
FUZZY SONG SETS FOR MUSIC WAREHOUSES

François Deliège and Torben Bach Pedersen
Aalborg University

Department of Computer Science

ABSTRACT

The emergence of music recommendation systems calls
for the development of new data management technolo-
gies able to query vast music collections. In this paper,
we define fuzzy song sets and an algebra to manipulate
them. We present a music warehouse prototype able to
perform efficient nearest neighbor searches in an arbitrary
song similarity space. Using fuzzy song sets, the music
warehouse offers a practical solution to the all musical
data management scenarios provided: song comparisons,
user musical preferences and user feedback. We investi-
gate three practical approaches to tackle the storage issues
of fuzzy song sets: tables, arrays and bitmaps. Finally, we
confront theoretical estimates to concrete implementation
results and prove that, from a storage perspective, arrays
and bitmaps are both effective data structure solutions.

1 INTRODUCTION

Music recommendation systems have recently gained a
tremendous popularity. Music lovers discover new ways
of searching and sharing their favorite music. However, at
such growing speed, the database element of any recom-
mendation systems will soon become a bottleneck. Hence,
appropriate musical data management tools are needed.
Music Warehouses (MWs) are dedicated data warehouses
optimized for the storage and analysis of music content.
They are currently developed to respond to this is call.

The contributions of this paper are threefold. First, mo-
tivated by a case study [2], we propose three generic usage
scenarios illustrating the current demands in musical data
management. To answer these demands, we define fuzzy
song sets and develop an algebra. Second, to demonstrate
the usefulness of fuzzy song sets, a prototypical MW com-
posed of two multidimensional cubes is presented. For
each cube, concrete examples of queries inspired by the
usage scenarios are provided. Fuzzy song sets prove to be
an adequate data structure to manipulate musical informa-
tion. Third, we discuss three solutions for storing fuzzy
song sets and we construct theoretical estimates. A practi-
cal implementation shows that the structure overhead rep-
resents a major part of the storage consumption and that
two solutions are viable for very large music collections.

A lot of attention was drawn to enable music lovers to
explore individual music collections [6, 7]. Within this
context, several research projects have been conducted in

c© 2007 Austrian Computer Society (OCG).

order to pursue a suitable similarity measure for music [8,
9]. A music data model, an algebra and a query lan-
guage are introduced by Wang et al. [10]. However, the
model lacks an adequate framework to perform similarity
searches. Jensen et al. address this issue and offer a model
that supports dimension hierarchies [5]. This paper tack-
les the storage issues when the scalability does not remain
limited to a few hundred thousands songs.

Nearest neighbor searches are a popular topic in the
database community for their usage in content based re-
trieval and similarity searches. Work on both high and low
dimensional spaces can be found in the literature. How-
ever, existing indexing techniques do not apply to high
dimensional musical features due to the subjective nature
of musical perception, i.e., similarities do not form a met-
ric. Work on indexes for non-metric space is presented in
the literature [12]. Though the similarity function is non-
metric, it remains confined in a pair of lower and upper
bounds specifically constructed. MWs, however, should
not be tightened to any similarity function.

The use of bitmaps in multidimensional databases is
frequent. Different compression schemes exist to reduce
the storage consumption of bitmaps. The Word Aligned
Hybrid [11], WAH, and the Byte aligned Bitmap Com-
pression [1], BBC, are two very common compression al-
gorithms. BBC offers a very good compression ratio and
performs bitwise logical operations efficiently. WAH per-
forms bitwise operations much faster than BBC but con-
sumes more storage space.

The remainder of this paper is organized as follows.
Section 2 presents three search for information scenar-
ios that could be treated by music recommendation sys-
tems. We proceed in Section 3 by defining fuzzy song
sets and an algebra. In Section 4, two prototypical mul-
tidimensional cubes are presented and use of the algebra
is illustrated through queries examples. Storage solutions
are discussed in Section 5 and implementation results are
shown in Section 6. Finally, we conclude in Section 7.

