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ABSTRACT

Current work on Query-by-Singing/Humming (QBSH) fo-
cusses mainly on databases that contain MIDI files. Here,
we present an approach that works on real audio record-
ings that bring up additional challenges. To tackle the
problem of extracting the melody of the lead vocals from
recordings, we introduce a method inspired by the popular
“karaoke effect” exploiting information about the spatial
arrangement of voices and instruments in the stereo mix.
The extracted signal time series are aggregated into sym-
bolic strings preserving the local approximated values of
a feature and revealing higher-level context patterns. This
allows distance measures for string pattern matching to be
applied in the matching process. A series of experiments
are conducted to assess the discrimination and robustness
of this representation. They show that the proposed ap-
proach provides a viable baseline for further development
and point out several possibilities for improvement.

1 INTRODUCTION

Query-by-Singing/Humming (QBSH) as introduced in [6]
is a popular content-based music retrieval method where
the user enters a search query by singing, humming, or
whistling it into a microphone. So far, work on QBSH sys-
tems has mainly focused on databases containing pieces
of music in a symbolic description, usually MIDI. We de-
scribe an approach for QBSH on audio recordings instead.
From these recordings, descriptive features are extracted
and aggregated in symbolic strings which allow using dis-
tance measures for string pattern matching. However, mu-
sic in general consists of several instruments or voices
playing harmonically or in opposition to each other at the
same time. In MIDI, each instrument usually has its own
track, allowing straightforward separation of the individ-
ual voices. In real audio recordings, however, audio infor-
mation of all instruments and voices is mixed and stored
in all channels. Nevertheless, users of a QBSH system
usually want to query the melody sung by the lead voice
or played by a solo instrument. Consequently, the record-
ings need to be reduced to a somewhat more precise rep-
resentation of components related to melody or lyrics.

Before we introduce our methodology in Section 3, we
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briefly discuss related work. Section 4 describes the ex-
periments conducted to evaluate our approach. The results
of the experiments are presented in Section 5.

2 RELATED WORK

In [17] a retrieval method for audio is proposed that re-
stricts the frequency range to 22 semitones. Furthermore,
the songs need to be manually segmented into semanti-
cally meaningful phrases. The authors argue that usually a
query starts at the beginning of such a phrase and thus con-
fine query comparison to the beginning of phrases without
further local alignment. We make a similar assumption to
improve performance but matching is not restricted to that
case. In [14] an automated way for segmentation is pre-
sented using a normal CD recording as well as a karaoke
track of the same song, which is usually not available and
thus, we avoid using such additional information. Instead,
we try to infer higher-level representations directly.

Current techniques of melody extraction from polypho-
nic recordings as [3, 5, 13] are still vulnerable to inter-
ferences from instruments. Here, source-separation ap-
proaches such as [4, 15] could help but still have many
limitations: The method proposed in [15] works well on
all single-note harmonic instruments including voice but
has problems when drums are present or multiple instru-
ments play the same note or an octave. The approach pre-
sented in [4] only works for vocals and up to three voices.
In contrast to these approaches, we do not aim to achieve
a perfect separation into individual voices. Instead, we are
mainly interested in characteristics that are reproducable
by a human singer. In this work we focus on the lead vo-
cals or solo instruments.

3 METHODOLOGY

3.1 Voice Separation

We apply a two-step filtering to reduce the impact of back-
ing instruments and voices in the audio recordings. First,
a band-path-filterfrom 300 Hz to 3000 Hz is used to re-
move some instrument components, while keeping most
of the lead voice. The second step exploits the spatial ar-
rangement of instruments and voices in the stereo mix and
could be described asinverse karaokeeffect. It is inspired
by thecenter pan removaltechnique used by most karaoke
machines to remove the lead voice from a typical rock/pop



song: One stereo channel is inverted and mixed with the
other one into a mono signal. The lead voice and solo in-
struments are usually centered in the stereo mix whereas
most instruments and backing vocals are out of center.
Applying the above mentioned transformation drastically
reduces the power level of the centered signals and thus
can be used to remove the lead voice.

