. NMF2D and SNMF2D use a single sig-

nature for every note (of a single instrument), making use

of the shift-similarity of logarithmic frequency scale spec-

tra of notes played on a single instrument. This might

be an oversimplification resulting in an inadequate model.

The note spectra are similar, but not identical, with signif-

icant differences for some specific instruments (e.g. flute).

Moreover, spectrotemporal atoms cannot account for dif-

ferent note lengths, which results in multiple activity peaks

when notes are longer than the signature, and lower activ-

ity peaks when notes are shorter than the signature. All

of the previous work published on that subject do not pro-

pose a complete transcription procedure, simply reporting



good results after visual comparison of the activities and

symbolic data used to generate the analyzed music.

The paper is organized as follows. Section 2 presents

a theoretical introduction to the Nonnegative Matrix Ap-

proximation and its extension through the addition of con-

straints and penalties placed upon both the basis matrix

and the activity matrix. An overview of the proposed

procedure in given in section 3, including description of

the proposed Harmonic Nonnegative Matrix Approxima-

tion (HNNMA) technique (3.3) and note detection method

(3.4). The procedure is evaluated and compared with the

results of regular NNMA methods in section 4.

2 THEORETICAL BACKGROUND

2.1 Definitions and basic properties

For clarity, the following notation was used in this paper:∣∣ ·
∣∣ is a sum of all the elements of a matrix, ⊙ is the

Hadamard product (calculated element-wise) and 1 is a

matrix (of appropriate dimensions) containing nothing but

ones.

A few easy to prove properties were later used. If A ∈
R

N×M , then:

∇A

∣∣A⊙A
∣∣ = 2A, (1)

∇A

∣∣AT
A

∣∣ = 2AT
1, (2)

∇A

∣∣BA
∣∣ = B

T
1, (3)

∇A

∣∣f1(A) + f2(A)
∣∣ = ∇A

∣∣f1(A)
∣∣ +∇A

∣∣f2(A)
∣∣, (4)

∇A

∣∣B⊙ (Cυ(A))
∣∣ = υ′(A)⊙

(
C

T
B

)
, (5)

where υ : R
+ → R

+ is an element-wise function and υ′

is its derivative, and f1, f2 : R
+,N×M → R

+,N×M are

any matrix functions.

2.2 Generalized Nonnegative Matrix Approximation

Generalized Nonnegative Matrix Approximation (described

in [3] and later developed in [14]), is a method for decom-

position of a nonnegative (having only nonnegative ele-

ments) matrix X (later referred to as the data matrix) into

a multiplication of two, also nonnegative, matrices A and

S (later refereed to as the basis matrix and the activity ma-

trix, respectively):

X ∼= AS = X̃. (6)

The Generalized NNMA solves this problem by mini-

mizing a Bregman divergence between the data matrix X

and its approximation X̃. A Bregman divergence between

two matrices is defined as

D(P, Q) =
∣∣ϕ(P)− ϕ(Q)− ϕ′(Q)⊙ (P−Q)

∣∣, (7)

where ϕ : S ⊆ R → R is a strictly convex function with

continuous first derivative, calculated here for each ele-

ment of a matrix separately. If ϕ(p) = p log p − p, then

the Bregman divergence becomes the I-divergence (gen-

eralized Kullback-Leibler divergence):

DKL(P, Q) =

∣∣∣∣P⊙ log
P

Q
− P + Q

∣∣∣∣, (8)

where the logarithm and the division are calculated element-

wise. This situation leads to the simple NNMA, also known

as Nonnegative Matrix Factorization (NMF) [8]. Lee and

Seung in [8] has proposed a very fast algorithm for mini-

mizing the I-divergence that can be derived by using aux-

iliary functions. A function G(P, P′) is an auxiliary func-

tion for function F (P) if:

1. G(P, P) = F (P),

2. G(P, P′) ≥ F (P).

Making use of the convexity of ϕ [14], it can be shown

that:

G(A, A′) =

∣∣∣∣ϕ(X) + X̃− X

−
X

X̃
′ ⊙

[(
A′ ⊙ log

A

A′

)
S + ϕ(X̃

′
)

] ∣∣∣∣, (9)

where X̃
′ = A

′
S, is an auxiliary function for

F (A) = DKL(X, AS) = DKL(X, X̃)

=

∣∣∣∣X⊙ log
X

X̃
− X + X̃

∣∣∣∣ (10)

and

G(S,S′) =

∣∣∣∣ϕ(X) + X̃−X

−
X

X̃′
⊙

[
A

(
S
′ ⊙ log

S

S′

)
+ ϕ(X̃′)