2 USAGE SCENARIO

Three examples of data obtained from music recommen-
dations system are presented below.
The User Feedback The user’s opinion about the previ-
ously suggested songs is a valuable piece of information.
For each song played, the user can grade if the sugges-
tion was wise based on the criteria provided, referred to
as the query context. The query context can be the artist
similarity, the genre similarity, the beat similarity, or any



other similarity measure available to the system to per-
form a selection. The grading reflects if a proposed song
was relevant in the given query context. For example, it
is possible to retrieve the list of songs John liked when he
asked for a list of rock songs or the ten songs Alice liked
the most when she asked for songs similar to “U2: Where
the streets have no name”.

Typically, the data obtained should contain: (i) a refer-
ence to the profile of a registered user in the system, (ii) a
reference to a query context provided by the user, and (iii)
a list of songs and marks so that for each song proposed,
the user can grade how much he liked a particular song be-
ing part of the proposition. Grades are given on a per song
basis, they reflect if the user believes the song deserved
its place among the suggested list of songs: strongly dis-
agrees, neutral, likes, and loves. While the grade must not
be a numerical value, we assume in the rest of the article
that a mapping function to [0, 1] has to be provided. When
a user believes a song definitely deserves its place in the
list, a high mark should be given.

The User Preferences Some songs should never be pro-
posed to the user independently of the query context. On
the contrary, some songs should be proposed more often
as they are marked as the user’s favorites. Therefore, a
user should be able to grade any song on a fan-scale rang-
ing from “I love it” to “I hate it” depending if he likes the
song or not. For example, the music recommendation sys-
tem database should be able to retrieve the list of songs
Maria likes, and the songs she hates the most.

The User Musical Preferences contains two different
pieces of information: (i) a reference to a user registered,
and (ii) a list of songs associated with their respective
grades on the fan-scale. If Rico hates a song, a low value
should be used; if he loves it, a value close to 1 should
be used instead. Musical profiles modify the frequency a
given song appears in a music recommendation list.

The Songs Comparisons Finally, the music recommen-
dation system should be able to compare any pair of songs.
For each pair of songs, the system is able to provide a sim-
ilarity value with respect to a given aspect of the song. The
similarity values should indicate if two songs are “very
different”, “different”, “somewhat similar”, or “very sim-
ilar” from the perspective of an given aspect of the song.
For example, the song “We will rock you” by Queen is
“very different” from the song “Twinkle, twinkle little star”
with respect to their genre similarity aspect.

To compare songs, three pieces of information are nec-
essary: (i) a reference to the first song of the pair being
compared, (ii) a reference to the second song of the pair,
(iii) a reference to the definition of a similarity function
that maps to any pair of songs to a similarity value, and
(iv) the similarity value reflecting how similar the two
songs are. If two songs are very different, a value close
to 0 should be used, if they are very similar, a value close
to 1 should be used instead.

To keep the scenario as generic as possible, very few
assumptions are made about the properties of the func-
tions used to compute the similarity values. In particular,

the similarity functions do not have to fulfill the mathe-
matical properties of a metric, e.g., the non-negativity, the
identity of indiscernibles, the triangular inequality, and the
symmetry properties.

3 AN ALGEBRA FOR FUZZY SONG SETS

In this section, we introduce song sets as well as operators
and functions to manipulate them.

Let X be the set of all songs. Then, a fuzzy song set,
A, is a fuzzy set defined over X such that

A = {µA(x)/x : x ∈ X,µA(x) ∈ [0, 1]} (1)

and is defined as a set of pairs µA(x)/x, where x is a
song, µA(x), referred to as the membership degree of x,
is a real number belonging to [0, 1], and / denotes the as-
sociation of the two values as commonly expressed in the
fuzzy logic literature [3]. µA(x) = 0 when song x does
not belong to A, and µA(x) = 1 when x completely be-
longs to A.

3.1 Operators

The following operators are classically used in order to
manipulate song sets. They form a closed algebra.

equality: Let A and B be two fuzzy song sets. A is equal
to B iff for all song the membership degree of a song in A
is equal to the membership degree of the same song in B.