Now the idea is to invert this effect, so that the pre-
processed version of a song yields a high portion of the
lead voice, while most other instruments are filtered out.
Unfortunately, there is no simple way to keep the cen-
ter pan. Inverting the karaoke result and mixing it with a
mono version of the original will not work. The Audacity
audio editor1 that we used for the pre-processing provides
a function callednoise profile. It derives a power spectrum
of frequencies from a noise track defining a noise signal
which can then be removed from any other track. This fil-
ter works well for removing monotonic noise, e.g. white
noise or growling. However, defining all the background
as noise, the noise profile becomes rather imprecise result-
ing in removal of foreground parts which yields warbling
artefacts. To reduce this effect, alocal noise profileis
defined as the noise profile of a narrow 2 s time window,
which is moved along the track with 1 s overlap.

3.2 Feature Selection and Extraction

In this work, we concentrate on the following small set of
manually selected features (as well as their1st and2nd

derivatives) that seem to be promising in terms of dis-
crimination and robustness:audio power (AP)[8], au-
dio fundamental frequency (AFF)[8], chroma [12], mel
frequency cepstral coefficients (MFCC)[11], andformant
frequencies (FF)[2]. For these features we empirically
determined a frame size and hopsize (i.e the span between
the starting times of two succeeding frames) of 30 ms in
preliminary experiments as optimal for the extraction. This
time span roughly corresponds to the length of a1
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assuming a common tempo of 70–120 beats-per-minute.
It should be the finest resolution for a melody track and is
a natural factor of the more likely note lengths,1
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, allowing a natural aggregation factor in the following
aggregation step and thus avoiding interpolation.

3.3 Aggregation and Discretization

The extracted features are converted into a symbolic rep-
resentation by reducing the number of possible values to
reveal identifiable and repeating patterns. We extend the
symbolic aggregate approximation (SAX)approach [10]
that usespiecewise aggregate approximation (PAA)[16]
for decomposing the time series into fixed length inter-
vals.2 The aggregated vectorC of lengthw for a time
seriesC of lengthn is computed as [10]

1 http://audacity.sourceforge.net/
2 We restrict ourselves to fixed interval lengths as we do not expect an

improvement by allowing a varying and adaptive interval length.
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cj , 0 < i ≤ n (1)

and normalized with respect to mean and standard devi-
ation. SAX uses a lookup table for discretization that
contains a symbol for each quantile of the value distri-
bution of the feature to guaranty an equally distributed al-
phabet. This lookup table is highly dependent on the dis-
tributions type of the feature to discretize. The values of
audio power, MFCC, fundamental and formant frequen-
cies are exponentially distributed whereas the values of
chroma bins are lognormal distributed. As the original
SAX only allowed Gaussian distributions, we added fur-
ther lookup tables and the distribution type as additional
parameter for the discretization process. Further, in SAX
the (edit) distance between symbols is defined as the abso-
lute difference between the centroids of the area they rep-
resent, approximating theabsolutedistance between the
values they have aggregated. However, as arelative, qual-
ity based distance was desired in the context of this work,
we defined consecutive symbols to be equidistant instead.

Following parameters have an impact in this step: the
aggregation factor, the alphabet size and the distribution
type. As mentioned in Section 3.2, the former is a natu-
ral number which results in a time span per symbol that
corresponds roughly to the common note lengths. Though
the PAA is capable of aggregating time series by rational
factor numbers, doing so would imply some interpolation.
The feature values are mapped to an alphabet, assuming
there is an optimal alphabet size for each feature which
has to be determined experimentally. The alphabet size
affects the resolution of the representation. Increasing the
alphabet size may veil patterns, whereas decreasing it re-
duces its discriminatory power. Finally, from the distri-
bution type the respective quantiles can be derived to be
used in for the symbol lookup table. Here, the global dis-
tribution of the feature values on all songs of the database
or a local one referring to an indivual song can be taken
into account. In the latter case, the symbols of the alpha-
bet for a specific feature would correspond to (slightly)
different value intervals depending on the particular song.
This could be a disadvantage but on the other hand it en-
sures that the alphabet is optimally utilized for each song.
Both options were tested in our experiments.

