
Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

Johnny Can’t Sing: A Comprehensive  
Error Model for Sung Music Queries

Colin Meek and William Birmingham 
University of Michigan 

Advanced Technologies Laboratory 
1101 Beal Avenue 
1-734-763-1561  

meek@umich.edu

ABSTRACT 
We propose a model for errors in sung queries, a variant of the 
Hidden Markov Model (HMM). This is related to the problem of 
identifying the degree of similarity between a query and a 
potential target in a database of musical works, in the music 
retrieval framework. The model comprehensively expresses the 
types of error or variation between target and query: cumulative 
and non-cumulative local errors, transposition, tempo and tempo 
changes, insertions, deletions and modulation. Results of 
experiments demonstrating the robustness of the model are 
presented. 
1. INTRODUCTION 
Various approaches have been proposed for the identification of 
viable targets for a query in a music database. We are interested 
here in queries posed in the most natural format for untrained 
users, the voice. Our goal is to demonstrate a unifying model, 
expressive enough to account for the complete range of 
modifications observed in the performance and transcription of 
sung musical queries. Our model is capable of expressing the 
following transformations, relative to a stored musical piece, 
which we call a target: 

• Transposition: the query may be sung in a different key 
or register than the target, or both. 

• Modulation: over the course of a query, the singer may 
change transposition. 

• Tempo: the query may be slower or faster than the 
target. 

• Tempo change: over the course of a query, the singer 
may speed up or slow down. 

• Non-cumulative local error: the singer might sing a note 
off-pitch or with poor rhythm. 

• Cumulative local error: local errors altering or effecting 
subsequent events. 

• Insertions and deletions: adding or removing notes from 
the target, respectively. 

While various representations and models can effectively 
represent some of these elements, to our knowledge no existing 
model explicitly accounts for all of these elements. 
An important contribution of this work is an in depth exploration 
of the nature of note insertions and deletions. We assert that 
traditional string-edit operations [9][10] must be extended in the 
musical context and to this end introduce the corollary operations: 

elaborations and joins. Experiments have demonstrated that naive 
string edit approaches do not provide sufficient precision for 
music in the retrieval context [16]. 
Existing work using HMMs for query-by-humming consider a 
subset of the error-classes identified above. Shifrin et al,[15] use a 
state representation that is flexible in terms of transposition and 
tempo, but otherwise is capable of expressing only cumulative 
local error. Durey [6] does not allow for either transposition or 
tempo scaling. 
This expressiveness has a computational cost. Conceptually our 
model considers states for each permutation of pitch relationship, 
rhythm relationship and string-edit operation. We make the 
assumption of conditional independence among these elements. 
For instance, the probability that a singer will skip a note is 
assumed to be independent of how out of tune they sang the 
previous note in our model. These assumptions help control the 
computational cost, but also reduce the parameterization of the 
model, essential for training [14]. Shifrin et al, [15] make similar 
assumptions about the independence of local pitch and rhythm 
errors, thus considerably reducing the amount of data needed to 
train the model. We recommend various approaches to parameter 
tying [1] throughout this paper (effectively reusing various 
parameters in different models and/or parts of models) but stress 
that this is an open area of research in this field. 

2. PROBLEM FORMULATION AND 
NOTATION 
An assumption of our work is that pitch and inter-onset interval 
(IOI) adequately represent both the target and the query. This 
limits our approach to monophonic lines, or sequences of note 
events. An event consists of a IOIPitch,  pair. The IOI is the 

time difference between the onsets of successive notes, and the 
pitch is the MIDI note number1. 
A crucial observation is that we are dealing with a note-level 
abstraction of music. Other systems act on a lower-level 
representation of the query [6][11], a frame-based frequency 
representation. Various methods for the translation of frequency 
and amplitude data into note abstraction exist [13][15]. Our group 
currently uses a transcriber based on the Praat f0-extractor [5], 
designed to analyze voice pitch contour. A sample Praat analysis 
is shown in Figure 8. Note that these processes are not perfect, and 
it is likely that error will be introduced in the transcription of the 
query.  

                                                                 
1 Musical Instrument Digital Interface (MIDI) has become a 

standard electronic transmission and storage protocol/format for 
music. MIDI note numbers essentially correspond to the keys of 
piano, where ‘middle C’ corresponds to the integer value 60. 