A = B ⇔ ∀x ∈ X,µA(x) = µB(x) (2)

subset: LetA andB be two fuzzy song sets. A is included
in B iff for all song, the membership degree a song in A
is lower than the membership degree of the same song in
B.

A ⊆ B ⇔ ∀x ∈ X,µA(x) ≤ µB(x) (3)

Note that the empty fuzzy song set defined with the null
membership function, i.e., ∀x ∈ X,µ(x) = 0, is a subset
of all fuzzy sets.

union: Let A and B be two fuzzy song sets over X . The
union of A and B is a fuzzy song set with, for each song,
a membership degree equal to the maximum membership
degree associated to that song in A and B.

A ∪B = {µ(A∪B)(x)/x}
µ(A∪B)(x) = max(µA(x), µB(x))

(4)

intersection: Let A and B be two fuzzy sets over X . The
intersection of A and B is a fuzzy song set with, for each
song, a membership degree equal to the minimum mem-
bership degree associated to that song in A and B.

A ∩B = {µ(A∩B)(x)/x}
µ(A∩B)(x) = min(µA(x), µB(x))

(5)

negation: Let A be a fuzzy sets over X. The negation of
A is a fuzzy song set with the membership degree of each
song equal to its symmetric value on the interval [0, 1].

¬A = {1− µA(x)/x} (6)



The following new operators are introduced specifi-
cally to manipulate song sets.

reduction: Let A be a fuzzy set over X . The reduction of
A is a subset of A such that membership degrees smaller
than α are set to 0.

Reduceα(A) = {µAα(x)/x}

µAα(x) =
{
µA(x) if µA(x) ≥ α,
0 if µA(x) < α

(7)

The reduction operator changes the membership degree of
songs below a given threshold to 0. It allows the construc-
tion of more complex operators that allow the reducing
the membership degree granularity over ranges of mem-
bership degrees.

Topk: Let A be a fuzzy set over X . The Topk subset
of A is a fuzzy song with the membership degree of all
elements not having the k highest membership degree set
to 0 and the membership degree of the k highest elements
of A set to their respective membership degree in A.

Topk(A) = {µ
Âk

(xi)/xi|
∀xi, xj ∈ X, 1 ≤ i < j, µA(xi) ≥ µA(xj)}

µ
Âk

(xi) =
{
µA(xi) if i ≤ k,
0 otherwise

(8)

Note that the Topk subset ofA is not unique, e.g., when
all elements have an identical membership degree. The
Topk operator returns a fuzzy song set with all member-
ship degrees set to zero except for k elements with the
highest membership degrees that remain unchanged. Topk
is a cornerstone for the development of complex operators
based on relative ordering of the membership degrees.

average: LetA1, . . . , Ai be i fuzzy song sets. The average
of A1, . . . , Ai is a fuzzy song set that assigns to each song
a membership degree equal to the arithmetic mean of the
membership degrees of that song in the given sets.

Avg(A1, . . . , Ai) = {µavg(A1,...,Ai)(x)/x}

µAvg(A1,...,Ai)(x) =

i∑
j=1

µAj (x)

i

(9)

The average operator in fuzzy sets is the pendant of the
common average operator and is very useful to aggregate
data, a very common operation in data warehousing in or-
der to gain some overview over large datasets.

3.2 Defuzification Functions

The following functions are defined on song sets. They
extract information from the song sets to real values or
crisp sets.

support: The support of A is the crisp subset of X that
includes all the elements having a non-zero membership
degree in A.

Support(A) = {x ∈ X : µA(x) > 0} (10)

All songs

Artist

Publication decade

Song ID

Publisher

Publication year Subgenre

Genre

Album

All similarity functions

Similarity function ID

Similarity function group

Similarity dimensionSong dimension

Beat

Figure 1. Closest Songs Cube Dimensions

cardinality: The cardinality of A is the sum of the mem-
bership degrees of all its elements.

#A =
∑
x∈X

µA(x) (11)

4 THE MUSIC WAREHOUSE CUBES

In this section, we present two data cubes to store the in-
formation presented in the scenarios. For each cube, the
fuzzy song sets are used conformingly to Section 3.

