
AN APPLICATION OF EMPIRICAL MODE DECOMPOSITION ON
TEMPO INDUCTION FROM MUSIC RECORDINGS

Aggelos Pikrakis and Sergios Theodoridis
Dept. of Informatics and Telecommunications

University of Athens, Greece
{pikrakis, stheodor}@di.uoa.gr, http://www.di.uoa.gr/dsp

ABSTRACT

This paper presents an application of Empirical Mode De-
composition (EMD) on the induction of notated tempo
from music recordings. At a first stage, EMD is employed
as a means to segment music recordings into segments
that exhibit similar rhythmic characteristics. At a second
stage, EMD is used in order to analyze the diagonals of
the Self-Similarity Matrix of each segment, so as to esti-
mate the tempo of the recording. The proposed method
has been employed on various music genres with music
meters of2

4
, 3

4
and 4

4
. Tempo has been assumed to re-

main approximately constant throughout each recording,
ranging from60bpm up to220bpm.

1 INTRODUCTION

Tempo extraction is generally acknowledged to be useful
in a variety of Music Information Retrieval applications
and has been often studied in close relationship with beat
tracking. A recently published study and comparison of
well known algorithms is presented in [1].

Most proposed approaches assume that tempo remains
approximately constant throughout the recording which is
also the case with our method. In addition, our method
focuses on music recordings where music meter can be
one of 2

4
, 3

4
and 4

4
, with tempo ranging from60bpm up to

220bpm. This paper is an attempt to apply a relatively new
transform, called Empirical Mode Decomposition (EMD),
in the context of tempo extraction. EMD was originally
introduced in the context of non-stationary time-series a-
nalysis [2] and its relationship with dyadic filter banks was
later investigated [3]. The origin of EMD is algorithmic in
nature and lacks a solid theoretical framework. To bridge
this theoretical gap, certain attempts have been made re-
cently [4]. This fact has not, however, discouraged re-
searchers from applying EMD especially in the context of
geophysical and biosignal processing. To our knowledge,
the EMD technique has so far met very limited recogni-
tion in the context of Music Information Retrieval [5].

In this paper EMD is used in conjunction with Self
Similarity Analysis of music recordings [6] in order to
achieve tempo induction. Previous work in the field has
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shown that the diagonals of the Self Similarity Matrix can
reveal signal periodicities and that tempo also manifests
itself as a signal periodicity, e.g., [7]. In particular, ifthe
mean value of each diagonal is computed, then the result-
ing sequence of mean values exhibits certain minima that
correspond to inherent signal periodicities. We propose
that if EMD is used to decompose this sequence, signal
periodicities manifest themselves more clearly in the re-
sulting components. By processing these components, it
is possible a) to achieve a rough segmentation of a mu-
sic recording into clusters of segments that exhibit similar
rhythmic characteristics and b) to extract reliable tempo
estimates from the generated clusters of segments.

The reason we chose EMD is because, by its algorith-
mic nature, it considers signals at the level of their local
oscillations and examines the evolution of a signal be-
tween consecutive local extrema, e.g., consecutive local
minima. This fits nicely with the nature of the sequence of
mean values of diagonals that is extracted from the SSM
of music recordings, if this sequence is treated as a signal.

The paper is organized as follows: the next section de-
scribes the feature extraction stage, Section 3 proposes
how EMD can be used to provide a rough segmentation
of the recording and Section 4 describes how EMD can
be applied on the resulting segments in order to achieve
tempo induction. Results are presented in Ssection 5; con-
clusions and ideas for future work are given in Section 6.

2 FEATURE EXTRACTION

At a first step, the music recording is split into overlap-
ping long-term segments. Each long-term segment is5
seconds long with4 seconds overlap between successive
windows. The energy envelop of each long-term window
is then extracted by means of a short-term processing tech-
nique. Suggested values for the length,ws and hop sizehs

of the short-term window are95ms and5ms respectively.
The extracted energy envelop is then used to generate the
Self-Similarity Matrix (SSM) of each segment [6]. To this
end, the Euclidean Distance function is used as the simi-
larity metric.

Once the SSM is generated, the mean value of each di-
agonal is computed. LetB(k) denote the mean value of
thek-th diagonal,k = 1 . . . D, whereD is the total num-
ber of diagonals. IfB(k) is treated as a function ofk,



it can be observed that signal periodicities appear as lo-
cal minima (valleys) ofB. This can be seen in Figure 1.
The deeper a valley, the stronger the periodicity. In the
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Figure 1. Plot of B for a segment stemming from a2
4

recording with notated tempo≈81.5 bpm. For conve-
nience, only periodicities up to3 seconds are shown. It
can be seen that notated tempo does not correspond to the
deepest valley.

sequel, we will also refer to indexk as the “lag” index.
The relative positions of lags that correspond to valleys
reveal useful information about the rhythmic characteris-
tics of a segment. Obviously, ifB(k1) is a local mini-
mum, the corresponding periodicity, measured in seconds,
is (k1 − 1) ∗ hs.