Permission to make digital or hard copies of all or part of this 
work for personal or classroom use is granted without fee 
provided that copies are not made or distributed for profit or 
commercial advantage and that copies bear this notice and the full 
citation on the first page.  
© 2002 IRCAM – Centre Pompidou 



Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

Restricting ourselves to this event description of target and query 
ignores several elements of musical style, including dynamics, 
articulation and timbre, among others. Objectively and 
consistently characterizing these features is quite difficult, and as 
such we have little confidence they can be usefully exploited for 
music retrieval at this point. We acknowledge, however, the 
importance of such elements in music query/retrieval systems in 
general. They will likely prove essential in refining and/or filtering 
the search space [4][7]. 
We further simplify the representation using IOI quantization, and 
by representing pitch in terms of pitch class. IOI is quantized to a 
logarithmic scale, using q=29 quantization levels, within the range 
30 msec. to 3840 msec., chosen such that there are precisely four 
gradations between an eighth note and sixteenth note (or quarter 
note and sixteenth note, and so forth.) This representation mirrors 
conventional notation in Western music, in which the alphabet of 
rhythmic symbols (eighth, quarter, half, etc.) corresponds to a 
logarithmic scale on duration (see Figure 1.)  

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

IO
I (

m
se

c.
)

IOIsym

At 125 beats per minute, the following relationships hold:

 
Figure 1: IOI quantization 

We treat pitch in terms of pitch class, where all notes are folded 
into a single octave, and are considered in the context of the 12-
tone, well-tempered scale. For instance, the frequency 453 Hz is 
“binned” into MIDI note number 70. The corresponding pitch-
class is 70mod12 = 10. This addresses two issues: octave errors are 
quite common in some transcriber systems, and pitch class is an 
effective, if imperfect, musical [12] and perceptual [3] abstraction. 
In addition, this has the advantage of substantially reducing the 
model’s “alphabet” size. 
We choose discrete sets of symbols to represent pitch and duration 
since, as will be seen, a continuous representation would 
necessitate an unbounded number of states in our model. This 
second event representation is denoted: 

{ } }281,...,1,0{,11,...,1,0,, =−∈∈ qIOIPCIOIPC symsym
, 

where PC is pitch-class and IOIsym is the quantization symbol. For 
clarity, we will alternate between the representations describe 
above in this paper. The values are calculated as follows given a 

IOIPitch,  pair (where 30 and 3840 are the IOI values 

associated with the centers of the shortest and longest bins): 









−⋅

−
−

== )1(
30log3840log
30loglog,mod12 qIOIroundIOIPitchPC sym

 

The goal of this paper is to present a model for query errors within 
the scope of this simple event representation. We will first outline 
the relevant error classes, and then present an extended Hidden 
Markov Model accounting for these errors. Taking advantage of 

certain assumptions about the data, we can then efficiently 
calculate the probability of a target model generating a query. 

3. ERROR CLASSES 
3.1 Insertions and Deletions 
Insertions and deletions in music tend to influence surrounding 
events. For instance, when an insertion is made, the inserted event 
and its neighbor tend to occupy the temporal space of the original 
note: if an insertion is made and the duration of the neighbors is 
not modified, the underlying rhythmic structure (the beat) is 
changed. We denote this type of insertion a “warping” insertion. 
For instance, notice the alignment of notes after the warping 
insertion in Figure 2, indicated by the dotted arrows. The inserted 
notes are circled. For the non-warping insertion, the length of the 
second note is shortened to accommodate the new note. 
With respect to pitch, insertions and deletions do not generally 
influence the surrounding events. However, previous work 
assumes this kind of effect: noting that intervallic contour tends to 
be the strongest component in our memory of pitch, one 
researcher has proposed that insertions and deletions could have a 
“modulating” effect [10], where the edit introduces a pitch offset, 
so that pitch intervals rather than the pitches themselves are 
maintained. We argue that relative pitch, with respect to the query 
as a whole, should be preserved. Consider the examples in Figure 
3. The first row of numbers below the staff indicates MIDI note 
numbers, the second row indicates the intervals in semitones (‘u’ 
= up, ‘d’ = down.) Notice that the intervallic representation is 
preserved in the modulating insertion, while the overall “profile” 
(and key) of the line is maintained in the non-modulating 
insertion. 
The effects of these various kinds of insertions and deletions are 
now formalized, with respect to a target 
{ }bbaa IOIPitchIOIPitch ,,,  and a query 