4.1 The Closest Songs Cube
The closest songs cube provides a set of the closest songs
from a seed song with respect to a similarity function. For
each seed song and for each similarity function, the closest
songs are stored using a fuzzy song set. The notion of
similarity is represented by the fuzzy song set membership
degree. The closest songs take a high membership degree
while the farthest songs have a low membership degree.

The data cube has a song dimension and a similarity
dimension. Both dimensions have a hierarchy as illus-
trated in Figure 1. The cube is composed of references to
each dimension and a fuzzy song set. Typical queries are
making use of the intersection, union, and reduction op-
erators. The queries can be performed on the song seeds
using pieces of information such as the artist or the cre-
ation year. Closest Songs Cube usage examples based on
data in Table 1 are presented below.

In the following examples, we assume that fuzzy song
sets and the algebra have been implemented in an abstract
SQL datatype, called FSSET, using object-relational ex-
tensibility functionality like found in PostgreSQL [4].

Example 1 The 3 closest songs to song: “One” by U2
with respect the beat or the rock similarity:
SELECT SUPPORT(TOP 3(UNION(closest songs)))
FROM song AS a, similarity AS b, closest songs AS c
WHERE a.title = ’One’ AND a.artist = ’U2’
AND (b.sim func = ’beat’ OR b.sim func = ’rock’)
AND b.sim id = c.sim id
AND a.song id = c.song id;

The use of hierarchies facilitates the use of aggregate
functions. The following example illustrates the usage of
the song dimension hierarchy to find songs similar to the
ones sung by a given artist.

Example 2 The songs that are very similar with respect
to their beat to the songs sung by U2:
SELECT SUPPORT(REDUCE 0.9(AVG(closest songs)))
FROM song AS a, similarity AS b, closest songs AS c
WHERE a.artist = ’U2’ AND b.sim func = ’beat’
AND b.sim id = c.sim id AND a.song id = c.song id;



Song dimension

song id title artist Jazz Rock Beat
1 We will rock you Queen Low High Medium
2 One U2 Low Medium Medium
3 Hips Don’t Lie Shakira Low Low High

Similarity function dimension

sim id sim func sim group
1 Rock Acoustic
2 Jazz Acoustic
3 Beat Acoustic
4 Artist Editorial

Closest songs fact

song id sim id closest songs
1 1 { 1/1; 0.5/2; 0/3 }
2 1 { 1/2; 0.3/1; 0.2/3 }
3 1 { 1/3; 0.6/2; 0.4/1 }
1 2 { 1/1; 0.2/2; 0.1/3 }
2 2 { 1/2; 0.9/1; 0.2/3 }
3 2 { 1/3; 0.8/2; 0.7/1 }

Table 1. Song Comparisons Cube Data

User dimension

user country age favorite songs
John USA 52 { 0.8/1; 0.6/2; 0.3/3 }
Alice Spain 41 { 0.9/2; 0.5/1; 0.3/3 }
Maria Greece 28 { 0.6/1; 0.3/2; 0.1/3 }
Bob Denmark 22 { 0.1/1; 0.7/2; 0.7/3 }

Query dimension

query id query
1 return some rock music
2 return some traditional music
3 return some latin american music

User Feedback fact

user query id feedback
John 1 { 1/1; 0.5/2; 0/3 }
John 2 { 1/2; 0.3/1; 0.2/3 }
Alice 1 { 1/3; 0.6/2; 0.4/1 }
Alice 3 { 1/1; 0.2/2; 0.1/3 }
Maria 1 { 1/2; 0.9/1; 0.2/3 }
Bob 2 { 1/3; 0.8/2; 0.7/1 }

Table 2. Feedback Cube

All queries

Query ID

Query group

Query dimension

All users

Language

Age group

User ID

Favorite songs

Age
Country

Continent

Gender

User dimension

Region

Figure 2. User Feedback Cube Dimensions

4.2 User Feedback Cube

The User Feedback Cube gathers relevance statistics about
the songs proposed to users by the music recommendation
system. As illustrated by Figure 2, the user feedback cube
is composed of the user dimension and the query dimen-
sion. For each user and query, the user feedback is stored.
The feedback given for a particular played song is stored
as a membership degree representing how the proposed
song is relevant in the context of the query. A very low
membership degree is given when the users believes the
song should not have been proposed. The Feedback and
the Favorite Songs attribute are both defined using the FS-
SET abstract datatype.