Previous work in the field ([7]) has suggested that no-
tated tempo also manifests itself as a periodicity, i.e., a
valley ofB, although not always the deepest one, as is the
case in Figure 1. In the sequel, we treat the functionB as
the “rhythmic signature” of the long-term segment from
which it is extracted.

3 SIGNATURE CLUSTERING USING EMD

Our next goal is to group“rhythmic signatures”into clus-
ters and compute the mean signature of each cluster. This
is because reliable tempo estimates cannot be extracted
from all signatures, due to the fact that certain regions of
a music recording contain introductory or transitive parts
that distort periodicities. If a number of signatures form
a cluster, this is indicative of an underlying rhythmic sim-
ilarity and it is expected that it will yield more reliable
tempo estimates.

In order to perform clustering, EMD is applied sepa-
rately on each signature. The basic steps of EMD, given a
signalx(t) can be summarized as follows [2], [3]:

1. Identify all extrema of x(t)

2. Interpolate between minima (resp. maxima), en-
ding up with some “envelope”emin(t) (respectively
emax(t)).

3. Compute the averagea(t) = (emin(t)+emax(t))/2

4. Extract the detaild(t) = x(t)−a(t), also known as
the IMF. Iterate on the residuala(t) until a stopping
criterion is satisfied, i.e.,a(t) is reasonably zero ev-
erywhere [3].

Let Bm denote the signature of them-th long-term seg-
ment,m = 1 . . . M , whereM is the total number of long-
term segments. Ifcm is the number of components (IMFs)
generated by the EMD forBm, then, at a first step, all
Bm’s that have generated the same number of components
are grouped to form a single cluster. For example, the sig-
nature in Figure 1 is decomposed into5 components and
will be part of a cluster where all signatures have5 com-
ponents. If no other signature yields five components, this
signature will form a cluster of its own.

At a next step, all signatures in a cluster are further
examined in order to form sub-clusters. To this end, let
IMFi be thei-th component of a signatureBm that has
been assigned to some cluster, wherei = 1 . . . mK and
mK is the number of components ofBm. By the nature
of EMD, IMFmK

(i.e., the last component, also known
as the residual) only captures the slowly varying nature
of the signature and does not provide any useful informa-
tion about inherent periodicities. This is why we choose
to ignore this component while refining the clusters that
have been already formed. To continue, the energy of
all remainingIMFi’s is computed and components are
sorted in descending order, according to their energy val-
ues. The resulting order is then used to form sub-clusters
within every cluster, i.e. segments that yield the same
order of components are considered to be similar. For
the example of Figure 1, the components (excluding the
last one) are ordered in terms of energy values as follows:
{2nd, 3rd, 4th, 1st}.

Figures 2 and 3 show the two components with higher
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Figure 2. The second component of the signature in Fi-
gure 1.

energy values for the example in Figure 1. When this re-
fined clustering is complete, the mean signature for each
cluster is computed by simply averaging theBm’s of each
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Figure 3. The third component of the signature in Figure
1.

cluster. This is possible because all signatures have the
same length due to the fixed size of the long-term win-
dow. At the end of this stage, the initial music recording
has been split into regions that are determined by the re-
spective clusters. Certain regions may, of course, contain
non-adjacent segments.

4 TEMPO INDUCTION

We then focus on clusters that consist of more than two
signatures. The mean signatureRl of the l-th cluster is
then used to provide two separate tempo estimates for the
segments belonging to the respective cluster. To this end,
Rl is decomposed using EMD. The energy of each com-
ponent ofRl is computed and the resulting components
are again sorted in descending order, according to their
energy values. Then, we focus on the two components
that possess the higher energy values and from each com-
ponent a tempo estimate is extracted, thus yielding two
tempo estimates per cluster. For convenience, let us as-
sume that the components in Figures 2 and 3 are the two
high-energy components of a mean signatureR. It can
be observed, that the component in Figure 2 exhibits two
dominant periodicities inside the tempo limits, whereas in
the component of Figure 3 only one periodicity appears
inside the tempo region and this periodicity refers to the
notated tempo value. By the nature of EMD, ifIMFi1

andIMFi2
are two components withi1 < i2, IMFi2

is
expected to capture longer periodicities. Therefore, it is
not a surprise that the presence of the periodicity of the
1

8
note in Figure 2 is weakened in Figure 3, whereas the

opposite holds for the longer periodicity of the1

4
note.

In order to extract a tempo estimate from each one of
the two components, the following procedure is applied
on each component:

1. All valleys of the component are detected, including
valleys to the right of the tempo region.

2. Each valley in the tempo region, is then examined

against all valleys with larger lags. Letkm be the
lag of a valley in the tempo region andki be the lag
of the valley against which it is examined. The ratio
ki

km

is then computed. If the roundoff error of this
ratio is smaller than0.1, thenk2 is considered to be
a multiple ofkm, i.e.,km is treated as a fundamental
periodicity andki as its multiple. This procedure is
repeated for all possible pairs, yielding a setLkm

of multiples (for lagkm in the tempo region). In
the end, the following sum is computed forkm, i.e.,
Pkm

= ckm
+

∑
∀ki∈Lkm

cki
, wherecki

is the value
of the EMD component for lagki.