3.4 High-Level Patterns

For demonstration purposes, we also tried to derive high-
level patterns, describing generic shapes of a time series.
As there is no automatic way of identifying such patterns,
we restrict ourselves to the audio power since some pat-
terns can be defined intuitively. A Gaussian de-noising
filter with length twelve is applied, while each value de-
scribes a frame of 30 ms. From observation, four types of
patterns can be defined:Flat patternsrefer to sections of
silence or quiet background that have a low mean value
and a low variance, or lie between two elevations.Smooth
elevationshave a mean signal above a certain threshold



with only one peak, probably describing single syllables
or primary features that last for some frames.Toothy struc-
tures, are elevations with a mean signal above a certain
threshold and more than one peak, that probably occur,
when two or more smooth elevations are very close to each
other, so there is no flat section between them. All other
sections are classified asundefined or noisy regionsthat
can result from quiet singing or filtered out instruments.
Each pattern is stored along with its length. The distance
of two patterns is again determined by a lookup table, that
has been manually defined, but could also be optimized
by some machine learning technique for further improve-
ment.

3.5 Distance Computation

To compute the distance of the query and a song, well
established distance measures for string pattern matching
were used:edit distance (Levenshtein Distance)[9], con-
tinuous edit distance[7] andn-grams[1]. However, some
considerations had to be made in order to assure pitch in-
variance, which is necessary because users will most of-
ten not sing or hum with the right pitch. Here, the only
affected features are the fundamental frequency and the
chroma. For the former this is not a problem because the
symbols of the transformed signal do not refer to specific
pitches anymore but to frequency bands derived from a
pitch distribution. For the latter the problem can be over-
come by rotating the chroma bins during the distance com-
putation which is analogous to a transposition.

4 EXPERIMENTS

From a private collection, stereo recordings of 200 well-
known songs of pop, rock, beat and soul were selected to
form the test database.3 Six experiments have been con-
ducted on that database to assess the proposed approach:

(1) Querying with 150MIDI files , each containing sole-
ly the melody of a single song from the test database.

(2) Querying with 150humanized MIDI files, obtained
by altering tempo, pitch and pauses of the files from (1).

(3) Querying with 150hummed queries– each for a
different song – from a non-professional singer.

(4) Querying with 130sung queriesfrom 7 non-profes-
sional singers (multiple queries for several songs).

(5) Querying 10 songs withmodified recording snip-
petsas in (2) and an extra snippet from alive recording.

(6) Querying with thesung queries and additinal in-
formation on whether the query refers to the beginning,
the chorus or “anything else” of a song for boosting.

The queries were 10s long and transcribed as described
in Section 3. For each test scenario and parameter com-
bination two performance measures on all queries were
computed. We define theMean of Accuracy (MoA)as:

MoA =
1

n

n
∑

i=1

(

n − rank(ti)

n − 1

)

(2)