As with the Closest Songs Cube, it is possible to use
aggregate functions along the dimension hierarchies.

Example 3 The 10 songs users living in Denmark liked
the most when they asked for traditional music:

SELECT SUPPORT(TOP 10(AVG(c.feedback))
FROM user AS a, query AS b, user feedback AS c
WHERE a.country = ’Denmark’ AND a.user = c.user
AND b.query = ’return some traditional music’
AND b.query id = c.query id;

Furthermore, it is possible to perform aggregation along
fuzzy song sets defined in a dimension such as the favorite
songs attribute in the user dimension.

Example 4 The 10 songs that users who dislike Shakira
like the most when they ask for “Latin american music”:

SELECT SUPPORT(TOP 10(AVG(c.feedback)))
FROM user AS a, query AS b, user feedback AS c
WHERE ARRAY(REDUCE 0.6(NEG(a.favorite songs))) &&
ARRAY(SELECT song id FROM song WHERE artist = ’Shakira’)
AND b.query = ’return some latin american music’
AND b.query id = c.query id;

5 STORAGE

In this section, three different storage options for repre-
senting song sets in the MW are presented: tables, arrays,
and bitmaps. To illustrate the discussion, a prototypical
MW where songs are uniquely identified using 24 bits and
membership degrees are stored using 8 bits. The proposed
MW can reach a size of over 16 million songs and use up
to 256 different membership degrees.

5.1 Table

The first solution is to represent the fuzzy song sets using
a table with three columns: (seed song, song, membership
degree). Only the k closest songs are physically stored
in the table. The selection is performed using the Topk
operator. Let s be the size of the seed song set, e the size
of the song set, m the size of the set of all the values the
membership degree can take, and f the number of fuzzy
song sets associated to a given song seed. The size of the
payload, i.e., the size of the data when not considering the
overhead due to the DBMS, denoted p, can be calculated
as follows.

p = s · k · (log2 s+ f · (log2 e+ log2m)) b (12)

where log2 s, log2 e, log2m are the minimum number of
bits required to store respectively a seed song, a song, and
a membership degree. Using a default membership degree
and a Top1000 operator reduces the theoretical size of the
table to 109 GB when each of the 16 million song seeds is
associated to one fuzzy song set attribute.

5.2 Array

A second approach is to use one dimensional arrays con-
taining the songs and their associated membership degree



0

100

200

300

400

500

600

700

800

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

k

p (GB)

Array

WAH Bitmap

Table

(a) 1 attribute per seed

0

3000

6000

9000

12000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

k

p (GB)

Array

WAH Bitmap

Table

(b) 15 attributes per seed

Figure 3. Estimates Comparison

for representing song sets. The
data is stored in a table with
two columns: (seed song, array).
As with tables, only the k clos-
est songs should be physically
stored. The size of the payload
can be calculated as follows.

p = s · (log2 s+ f · k
· (log2 e+ log2m)) b

(13)

So, when storing the 1000 clos-
est songs with respect to one at-
tribute, the size of the payload is
reduced to 63 GB. However, since the probability of hav-
ing no songs for a particular membership degree is small,
ordering the fuzzy song set by membership degrees allows
membership degrees to be stored using one bit relatively
to each other: a bit set means to move to the next lower
membership degree, a bit unset means to keep the same
membership degree. In the unlikely case of a gap in the
sequence of membership degrees, a dummy element, re-
ferred to as the empty element, is used to jump to the next
membership degree. For large gaps, successive empty el-
ements are used. The compression ratio, r, obtained is as
follows.

r =
k · (log2m+ log2 e)
(k + x)(log2 e+ 1)

(14)

In order to be efficient, i.e., r > 1, the number of empty
elements in the data set has to remain limited.

x < k · log2m− 1
log2 e+ 1

(15)

Using a granularity of 8 bits for the membership degree,
the compression is effective for x < 280. This is always
verified as 256 different membership degrees exist. The
compression ratio in the best and worst case scenarios are:

r− = k · (log2m+ log2 e)
(k +m− 1) · (log2 e+ 1)

r+ =
log2m+ log2 e

log2 e+ 1

(16)

In our example, using 8 bits for storing the membership
degree, the pessimistic ratio is 1.10 while the optimistic
compression ratio reaches 1.28.