] ∣∣∣∣, (11)

where this time X̃
′ = AS

′, is an auxiliary function for

F (S) = DKL(X,AS). (12)

It can also be shown [14] that F (S′) is non-increasing un-

der the update

S′ ← arg min
S

G(S, S′). (13)

To solve this optimization problem, we calculate the

gradient of the auxiliary function and force it to zero:

∇SG(S,S′) = ∇S

∣∣∣∣ϕ(X) + X̃−X

−
X

X̃′
⊙

[
A

(
S
′ ⊙ log

S

S′

)
+ ϕ(X̃′)

] ∣∣∣∣ = 0. (14)

Using properties (3), (4) and (5), we can easily calculate

that gradient as:

∇S

∣∣∣∣AS−
X

X̃′
⊙

[
A

(
S
′ ⊙ log

S

S′

)] ∣∣∣∣ = 0, (15)



A
T
1−

S
′

S
⊙

(
A

T

(
X

X̃′

))
= 0, (16)

S = S
′ ⊙

A
T

(
X

eX′

)

AT 1
. (17)

This suggest a multiplicative update rule:

S← S⊙
A

T
(

X

AS

)

AT 1
. (18)

We can come up with a similar update rule for the basis

matrix A:

∇AG(A,A′) = 0, (19)

1S
T −

A
′

A
⊙

(
X

X̃′
S

T

)
= 0, (20)

A← A⊙
X

AS
S

T

1S
T

. (21)

So, by using simple multiplicative rules from (21) and

(18), we can find matrices A and S that minimize the I-

divergence from equation (8).

2.3 Penalized NNMA

Because H(P, P′) = G(P, P′)+α(P) is an auxiliary func-

tion for F (P) + α(P) (the proof is straightforward), the

NNMA algorithm can be extended by placing additional

penalties upon both estimated decomposition matrices, ex-

pressed as additional element in the objective function.

∇AH(A,A′) = ∇AG(A,A′) +∇Aα(A), (22)

∇AH(A,A′) = 1S
T −

A
′

A
⊙

(
X

X′
S

T

)
+∇Aα(A).

(23)

While it is very difficult to solve this non-linear equa-

tion with respect to A, the following approximation can

be used [14]:

∇Aα(A) ∼= ∇Aα(A)

∣∣∣∣
A=A′

, (24)

which is asymptotically true, as difference between A in

consequent iterations tends to 0. Now:

1S
T −

A
′

A
⊙

(
X

X′
S

T

)
+∇A′α(A′) = 0, (25)

which yields an update rule:

A← A⊙
X

AS
S

T

1S
T +∇Aα(A)

. (26)

Similarly:

∇SHS(S,S′) ∼= ∇SG(S,S′) +∇S′β(S′), (27)

S← S⊙
A

T X

AS

AT 1 +∇Sβ(S)
. (28)

It must be noted that the new update rules may result in

the matrices A and S becoming negative, so caution must

be taken while constructing the objective function.

3 MULTIPITCH ANALYSIS PROCEDURE

3.1 Overview of the procedure

The NNMA algorithm decomposes the data matrix X,

which does not contain musical data, but rather some mid-

level representation of it. In most cases its columns are

power spectra of consecutive frames of time-domain mu-

sical data. In the proposed procedure a constant-Q trans-

form is used. The central frequencies of the constant-Q

filters can be set to correspond to the frequencies of the

notes of the most common twelve-tone equal tempera-

ment (12-TET) scale or can further divide each semitone,

which is a very useful property for analyzing musical sig-

nals. What is more, the dimensionality of a constant-Q-

transformed data is much lower than the dimensionality

of a Fourier-transformed data, which makes the computa-

tion of the NNMA faster. After calculating the constant-Q

transform, the resulting data is fed through the HNNMA

algorithm, which decomposes it to a product of the basis

matrix and activity matrix. Activity matrix is analyzed in

the last part of the procedure – the note detector, described

in section 3.4.

3.2 Matrix initialization in HNNMA

Because zero-valued elements of basis vectors will remain

zero-valued throughout the learning process, we could ini-

tialize them to have zeros everywhere but at the positions

of fundamentals of notes from a specific range of the 12-

TET scale and their harmonics. Furthermore, that would

guarantee that the basis vectors are sorted by their fun-

damental frequencies, and that corresponding rows in the

activity matrix contain activities of consequent notes from

that range, resulting in a harmonicaly-constrained NNMA.

This would make analysis of the results of the algorithm

straightforward – one would only have to analyze the note

activities and find peaks corresponding to instances of these

notes.