3. The above step is repeated for all valleys that fall
within the allowable tempo limits. The valley with
the highest sum is selected as the winner and the
corresponding lag as the periodicity of the tempo
estimate.

After tempo extraction has been completed for all clus-
ters, all tempo estimates are placed in a histogram and the
tempo corresponding to the highest peak is selected as the
tempo of the music recording. It is often the case, that
the histogram exhibits lobes around peaks because EMD
tends to slightly displace periodicities. This is why an av-
eraging of the lobes (histogram smoothing) is needed prior
to selecting the highest peak.

5 RESULTS

The proposed method has been applied on a variety of mu-
sic genres, including western pop/rock music and Greek
Traditional music. A total of400 recordings were studied.
The tempo of these recordings was notated from musicol-
ogists. The complete list of the titles of recordings, along
with the respective notated tempi is available at
http://www.di.uoa.gr/pikrakis/tempo.html.
Recordings were chosen on the basis of the following cri-
teria:

• Notated tempo remains approximately constant th-
roughout each recording. The tempo ranges from
60bpm up to220bpm.

• Music meter remains constant throughout each re-
cording and can be one of the following:2

4
, 3

4
and

4

4
.

• Instrumentation varies, including non-percussive re-
cordings and absence of vocals.

Table 1 provides a rough distribution of recordings among
genres and music meters.

5.1 Performance of the clustering scheme

As it was described in Section 3, we choose to estimate
tempo from clusters consisting of at least3 signatures. At
an average,25% of the signatures in each audio record-
ing is grouped into such clusters. This suggests that, on
average,25% of the length of an audio recording takes



Music Meter
Broad Music Genre 2

4

3

4

4

4

Contemporary Pop/Rock 20% 5% 40%
Traditional Greek Folk music 10% 15% 10%

Table 1. Distribution of music tracks among genres and
music meters.

part in the tempo extraction process. This is because the
clustering criteria are quite strict, in the sense that cer-
tain components returned by the EMD contain a very low
percentage of the energy of the signature and could actu-
ally be omitted, thus loosening the clustering criteria. For
the recordings that we studied, the number of signatures
in these clusters can vary significantly depending on the
recording, with large clusters containing approximately
20 signatures.

5.2 Performance of the tempo extraction algorithm

When the proposed method yields correct tempo estima-
tes, the average accuracy of the extracted tempo value
lies within 3.5% of the respective notated tempo value.
This is due to histogram smoothing (see Section 4) and
the displacement of valleys that is ususally more appar-
ent in EMD components that capture longer periodicities.
Table 2 summarizes the cases where the algorithm fails
to return the notated tempo (percentages refer to the to-
tal number of recordings of the music corpus). It can

Music Meter
Broad Music Genre 2

4

3

4

4

4

Contemp. Pop/Rock (2xbpm) 3% 0% 2%
Contemp. Pop/Rock (1

2
bpm) 1.5% 0% 3%

Contemp. Pop/Rock (3xbpm) 0 1.5% 0%
Greek Folk Dances (2xbpm) 1% 0% 3%
Greek Folk Dances (1

2
bpm) 2% 0% 2%

Greek Folk Dances (3xbpm) 0% 0% 0%
Greek Folk Dances (1.5xbpm) 2% 0% 0%

Table 2. Distribution of tempo induction failures.

be seen that in the majority of cases, the returned tempo
value is twice or half the notated value, with the exception
of fast contemporary music recordings of music meter3

4
,

where the returned value is three times the notated value,
i.e., coincides with the periodicity that corresponds to a
whole music meter. Another interesting case of confusion
stems from Greek Folk music of meter2

4
where the dotted

quarter-note is often perceived by humans as a dominant
periodicity. For certain recordings of this particular type
of music, our method also returns as notated tempo the
periodicity of the dotted quarter-note. Table 2 suggests
that the notated tempo was successfully inducted (within
a 3.5% accuracy) from79% of the recordings. It has to
be noticed that, in the vast majority of failures, notated
tempo is present in the histogram of tempo values (prior
to selecting the winner peak) as the second highest peak

and quite often its height is very close to the highest peak.
The study in [1] suggests that there exists an upper bound
of approximately80% for such algorithms. However, it
has to be noticed that the algorithms in [1] were compared
on a different dataset and in addition our paper treats a
subset of music meters encountered in [1]. Since this is
the first time our work is reported, further improvements
are expected by refinements in the clustering stage.

6 CONCLUSIONS

This paper presented the application of EMD on tempo ex-
traction of music recordings. EMD was used in a twofold
manner: a) as a means to generate similarities among rhy-
thmic signatures, thus yielding a rough audio segmenta-
tion and b) as a decomposition whose components empha-
size periodicities that are related with the rhythmic char-
acteristics of the music recording. The results are very en-
couraging, indicating that EMD is a very promising tool
for Music Information Retrieval tasks. In the future, we
will revisit the clustering criteria so that the segmentation
stage covers a larger percent of the music recording and
will also investigate extending our approach to non-binary
meters such as7

8
, 9

8
and 5

4
. We will also study the perfor-

mance of the method in connection with perceived tempo
values from music recordings.
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