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ABSTRACT

In this paper we adapt an AdaBoost-based image process-
ing algorithm to the task of predicting whether an audio
signal contains speech or music. We derive a frame-level
discriminator that is both fast and accurate. Using a sim-
ple FFT and no built-in prior knowledge of signal struc-
ture we obtain an accuracy of 88% on frames sampled at
20ms intervals. When we smooth the output of the clas-
sifier with the output of the previous 40 frames our fore-
cast rate rises to 93% on the Scheirer-Slaney (Scheirer and
Slaney, 1997) database. To demonstrate the efficiency and
effectiveness of the model, we have implemented it as a
graphical real-time plugin to the popular Winamp audio
player.

1 Introduction

The ability to automatically discriminate speech from mu-
sic in an audio signal is useful in domains where a partic-
ular type of information is of interest, such as in automatic
audio news transcription of a radio broadcast, where non-
speech would presumably be discarded. Previous mod-
els have employed a mixture of simple features that cap-
ture certain temporal and spectral features of the signal
(Scheirer and Slaney, 1997; Saunders, 1996). including
for example pitch, amplitude, zero crossing rate, cepstral
values and line spectral frequencies (LSF). More recently,
other approaches have used the posterior probability of a
frame being in a particular phoneme class (Williams and
Ellis, 1999), HMMs that integrate posterior probability
features based on entropy and “dynamism” (Ajmera et al.,
2002), and a mixture of Gaussians on small frames (Ez-
zaidi and Rouat, 2002).

We have adapted a successful and robust approach for
object detection (Viola and Jones, 2001) to this task. Our
model works by exploiting regular geometric patterns in
speech and non-speech audio spectrograms. These reg-
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ularities are detectable visually, as demonstrated by the
ability of trained observers to identify speech structure
(e.g. vowel formant structure, consonant onsets) and mu-
sical structure (e.g. note onsets and harmonic pitch struc-
ture) through visual inspection of a spectrogram. We
demonstrate in this paper that by exploiting geometric reg-
ularities in a two-dimensional representation of sound, we
are able to obtain good accuracy results (88%) for 20ms
frame categorization with no built-in prior knowledge and
at very low computational cost. When smoothing is em-
ployed over 40 previous frames (800ms), our accuracy
rises to 93%. This compares favorably with other mod-
els on the same dataset.

Despite being motivated by work in vision, this model
is well suited for audio signal processing. Though it treats
individual 20ms slices of music as having fixed geometry,
it places no limitations on the geometry of entire songs.
For example, it places no constraints on song length nor
does it require random access to the audio signal. In other
words, this approach is causal and is able to process audio
streams online and in real time.

2 The algorithm

In order to build a good binary discriminator, one must
first find a set of salientfeaturesthat separate the two
classes with the largest margin possible. To detect objects
in an image, Viola and Jones employed a set of simple
Haar-like (first proposed by Papageorgiou et al. (1998))
rectangles depicted in Figure 1. These features compute
and subtract the sum of pixels in the white area from the
sum of pixels in the black area. The areas can have dif-
ferent shapes and sizes, and can be placed at differentx
andy coordinates of the image. A discriminator using a
single of these features is called aweak learnerbecause,
used alone, it cannot achieve very good discrimination.
However, when these features are combined in an additive
model, the resulting classifier can perform very well. In
their work on two-dimensional images, Viola and Jones
showed that with enough features, it is possible to detect
complex objects like faces.

2.1 AdaBoost

To additively combine the weak learners, we use the
ADABOOST algorithm (Freund and Schapire, 1996),
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Figure 1: The two Haar-like features used in our additive
model.

which is one of the best general purpose learning meth-
ods developed in the last decade. It has inspired several
learning theoretical results and, due to its simplicity, flexi-
bility, and excellent performance on real-world data, it has
gained popularity among practitioners.

ADABOOST is an ensemble (or meta-learning)
method that constructs a classifier in an iterative fashion.
In each iteration, it calls a simple learning algorithm (the
weak learner) that returns a classification. The final clas-
sification will be decided by a weighted “vote” of the weak
classifiers, where each weight is proportional to the cor-
rectness of the corresponding weak classifier. This incre-
mental process of combining weak classifiers weighed by
their performance is calledboosting. The weak classifiers
need only be slightly better than a random guess, which
lends great flexibility to the design of the weak classifier
(or feature) set. If there is no particular a-priori knowledge
available on the domain of the learning problem, small de-
cision trees or, in the extreme case,decision stumps(de-
cision trees with two leaves) are often used. A decision
stump can be defined by three parameters, the indexj of
the attribute1 that it cuts, the thresholdθ of the cut, and
the sign of the decision. Formally,

hj,θ+(x) =

{
1 if xj ≥ θ,

−1 otherwise,
(1)

and

hj,θ−(x) = −hj,θ+(x) =

{
1 if xj < θ,

−1 otherwise.
(2)

Although decision stumps may seem very simple, when
boosted, they yield excellent classifiers in practice. Also,
finding the best decision stump using exhaustive search
can be done efficiently inO(nd) time, wheren is the
number of training points, andd is the dimension of the
input space (the number of Haar-like features in our case).
Alternatively, by using a random sampling and a gradi-
ent following approach (as explained below), even the ex-
haustive search can be avoided.