3 The extracted features can be made available. For a song list,see
http://irgroup.cs.uni-magdeburg.de/mir

MIDI Queries
ground truth humanized

MoA MRR MoA MRR

simple features

1st MFCC (MFCC1) 0.5965 0.0338 0.5678 0.0289

2nd-5th MFCC 0.6096 0.0735 0.5677 0.0252

Audio Power (AP) 0.6262 0.0574 0.5522 0.0495

Fundamental Freq. 0.6098 0.0494 0.5678 0.0289

1st Formant (FF1) 0.5398 0.0344 -- --

Chroma 0.6328 0.1242 0.6380 0.0618

1st derivatives

dAP 0.6237 0.0924 0.6189 0.0872

dChroma 0.5490 0.0320 -- --

high-level patterns 

HLP(AP) 0.5390 0.0350 -- --

feature combinations

(AP, dAP) 0.6708 0.0764 0.6085 0.0826

(AP, dAP, Chroma) 0.6979 0.1426 0.6439 0.0820

Human Queries
hummed sung

MoA MRR MoA MRR

simple features

1st MFCC (MFCC1) 0.5867 0.0393 0.7325 0.1950

2nd-5th MFCC 0.5361 0.0376 0.6325 0.1307

Audio Power (AP) 0.6127 0.0549 0.6794 0.1558

Fundamental Freq. 0.5113 0.0362 0.5586 0.0585

1st Formant (FF1) 0.5696 0.0251 0.6351 0.0821

Chroma 0.6095 0.0312 0.5879 0.1288

1st derivatives

dMFCC1 0.5574 0.0641 0.6062 0.1032

high-level patterns 

HLP(AP) 0.5970 0.0588 0.6925 0.1454

feature combinations

(MFCC1, dMFCC1) 0.5796 0.0456 0.7552 0.2164

(MFCC1, FF1) -- -- 0.7447 0.2457

(MFCC1, dMFCC1, FF1) -- -- 0.7635 0.2329

Table 1. Selected results for experiments (1)–(4). Re-
markable values are highlighted. In case of missing val-
ues, the feature or combination was not further examined
because no improvement was expected.

It depicts the average rank at which the target was found
for each query with a value of0.5 describing random,0.57

to 0.67 mediocre, and above0.67 good accuracy. The
Mean Reciprocal Rank (MRR)as used in the MIREX 2006
QBSH known item retrieval task4 is defined as:

MRR =
1

n

n
∑

i=1

(

1

rank(ti)

)

(3)

and gives a hint of how often the target reaches one of
the first ranks. It is highly depending on the size of the
database. A good MRR on 200 songs would be above0.2.

5 RESULTS

Generally, the continuous edit distance, an aggregation
level of 4 and an alphabet size of 12 showed the best re-
sults, except for chroma, with only 3 symbols per bin. Us-
ing a local feature distribution for each song to compute
the symbol lookup table yielded better results than using
a global one. For the best parameter combination, Table 1
shows the average performance values for tests (1)–(4).

MIDI queries: Audio power and chroma were ade-
quate working features for these tests. Especially, chroma
compensated the difficulties introduced in test (2). A com-
bination with the1st derivative of the audio power led to a
remarkable performance gain, probably because of added

4 http://www.music-ir.org/mirex2006/



context information. However, the higher-level patterns
adding even more context failed but since they are de-
signed for real recordings, this result is no setback. Simi-
larly, the formant frequencies performed as poorly as ex-
pected, for they are bound to vowels and consonants.

Hummed and sung queries:The 1st MFCC proved
to be the best standalone feature and performed for sung
queries even better than the audio power. This is not sur-
prising since singers try to reproduce what they have heard.
Combining it with its derivate and the1st formant yielded
the best results. The remaining MFCCs are not so discrim-
inative as they describe the shape of the spectrum which
contains more artefacts from instruments. Likewise, only
the 1st formant frequency yields acceptable results. Es-
pecially remarkable is the performance of the higher-level
patterns that is equal or slightly better than the simple au-
dio power feature and can still be improved by refined pat-
terns (see also 3.4). On the other hand, the fundamental
frequency was only slightly better than random, possibly
because of extraction errors.

Control Condition: Transposition and levelling (rais-
ing the audio power for quieter while keeping the same
level for louder sections) had no impact. For these and
unmodified snippets the target song was always ranked
highest. Tempo changes by up to10% had only a negli-
gible impact of less than1%. Only shortening sections of
silence to 200 ms and 100 ms caused a drop of the MoA to
0.89 and0.76 respectively. For the live version the MoA
was0.79. Thus, the proposed approach shows robustness
in case of reasonable distortions of the query.

Using Additional Information: Boosting beginnings
by 10% and each possible chorus by5% increased the
MoA to 0.79 and the MRR to 0.3. In23.3% of all queries
the target song was ranked first, for30% it was amongst
the top 3 and for41.1% in the top 10. This could be sig-
nificantly improved by using more sophisticated methods,
e.g. for segmentation or chorus detection.