5.3 Bitmap

A third option is to use bitmaps to represent fuzzy song
sets. Each bit indicates if a song belongs or not to the set
of the k closest songs to a given song seed.

p = s · (log2 s+ f · e) b (17)

The bitmap size can be dramatically reduced using com-
pression algorithms. The WAH compression offers good
compression on sparse bitmaps while preserving query
performance.

text in red

In the worst bit distribution, i.e., a random bitmap, the
WAH algorithm reduces the size of the bitmap as follows.

pWAH(n, d, w) ≈ w · n
w − 1

(
1− (1− d)2w−2 − d2w−2

)
b

(18)
where n is the size of the bitmap in bits, d is the bit density,
i.e., the fraction of bits set, andw is the word length, 32 on
most computers. Using the Topk operator, the bit density
is d = k

e . On a fuzzy song set of 224 songs where only
1000 closest songs are physically stored, n = 224 b, and
d = 1000

224 . The size of each bitmap reaches 63883 b. To
represent the membership degree, a bitmap is constructed
for the membership degree each of the song could possibly
take.

p ≈ s ·
(

log2 e+ f · pWAH(e ·m, k

e ·m
,w)
)

b (19)

The size of the compressed bitmap for each song seed is
only slightly increased to 63999 b. Therefore, in an MW
of 224 song seeds with one fuzzy song set attribute, the
size of the database reaches 140 GB.

5.4 Estimates Comparison

Figures 3(a) and 3(b) show the expected size for stor-
ing 1 and 15 Fuzzy Song Set Attribute (FSSA), respec-
tively, for each of the 224 song seeds and for different val-
ues of k. The linearity of the WAH bitmap curves is ex-
plained by considering k

n << 1 and applying a binomial
decomposition, the payload can then be approximated by
pWAH ≈ 2 · w · k.

For one FSSA per song seed, arrays consume half the
storage space of bitmaps. This difference vanishes when
the number of fuzzy song set attributes per song seed in-
creases. With respect to the storage requirements, WAH
bitmaps seem to be a poor choice when the number of
FSSA per song seed increases.

6 IMPLEMENTATION

This section describes the Closest Song Cube fact table
implementation under PostgreSQL 8.2, well-known for
its scalability. Therefore, some parts of the following are
DBMS dependent. As explained in Section 5, songs can



1 att. 15 att.

Ta
bl

e

Payload est. (MB) 345 3115
Overhead est. (MB) 1777 1783
Total est. (MB) 2226 4898
Real size (MB) 2779 21500
B-tree index size(MB) 1557 1557

A
rr

ay

Payload est. (MB) 197 2961
Overhead est. (MB) 4 4
Total est. (MB) 201 2965
Real size (MB) 729 21504
Real size + LZ (MB) 256 2975
B-tree index size(MB) 2 2

W
A

H
B

itm
ap

Payload est. (MB) 395 5923
Overhead est. (MB) 4 4
Total est. (MB) 399 5927
Real size (MB) 514 7696
Real size + LZ (MB) 202 2923
B-tree index size(MB) 2 2

Table 3. Storage comparison

be uniquely identified using 24 bits. The dataset used
for the implementation consists of 51574 songs that were
selected from two different sources: first, the Intelligent
Sound 1 database that has extracted the genre information
of over 150000 music tracks, second, the 5 million songs
of the Music Brainz 2 database. Each of the 51574 songs
is described using 15 attributes that represent the genre.
The expected overhead in PostgreSQL can be estimated to
32 bytes per row and 20 bytes per page, where each page
has a fixed size of 8 KB [4]. Since tuples are not allowed
to span over multiple pages, PostgreSQL uses secondary
storage tables, referred to as TOAST tables, to store large
field values. TOAST tables can use a Lempel-Ziv, briefly
LZ, compression technique to reduce their size.