For the formal description ofADABOOST, let the
training set beDn =

{
(x1, y1), . . . , (xn, yn)

}
, where

xi is the observation vector, andyi is its binary (+1
or −1, representing speech or music, respectively) la-
bel. The algorithm maintains a weight distributionwt =(
wt

1, . . . , w
t
n

)
over the data points. The weights are ini-

tialized uniformly at the beginning, and are updated in
each iteration. The weight distribution remains normal-
ized in each iteration, that is,

∑n
i=1 wt

i = 1 for all t. In
general, the weight of a point will be proportional to how
hard it is to correctly classify.

1In our case, thejth attribute is the output of thejth filter in
the filter bank (see Section 2.2).

Given:Dn =
{
(x1, y1), ..., (xn, yn)

}
wherexi ∈ X, yi ∈ Y = {−1, +1}
Initialize weightsw1(i) = 1/n.
For t = 1, ..., T :

• Find the featureht that minimizes the errorεt.

• Compute confidenceαt = 1
2 ln 1−εt

εt .

• Update the weight vectorw:

wt+1(i) = wt(i)×
{

1
2(1−εt) if ht(xi) = yi

1
2εt if ht(xi) 6= yi

Output final hypothesis:

H(x) = sign

(
T∑

t=1

αtht(x)

)
.

Figure 2: Pseudocode of theADABOOSTalgorithm.

We suppose that we are given a setH of weak classi-
fiers and a weak learner algorithm that, in each iteration
t, returns the weak classifierht ∈ H that minimizes the
weighted error

εt =
n∑

i=1

I{ht(xi)6=yi}w
t
i , (3)

where the indicator functionI{A} is 1 if its argument
A is true and0 otherwise. The coefficientαt of ht is
the confidencewe have in our weak learner. It is set to
αt = 1

2 ln 1−εt

εt in each iteration. Sinceεt < 1/2 (other-
wise we would flip the labels and return−ht), the weight
update formulas (see in the pseudocode in Figure 2), indi-
cate that we increase the weights of misclassified points
and decrease the weights of correctly classified points.
As the algorithm progresses, the weights of frequently
misclassified points will increase, so weak classifiers will
concentrate more and more on these “hard” data points.
After T iterations2, the algorithm returns the weighted av-
eragefT (·) =

∑T
t=1 αtht(·) of the weak classifiers. The

sign offT (x) is then used as the final classification ofx.

2.2 The features

Our goal is to classify 20ms frames of audio as being ei-
ther speech or music. We represent each training sample
by its spectrogramSi = {S(t, φ)}i, whereS(t, φ) is the
signal intensity at timet and frequencyφ. We then con-
volve the image of the spectrogram with Haar-like filters
(depicted in Figure1), find the best filter that discriminates
the training data, and compute a stump (1-2) over the out-
put of the filter.

Each filter contains two or three rectangular black or
white blocks with different sizes and locations. For a
black block with its upper left corner placed at(t, φ), and

2T is an appropriately chosen constant that can be set by, for
example, cross-validation.
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with sizewt × wφ, we compute the convolution

Bt,φ,wt,wφ
(S) =

t+wt∑

i=t

φ+wφ∑

j=φ

S(i, j).

For a white block, we compute the negative convolution

Wt,φ,wt,wφ
(S) = −Bt,φ,wt,wφ

(S) = −
t+wt∑

i=t

φ+wφ∑

j=φ

S(i, j).

So, for example, a three block white-black-white feature
placed at(t, φ), and with block sizewt×wφ would output
the value

Wt,φ,wt,wφ
(S)+Bt,φ+wφ,wt,wφ

(S)+Wt,φ+2wφ,wt,wφ
(S).

The major advantage of these features over more compli-
cated filters usually used in sound-processing that they can
be computed at an extremely low cost. The main trick is
to pre-compute the so calledintegral image

Σ(t, φ) =
t∑

i=1

φ∑

j=1

S(i, j) (4)

for each spectrogram in the training set. Then any convo-
lution B or W can be computed in constant time by using
the equation

Bt,φ,wt,wφ
(S) = Σ(t, φ) + Σ(t + wt, φ + wφ)

−Σ(t, φ + wφ)− Σ(t + wt, φ).