{ }ddinsertinsertcc IOIPitchIOIPitchIOIPitch ,,,,, , where 

insertinsert IOIPitch ,  is the inserted event. Note that deletion is 

simply the symmetric operation, so we will show examples of 
insertions only (Figure 2 and Figure 3): 

• Effects of a warping insertion on IOI: 
bdac IOIIOIIOIIOI == ,  

• Effects of a non-warping insertion on IOI: 
bdinsertac IOIIOIIOIIOIIOI =−= ,  

• Effects of a modulating insertion on pitch: 

44 344 21
contourpitch 

, abinsertdac PitchPitchPitchPitchPitchPitch −+==  

• Effects of a non-modulating insertion on pitch: 
bdac PitchPitchPitchPitch == ,  

Target:

Query, warping
insertion:

Query, non-warping
insertion:

 
Figure 2: Warping and non-warping insertions 



Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

In our current model, non-modulating and non-warping insertions 
and deletions are handled explicitly. The other types of edit are 
represented in combination with other error classes. For instance, a 
modulating insertion is simply an insertion combined with a 
modulation. Consider for instance insertions or deletions 
introduced by an imperfect transcriber. In this case, we clearly 
would not expect the onset times or pitches of surrounding events 
to be influenced. The relationships amongst successive events 
must be modified to avoid warping and modulation! Reflecting 
this bias, we use the terms “join” and “elaboration” to refer to 
deletions and insertions respectively. Mongeau and Sankoff [20] 
use a similar notion of insertion and deletion, described as 
“fragmentation” and “consolidation” respectively. 

Target:

Query, modulating
insertion:

Query, 
non-modulating
insertion:

 
Figure 3: Modulating and non-modulating insertions 

3.2 Transpositions and Tempo 
We account for the phenomenon of persons reproducing the same 
“tune” at different speeds and in different registers or keys. Few 
people have the ability to remember and reproduce exact pitches 
[17], an ability known as “absolute” or “perfect” pitch. As such, 
transpositional invariance is a desirable feature of any 
query/retrieval model. The effect of transposition is simply to add 
a certain value to all pitches. Consider for example the 
transposition illustrated in Figure 4(a) of Trans = +4. 

time

pi
tc

h

Tempo=1.5

Trans=+4

query

target

overlap

time

pi
tc

h

Change=1.5

Modu=+2

2

time

pi
tc

h RError=1.5
PError=-1

a)

b) c)

 
Figure 4: error class examples, opening notes of Brahms’ 

“Cello Sonata in e-minor” 
Tempo in this context is simply the translation of rhythm, which 
describes duration relationships, into actual time durations. Again, 
it is difficult to remember and reproduce an exact tempo. 
Moreover, it is very unlikely that two persons would choose the 
same metronome marking, much less unconstrained beat timing, 

for any piece of music. The effect of a tempo scaling is simply to 
multiply all IOI values by some amount. Thus, if the query is 50% 
faster than the target, we have a scaling value of Tempo=1.5, as 
shown in Figure 4(a).  
In practice, we use quantized tempo scaling and duration values. 
Note that addition in the logarithmic scale is equivalent to 
multiplication, yielding a substantial computational advantage: 
this replaces floating point multiplication with integer addition. 
For instance, given our quantization bins, a doubling of tempo 
always corresponds to an addition of 4: 

42 +=↔= symTempoTempo . 

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec.)

R
at

io
 o

f C
ur

re
nt

 L
oc

al
 T

em
po

 to
 M

ax
im

um

 
Figure 5: Tempo increase 

3.3 Modulations and Tempo Changes 
Throughout a query, the degree of transposition or tempo scaling 
can change, referred to as modulations and tempo changes 
respectively. Consider for a moment a query beginning with the 
identity transposition Trans=0 and identity tempo scaling 
Tempo=1, as in Figure 4(b). When a modulation or tempo change 
is introduced, it is always with respect to the previous 
transposition and tempo. For instance, on the third note of the 
example, a modulation of Modu=+2 occurs. For the remainder of 
the query, the transposition is then equal to 0+2=+2, since 0 is the 
starting reference transposition. Similarly, the tempo change of 
Change=1.5 on the second note means that all subsequent events 
occur at a tempo scaling of 1*1.5=1.5.  
Consider Figure 5, which plots the apparent tempo scaling in a 
rendition of “Row, Row, Row your Boat” on a note-by-note basis. 
While our model considers several interpretations of such a 
rendition, one approach would be to consider a constantly 
increasing tempo, represented by the least-square deviation 
regression line, with local rhythmic errors (see Section 3.4), 
represented by the note-wise deviations from that line. 