The implementation results are shown in Table 3. For
one FSSA per song seed, arrays and WAH bitmaps appear
to be a better solution than tables when comparing their
real size. The results also show that the theoretical over-
head estimates were wrong. In Figure 3(a), the theoretical
estimates showed that the size of arrays should be half the
size of WAH bitmaps. This is far from being the case. To
the contrary, WAH bitmaps are smaller than arrays.

For 15 FSSA per song seed, arrays and WAH bitmaps
are again a better solution than tables. Again, the expecta-
tions shown in Figure 3(b) were different. First, the over-
head is considerable compared to the data size. This con-
forms to the theoretical result that tables are a bad choice
since an considerable overhead per row exists. However,
when comparing arrays versus bitmaps, the implementa-
tion and theoretical results are again contradictory. WAH
bitmaps only take a third of the storage space of uncom-
pressed arrays, due to the overhead of the array data struc-
ture. LZ compressed WAH bitmaps in a TOAST table are
reduced to 2923 MB, while LZ compressed arrays are re-
duced to 2975 MB, thus making the two solutions compa-
rable. However, using LZ compression on WAH bitmaps
requires further investigations. On one hand it will reduce

1 http://www.intelligentsound.org
2 http://www.musicbrainz.org

the number of IOs. On the other hand, it will slow down
the bitwise operations and therefore might reduce the ad-
vantages of the WAH compression scheme.

7 CONCLUSION

MWs are the practical answer to the need for efficient con-
tent management tools over vast music collections. The
approach chosen in this paper is to treat song similari-
ties in a relative space where songs are defined by com-
parison to each others. We have defined fuzzy song sets
and presented an algebra to manipulate them. We have
demonstrated the usefulness of fuzzy song sets and their
operators to handle various information management sce-
narios in the context of a MW for which we have created
two multidimensional cubes. Furthermore, the practical
implementations solutions from a theoretical perspective
were discussed. Finally, confronting theoretical estimates
to practical implementation makes clear that the DMBS
data overhead represents a major part of the storage re-
quirements. Further study should be conducted on the
performance aspects and optimized operators should be
implemented with respect to the data structure choices.

8 REFERENCES

[1] G. Antoshenkov, Byte aligned data compression. United
States Patent, 5363098, 1994.

[2] F. Deliège and T. B. Pedersen. Music warehouses: Chal-
lenges for the next generation of music search engines. In
Proc. of LSAS, 2006.

[3] J. Galindo, M. Piattini, and A. Urrutia. Fuzzy Databases:
Modeling, Design and Implementation. Idea Group Pub,
2005.

[4] The PostgreSQL Global Development Group. PostgreSQL
8.2.0 documentation. At http://www.postgresql.org/docs/
manuals/ , 2006.

[5] C. A. Jensen, E. M. Mungure, T. B. Pedersen, and
K. Sørensen. A data and query model for dynamic playlist
generation. In Proc. of IEEE-MDDM, 2007.

[6] D. Lübbers. SoniXplorer: Combining visualization and au-
ralization for content-based exploration of music collec-
tions. In Proc. of ISMIR, 2005.

[7] M. Mandel and D. Ellis. Song-level features and support
vector machines for music classification. In Proc. of ISMIR,
2005.

[8] R. Neumayer, M. Dittenbach, and A. Rauber. PlaySOM and
PocketSOMPlayer, alternative interfaces to large music col-
lections. In Proc. of ISMIR, 2005.

[9] E. Pampalk. Speeding up music similarity. In Proc. of
MIREX, 2005.

[10] C. Wang, J. Li, and S. Shi. A music data model and its ap-
plication. In Proc. of MMM, 2004.

[11] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap
indices with efficient compression. ACM Trans. Database
Syst., 31(1), 2006.

[12] B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval
of similar time sequences under time warping. In Proc. of
ICDE, 1998.