This allows us to evaluate a very large number of candi-
date features in every boosting iteration. Formally, each
Haar-like filtergj returns a real numbergj(Si) for each
spectrogramSi, which is thejth attributexj

i in the obser-
vation vectorxi. Then for each filter, the best decision
stump is found. Finally, we select the weak learnerht

which minimizes the weighted training error (3) among
all the candidates.

Despite the simplicity of the filters, they can discrimi-
nate between speech and music by capturing local depen-
dencies in the spectrogram. For example, the three-block
feature depicted in Figure 3 is well-correlated with the
speech signal and quasi-independent of the music signal.
Figure 4 displays the real-valued output of the filter for
all training points, and the threshold of the optimal deci-
sion stump. This feature, selected in the first iteration of
ADABOOST, has a 30% error rate on the test set.

2.3 Reducing the training time

One of the problems with the Haar-like filters approach is
that at each iteration only one optimal feature is selected,
among hundreds of thousands of possible candidates. This
results in a computational cost, for the training process, in
the order of days on a single Pentium 4. To reduce the
computational demand, we have implemented a solution
that comes from the observation that small changes in the
feature’s property do not change the overall error signifi-
cantly. Figure 5 shows the error map of the horizontal fea-
ture at the first iteration. Notice that the two-dimensional
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Figure 3: This three-block feature can distinguish speech
from music. It is well correlated with the speech signal
(its output is 347), and independent of the music signal
(its output is -577).
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Figure 4: The output of the feature showed in Figure 3 for
all training points, and its decision stump’s threshold. The
data has been randomly distributed on the vertical axis for
clarity.
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Figure 5: The error as a function of the two feature’s pa-
rameters. Dark areas represents local minima that the al-
gorithm is looking for. The height of the feature decreases
linearly with the position, therefore the map is triangu-
lar. Observe that the resulting two-dimensional terrain is
relatively smooth, suggesting that exhaustive sampling of
these parameters may be unnecessary.

space is smoothly changing. This suggests that it is unnec-
essary to exhaustively sample all parameter combinations.
After first selecting randomly a set of initial sampling pa-
rameters, we iteratively adjust them until we arrive at a
local minimum in agradient followingfashion.

The feature thus discovered is suboptimal with re-
spect to the exhaustive search. However,ADABOOST

requires only that features support discrimination better
than chance. For instance, Escudero (2000) showed with
hisLazyBoostingthat even with randomly (homogeneous)
features it was possible to achieve results comparable to
those obtained from the optimal features. To compensate
for the poorer features, a larger number was required.

2.4 Experimental results

In the experiments, we used 240 digital audio files of 15
second radio extracts published by Scheirer and Slaney
(1997)3. We extracted 11200 20ms frames from this
data, normalized them, and then processed them with FFT,
RASTA (Hermansky et al., 1992), and log-scale FFT. We
chose the first because it is the simplest representation of
the frequency spectrum, and the other two because of their
popularity in speech processing. The FFT represents the
biggest frequency space with 256 points, followed by the
other two (respectively 26 and 86). The size of this space
has an important impact on the training time, but thanks
to the gradient approach it is limited. During detection,
moreover, the size of the space does not play any role,
thanks to the integral image representation (4).

Figure 6 shows the training and test errors using the
FFT. The choice for the optimal number of features does

3The data was collected at random from the radio by Eric
Scheirer during his internship at Interval Research Corporation
in the summer of 1996 under the supervision of Malcolm Slaney.
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Figure 6: The results on a 20ms FFT frame, without and
with smoothing. The benefits of smoothing are clearly
seen both in test error and train error.

Table 1: Testing error rate using single frame filters.

FFT RASTA Log-FFT
Without smoothing 11.9% 10.8% 12.6%
With smoothing 6.7% 7.2% 7.4%

not have the same importance as in other machine learn-
ing algorithms (e.g., neural networks) because of the in-
trinsic resistance ofADABOOST to over-fitting: even if
the training error tends to zero, the test set error does not
increase. It is therefore less important to find a specific
stopping point, except for efficiency reasons. We can ob-
serve that at a frame level, on a simple FFT we already ob-
tain an error rate of about 13% after 150 iterations, which
is far better than the 37% of the best frame-level feature
in (Scheirer and Slaney, 1997). We then decided to tie
the classification of a frame to classification at previous
frames with a simple smoothing function. Letf(xτ ) be
the output of the strong learner, wherexτ is a frame at
time τ . Then, the new output used for classification is

g(xτ ) =

∑τ
i=max(τ−nframes+1,0) aτ−if(xi)∑τ

j=max(τ−nframes+1,0) aτ−j
, (5)

wherea is a decay parameter between0 and1 and where
nframes is an integer that corresponds to the number of
past frames to consider. In order to find the best values
of a andnframes, we randomly concatenated the audio
(wave) files of the validation set and measured the classi-
fication error rates for several values for the decay param-
eter. We chose this procedure in order to approximately
simulate audio streaming from a radio station and get the
best values ata = 0.98 andnframes = 40. With these
settings the error reaches a value less than 7% with less
than a second of information. The error converges after
150 iterations, but even with a much smaller number of
features, such as 75, the error level is below 10%.