6 CONCLUSION

In this paper we presented an approach for QBSH on real
audio recordings that showed some promising results in
first experiments and still leaves much room for improve-
ments such as filtering out drum beats from the center pan
– as tracks with a high beat portion tended to be harder
to find – or using more robust and elaborate melody ex-
traction algorithms [3]. We demonstrated that higher-level
patterns perform at least equally well in comparison to
simple feature values. A method for automatically learn-
ing the characteristic higher-level patterns from a set of
time series for a feature would allow to further apply and
investigate higher-level patterns that might not only im-
prove retrieval performance but also significantly speed up
processing as the signal information is even further com-
pressed. This would not only be interesting for QBSH, but
for the whole pattern matching domain. This way, QBSH
on real audio data has a high chance to become a standard
application in many multimedia retrieval scenarios.

References

[1] J.-M. Batke, G. Eisenberg, P. Weishaupt, and
T. Sikora. Evaluation of distance measures for
MPEG-7 melody contours. InInt. Workshop on Mul-
timedia Signal Processing, 2004.

[2] P. R. Cook.Real Sound Synthesis for Interactive Ap-
plications. A. K. Peters, Ltd., 2002.

[3] K. Dressler. Sinusoidal extraction using an efficient
implementation of a multi-resolution FFT. InProc.
of the Int. Conf. on Digital Audio Effects (DAFx’06),
2006.

[4] S. Dubnov, J. Tabrikian, and M. Arnon-Targan.
Speech source separation in convolutive envi-
ronments using space-time-frequency analysis.
EURASIP J. on Applied Signal Processing, 2006.

[5] D. Gerhard. Pitch track target deviation in natural
singing. InProc. of ISMIR’05, 2005.

[6] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith.
Query by humming: Musical information retrieval
in an audio database. InACM Multimedia, 1995.

[7] N. Jacobs, F. V. den Borre, L. Smeets, E. Schoofs,
and H. Blockeel. A symbolic approach to music
recognition, 2003.

[8] H.-G. Kim, N. Moreau, and T. Sikora.MPEG-7 Au-
dio and Beyond: Audio Content Indexing and Re-
trieval. John Wiley & Sons, 2005.

[9] V. I. Levenshtein. Binary codes capable of correcting
spurious insertions and deletions of ones.Problems
of Information Transmission, 1:8–17, 1965.

[10] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A sym-
bolic representation of time series, with implications
for streaming algorithms. InProc. of the 8th ACM
SIGMOD workshop on Research issues in data min-
ing and knowledge discovery (DMKD’03), 2003.

[11] B. Logan. Mel frequency cepstral coefficients for
music modeling. InProc. of ISMIR’00, 2000.

[12] M. Müller, F. Kurth, and M. Clausen. Audio match-
ing via chroma-based statistical features. InProc. of
ISMIR’05, 2005.

[13] R. P. Paiva. On the detection of melody notes in
polyphonic audio. InProc. of ISMIR’05, 2005.

[14] W.-H. Tsai, H.-M. Yu, and H.-M. Wang. Query-by-
example technique for retrieving cover versions of
popular songs with similar melodies. InProc. of IS-
MIR’05, 2005.

[15] J. Woodruff and B. Pardo. Using pitch, ampli-
tude modulation, and spatial cues for separation of
harmonic instruments from stereo music recordings.
EURASIP J. on Adv. in Signal Processing, 2007.

[16] B.-K. Yi and C. Faloutsos. Fast time sequence index-
ing for arbitrary lp norms. InProc. of the 26th Int.
Conf. on Very Large Data Bases (VLDB’00), 2000.

[17] H.-M. Yu, W.-H. Tsai, and H.-M. Wang. A query-by-
singing technique for retrieving polyphonic objects
of popular music. InProc. of the 2nd Asia Informa-
tion Retrieval Symposium (AIRS’05), 2005.