3.4 Local Pitch and IOI Errors 
In addition to the “gross” errors we have discussed thus far, there 
are frequently local errors in pitch and rhythm. These errors are 
relative to the modifications described above. A local pitch error 
of PError simply adds some value to the “ideal” pitch. A local IOI 
error of RError has a scalar effect (or again, additive in the 
quantized domain.) Figure 4(c) shows examples of each. Note that 
these errors do not propagate to subsequent events, and as such as 
termed non-cumulative errors. We model cumulative errors as 
transpositions and tempo changes. 
In some cases, there are multiple interpretations for the source of 
error in a query. Consider for instance Figure 9, which shows a 



Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

specific interpretation of three disagreements between a target and 
query. The second note in the query is treated as a local pitch error 
of -1. The final two notes, which are a semi-tone sharp, are 
handled as a modulation. The error model, described below, 
considers all possible interpretations simultaneously, for instance 
considering the possibility that the error in the second note is 
accounted for by two modulations (before and after), and the final 
two errors by a pair of local errors. Depending on our expectation 
that such errors will occur, one or the other interpretation might 
appear more likely. 

4. ERROR MODEL 
Hidden Markov models are the basis for our approach. For an 
excellent tutorial on these structures, please see Rabiner [14]. 
We account for edit errors in the query (insertions and deletions) 
in the “hidden” portion of the model. Using the notion of state 
“clusters,” we account for transposition, modulation, tempo and 
tempo changes. Fine pitch and rhythm errors are accounted for in 
the observation distribution function. 

4.1 Join and Elaborations 
For the sake of notational clarity, we do not enumerate the states 
in the hidden model, but define them in terms of symbols that 
indirectly refer to events in the target sequence. There are three 
types of symbol: 

• 
iSame : refers to the correspondence between the ith note 

in the target and an event in the query. 

• l
iJoin : refers to a “join” of l notes, starting from the ith

 

note in the target sequence. In other words, a single note 
in the query replaces l notes in the target. 

• m
jiElab ,
: refers to the jth

  query note elaborating the ith 

target note. In other words, a single note in the target is 
replaced by m notes in the query. 

Notice that 1
1,

1
iii ElabJoinSame == , each referring to a one-to-one 

correspondence between target and query. In our implementation, 
1
iJoin  plays all three roles. We generate a set of states S for a 

given target consisting of, for each target event: 

• A Same state. 

• Join states for 2≤l≤L, where L is some arbitrary limit on 
the number of events that can be joined. 

• Elaboration states for 2≤m≤M and 1≤j≤m, where M is 
some arbitrary limit on the length of elaborations. 

Why do we have so many states to describe each event in the 
target? We wish to establish a one-to-one correspondence between 
hidden states and query events, to simplify the implementation, 
which is why we introduce multiple states for each elaboration. 
We choose not to implement joins by “skips” through a reduced 
set of states, since as discussed, joins influence not only which 
target events we consider, but how we interpret them. 

4.2 Transition Matrix 
We now describe the transition matrix A, which maps from 

ℜ→× SS . Where qt is the state at time t (as defined by position 
in the query note sequence), axy represents the probability 
P(qt+1=y| qt=x), or in other words, the chances we will proceed 
from state x to state y. 
Most of the transitions have zero probability, as suggested by the 
state descriptions. For instance, Samei states can only precede 
states pointing to index i+1 in the target. Elaboration states are 
even more restrictive, as they form deterministic chains of the 
form: m

mi
m
i

m
i ElabElabElab ,2,1, →→→ K . This last state can then 

proceed, like Samei, to the i+1 states. Similarly, l
iJoin  states can 

only proceed to i+l states. A sample model topology is shown in 
Figure 6, for M=L=2. Note that this is a left-right model, in which 
transitions impose a partial ordering on states. 
Based on properties of the target, we can generate these transition 
probabilities. We define PJoin(i,l) as the probability that the ith note 
in the target will be modified by an order l join. PElab(i,m) is the 
probability that the ith note in the target will be modified by an 
order m elaboration. PSame(i) has the expected meaning. Since 
every state has non-zero transitions to all states with a particular 
state, we must insure that: 

1),(),()(,
22

=++∀ ∑∑
==

L

l
Join

M

m
ElabSame liPmiPiPi  

This also means that along non-zero transitions, the probability is 
entirely determined by the second state. For example, the 
probability of the transition 2

1,5
2
3 ElabJoin →  is the same as for 

2
1,54 ElabSame → . 