In the proposed procedure, after initialization, each ba-

sis vector is multiplied by the normalized mean value of

the constant-Q transform of the data at the bin correspond-

ing to this note. This should discourage the HNNMA from

learning these notes and using them to reconstruct the an-

alyzed data. During the learning process, each row of the

activity matrix is, as it is usually done in the learning pro-

cess of the NNMA methods, normalized to unit squared

sum, while the basis matrix is simply normalized by its

maximal value to let the basis vectors, that correspond to

notes not existing in analyzed music, freely decrease.

3.3 Additional penalties in HNNMA

HNNMA extends the regular NNMA to include additional

penalties on the activity matrix S. We would like to find

such an activity matrix that would:

1. be sparse, i.e. each row should contain only very

few non-zero elements (to reduce the low-valued

noise),



Figure 1. Basis vectors after analysis of the Ode to Joy.

Its harmonic structure is clearly visible. Vertical dotted

lines indicate expected harmonic peaks positions.

2. contain mutually uncorrelated rows (to reduce the

inter-row crosstalk, like e.g. octave errors).

The above can be reformulated, accordingly, in terms

of a objective function β:

β(S) = −µ1

∣∣log(1 + S⊙ S)
∣∣

+µ2

(∣∣ST
S
∣∣−

∣∣S⊙ S
∣∣) . (29)

The first element,
∣∣log (1 + S⊙ S)

∣∣, is one of the often

used sparseness measures [5]. The second one is a mea-

sure of correlation between every pair of different matrix

rows: ∣∣ST
S
∣∣−

∣∣S⊙ S
∣∣ =

∑

i

∑

j 6=i

s
T
i sj , (30)

where s
T
i is the i-th row and si is its transposition. Using

properties (1), (2) and (5) from section 2.1, we can easily

calculate the gradient:

∇Sβ(S) = −2µ1S/ (1 + S⊙ S) + 2µ2S (1− I) . (31)

Similar penalties could be used for the basis matrix, but

our experiments with sparsity, column uncorrelation and

column shift-similarity showed that these constraints do

not improve procedure’s accuracy when the basis matrix

was initialized in the way described in the next subsection.

When the matrix was initialized with traditional noise, the

constraints would result in basis vectors containing peaks,

although the structure was not always purely harmonic.

Thus, either further, much more complex constraint are

required to enforce this structure, or we could take the ad-

vantage of the multiplicative nature of HNNMA algorithm

update rules.

3.4 Note detector

Before analysis, each row of the activity matrix is mul-

tiplied by the height of the peak at the fundamental fre-

quency in corresponding basis vector (all rows are being

normalized to unit squared sum during the learning pro-

cess). This should make the activities of notes that do

Note activities
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Figure 2. Note activities (S) after analysis of the Ode to

Joy. Peaks correspond to notes detected in the signal

not exist in the analyzed music significantly smaller than

the activities of notes that occur in the music. After that

each row with values higher than some arbitrarily chosen

threshold are normalized to the maximal value in each of

them.

It turns out that in preliminary experiments the result-

ing activities clearly correspond to notes in the analyzed

musical piece. However, if the notes were played shortly

one after another, their peaks blend to form a single peak

with multiple sub-peaks. Because of that, a simple thresh-

olding is not enough. A still simple, but much more ro-

bust thresholding method was used. First, the activities

are thresholded to detect peaks and blended peaks (e.g.

two blended peaks depicted on Figure 3). Then, for each

detection all local maxima and local minima are found.

Some of the maxima correspond to actual sub-peaks, while

some are just fluctuations in the note activity. Two thresh-

olds are set between the highest local maximum and the

lowest local minimum. All maxima that are above the

higher threshold (upper ligth-gray range on Figure 3) and

has at least one minimum lower than the lower threshold

(lower light-gray range on picture 3) are marked as sub-

peaks and are assumed to correspond to individual notes.

In similar fashion, all minima under the lower threshold

that lay between two sub-peaks are assumed to be the off-

set time of the note corresponding to the left sub-peak and

onset time of the note corresponding to the right sub-peak.

The beginning and the end of the blended group of sub-

peaks are assumed to be the onset time of the first note in

the group and the offset time of the last note in the group.

The last step of the note detection process is acceptance

decision for each of the detected peaks and sub-peaks. A

peak is accepted and regarded a note only if its width mul-

tiplied by its height is greater than some threshold.

4 EXPERIMENTAL RESULTS

4.1 Experiment conditions

To validate our approach, we tested our procedure on a

few recordings. All analyzed recordings were played on



Figure 3. Results of note detection for a quarter note and

an eighth blended together (example of real data). Dark-

gray circles mark the detected sub-peaks and the offset

time of the first note.

Composer Title Notes Acc. Corr.