Surprisingly, RASTA and logarithmic scale FFT rep-
resentation did not perform as well, even though the re-
sults are still below 10%. Table 1 summarizes the errors
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on the test set with these representations. Also, RASTA
and Log-FFT converged much faster than simple FFT,
which can be explained in both cases by the higher quality
of the information and the limited dimensionality.

3 A Winamp Plugin

Figure 7: A Winamp plugin version of our model. The
long thin horizontal line displays the decision boundary
between Speech (top) and Music (bottom). The long thick
horizontal line displays the decision of the model, with
vertical position proportional to confidence. Here, for ex-
ample, the model is moderately confident that the stream
is Music (in this case, a correct prediction). The shorter
horizontal lines on the left provide a histogram of the de-
cisions and confidence ratings of the weak learners. See
text for details.

Winamp (www.winamp.com ) from Nullsoft is a
popular audio player for the Windows operating system.
Like many multimedia software applications, Winamp
uses modular “plug ins” that extend the functionality of
the basic player. Because the development kit for writing
these plugins is available for public use, we were able to
develop a version of our model that runs within Winamp.
This plugin is able to predict in real time whether the au-
dio stream being played in the Winamp player contains
music or speech.4 Because the plugin is distributed al-
ready trained, it requires few computational resources and
should run well on any computer that can run Winamp.

In Figure 7 a screenshot of the plugin is shown. The
long thick horizontal line displays the decision of the
model. The distance of this decision line from the bound-
ary between Speech (top) and Music (bottom) is propor-
tional to the confidence the model has in its decision. This
confidence is computed as a sum of weak learner votes
(+1 for Speech, -1 for Music) multiplied by the respective
weak learner confidences (alpha,α, in ADABOOST). See
Section 2.1 for details.

The shorter horizontal lines on the left in the screen-
shot display a histogram of the weak learner votes where
the vertical positiony of each of these shorter lines is

4The plugin is available for free download atwww.iro.
umontreal.ca/˜casagran/winamp/index.html .

given by the vote (+1 for Speech, -1 for Music) multi-
plied by confidence. In addition, confidence is also used
to scale the width of each of these lines. If two weak learn-
ers fall on the same vertical position in the plot, their con-
fidence is summed, generating a single longer line. The
three horizontal lines near the bottom of the plot are indi-
vidual weak learners having particularly high confidence
that the stream is music.

The plot is refreshed every 20ms, resulting in a smooth
animation of model performance. Though the graphical
interface is relatively primitive, it can be instructive to
watch model behavior evolve over time in response to an
audio stream.

For the Winamp plugin, we trained a version of the
classification model using randomly-selected segments
from a number of Internet radio streams. Labeling
was achieved implicitly by treating talk-radio streams as
speech examples and music-radio streams as music exam-
ples. Though training streams were not labeled by hand,
we did control against contamination of speech with mu-
sic and vice-versa through careful listening. We did not
create a hand-labeled testing set of mixed speech and mu-
sic radio streams. For this reason we are unable to report
a reliable error rate for the Winamp plugin (nor was this
our goal). We were able to demonstrate that the model
runs efficiently and perform well in a real-world applica-
tion. We observed that the output of the model is stable
and reliable for a range of input streams.

4 Conclusions

We have showed how a simple generic object recognition
algorithm can be used also to perform frame-level classi-
fication of audio by exploiting geometric regularities in a
fixed-sized two-dimensional representation of frame con-
tents. Because of the strong relationship among frames
in time, we can increase the performance of the classifier
with a simple smoothing on the output of the frame-level
classifier. It is also possible to do training directly on a set
of subsequent frames to capture local dependencies in the
time domain. However, such an approach would have to
deal with the problem of the absolute position of the fea-
tures in time, and therefore would probably be working if
the number of frames is limited.

Also it may be helpful to explore the use of different
basic features (such as Gaussians or band-passes), and dif-
ferent representations such as wavelets or sine-wave repli-
cas (Liebenthal et al., 2001).

Finally, while the current model is limited to two-class
categorization, we are exploring a multi-class version of
ADABOOST(Schapire, 1999). This would allow us to ex-
tend our work to more challenging classification problems
such as speaker identification singer identification, music
instrument identification and music genre classification.
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