L. Beethoven Symphony in D minor,
Op. 125, No. 9 (last
movement, Ode to joy)

101 96% 86%

F. Chopin Nocturne in E# major,
Op. 9, No. 2 (part)

328 87% 72%

F. Chopin Nocturne in Bb minor,
Op. 9, No. 1 (part)

358 70% 74%

J. S. Bach Minuet No 4 in G 102 97% 100%

Table 1. Piano pieces used for algorithm evaluation

piano, as listed in Table 1, but experiments show equally

good results for acoustic guitar and violin (though lower

detection accuracy for violin).

During the experiments, all the parameters of the algo-

rithm were kept constant in order to evaluate its robust-

ness, though by fine-tuning the parameters for each musi-

cal piece separately, much better results can be obtained.

It has been noted that the best results were achieved by

applying this method for shorter blocks of data (30-60 s),

instead of the whole song at once.

The input data was first mixed down to a monaural sig-

nal and resampled to 11025 kHz. The constant-Q trans-

form was calculated for frames shifted 12 ms. During

learning, µ1 = 1, µ2 = 10 were used. During note detec-

tion phase, before normalization of activities, rows having

maximal values lower than 0.125 of the maximal value of

the activity matrix S were set to zero. The main detection

threshold was set at 0.25, the lower threshold to 0.25 of

difference between the lowest minimum and the highest

maximum and the higher threshold to 0.75 of that differ-

ence.

After learning the basis matrix contained very well struc-

tured vectors, each one having a stronger peak for the fun-

damental tone and weaker peaks for the harmonics (Figure

Figure 4. Three bars from the middle of Chopin’s Noc-

turne in E# major, Op. 9, No. 2

(a) Note activities obtained by NNMA

(b) The first 4 bars of the played score, as a reference

Figure 5. Note activities after note detection for Ode to

Joy with grey squares being the original notes

1). The results of note detection for few example pieces

of music are presented in Table 1. Correctness of tran-

scription is the ratio of the difference between the number

of notes in analyzed music and the number of deletions, to

the number of notes in analyzed music. Accuracy is the ra-

tio of the difference between the number of detected notes

and the number of insertions, to the number of detected

notes. The first and the last musical piece were relatively

easy to analyze, containing notes from a rather short range

(about 2 octaves). The two Chopin’s nocturnes were, on

the other hand, very difficult – played with a big dynamic

and wide range of note lengths, and containing notes from

within 5-6 octaves (see e.g. Figure 4).

4.2 Comparison with previous methods

Figure 6 depicts the basis matrix obtained using standard

NNMA (NMF) method after fundamental frequency esti-

mation and basis vector sorting. It does not contain clear

harmonic structure – many of the vectors have two (or

more) dominant peaks, sometimes with highest peaks be-

ing the overtones instead of the fundamental, sometimes

having the same fundamental frequency as different basis

vectors (Figure 6). Slightly better results are obtained by

utilizing different penalized NNMA methods proposed in

the literature (e.g NNSC [1] or Local Nonnegative Ma-

trix Factorization [10]), however, the basis matrix never

contains as highly harmonically structured vectors as the

ones obtained with the proposed method. The activities

obtained with these methods contain a lot of fluctuations

and assigning note names to the activities depends on the

highly dubious operation of fundamental frequency esti-

mation of the basis vectors.
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Figure 6. Basis obtained with standard NMF. Note de-

tection relies on pitch estimation of these, often multi-

peaked, basis vectors.

It seems that the activity matrix in the proposed proce-

dure contains very easy to analyze and at the same time

almost complete information about the underlying mu-

sical structure of the analyzed signal. This method is a

good compromise between full basis estimation methods

(such as NMF and other NNMA-based approaches) and

methods that use pre-learned basis vectors (e.g. [12] or

[9]). The achieved results are similar to the results of dif-

ferent recently developed music transcription techniques

(e.g. [4]), but by fine-tuning the method’s parameters,

even greater accuracy could be achieved. The proposed

procedure uses a relatively simple method of analyzing

the activity matrix, making room for future research in

more advanced techniques, such as modeling the tempo-

ral envelopes of notes or using models of musical rhythm

and harmony.

5 CONCLUSION

In this paper, we discussed the use of Harmonic Non-

negative Matrix Approximation for multipitch analysis of

polyphonic music signals. By initializing the basis ma-

trix with harmonic structure and using new penalties of

sparsity and uncorrelation of rows of the activity matrix,

this approach yielded higher note detection accuracy com-

pared with previous extensions of the Nonnegative Matrix

Approximation algorithm. The future work includes im-

proving the post-processing of the HNNMA results by in-

corporating models of musical rhythm and harmonicity.
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