4.2.1 Defining PSame, PElab and PJoin 
We intentionally leave PSame, PElab and PJoin undefined. With 
reference to broadly observed trends in queries and their 
transcription, we suggest these alternatives: 

1. The simplest and easiest  solution is simply to build up 
tables indicating the chances that, in general, a note will 
be elaborated or joined. Thus, the probabilities are 
independent of the particular event in the target. For 
instance, our current test implementation uses this 
approach with M=2 and L=2, with ,95.0)(, =∀ iPi Same

 

,03.0)2,( =iPJoin
 and 02.0)2,( =iPElab

. 

2. Transcribers are more likely to “miss” shorter notes, as 
are singers (consider for instance Figure 8, in which the 
second and third note are joined.) As such, we believe it 
will be possible to take advantage of contextual 
information (durations of surrounding events) to 
determine the likelihood of joins and elaborations at 
each point in the target sequence. 

…

States referencing the 1st target event.

elaboration = 

junction (shorthand): =

Same1 Same2 Same3 Same4

Join1
2 Join2

2 Join3
2 Join4

2

Elab1,1
2 Elab2,1

2 Elab3,1
2 Elab4,1

2

Elab1,2
2

 
Figure 6: Hidden model topology 

 

4.2.2 Distribution of initial states πs. 
We associate the initial state distribution in the hidden model with 
a single target event. As such, a separate model for each possible 
sequence starting point must be built. Note however that we can 
actually reference a single larger model, and generate different 
initial state distributions for each separate starting-point model, 



Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

addressing any concerns about the memory and time costs of 
building the models. Essentially, these various “derived” models 
correspond to various alignments of the query with the target 
sequence. 
Our initial state distribution, for an alignment starting with the ith 
event in the target, is therefore over the states m

ii ElabSame 1,,  and 
l
iJoin , with probabilities determined by PSame, PElab and PJoin 

respectively. For example, )()( iPSame Sameis =π  where 

)()( 1 xqPxs ==π , the probability of beginning in state x. 

Same4State:

Target: 

Query:

Elab3,1
2Join1

2 Elab3,2
2

 
Figure 7: Relationship between states and events 

4.2.3 Translating from State to Event 
The hidden-layer states represent note events (in the case of joins) 
or sequences of notes (in the case of elaborations.) As mentioned, 
we treat only non-modulating and non-warping insertions and 
deletions. As such, when comparing target and query events with 
respect to a join, we generate a longer target note, with the sum 
duration of the relevant target events, and the pitch of the first. 
Similarly, for an elaboration, we consider a longer query event. 
Figure 7 shows a portion of the hidden state graph relating a target 
and query through a sequence of hidden states, where the dotted 
notes are examples of each modification. 

Where 
][][ , iqueryiquery IOIPitch  is the ith query note, and 

][][ , itargetitarget IOIPitch  the ith target note, we have if the following 

relationships between target and query, indicated by →: 
















=→

=→

=→

−++

−+

=

−+

=

∑

∑

m
mimttt

mt

tj
jquerytqueryitargetitarget

l
ittquerytquery

li

ij
jtargetitarget

ittquerytqueryitargetitarget

ElabqIOIPitchIOIPitch

JoinqIOIPitchIOIPitch

SameqIOIPitchIOIPitch

},...,2,1{,}1,...,1,{

1

][][][][

][][

1

][][

][][][][

 if,,,

 if,,,

 if,,,
 

4.3 Transposition and Tempo 
In order to account for the various ways in which target and query 
could be related through transposition and tempo, we must refine 
our state definition. We use the notation 

symTempoTransss ,,=′  

to refer to a state with “type” s, and “cluster” 
symTempoTrans, .  

The intuition here is that the type determines the gross relationship 
of the query with the target (see Figure 7, for instance) and the 
cluster determines how particular events are related between the 
target and the query. 
Again, we establish limits on how far off target a query can be. 
Since we use a pitch-class representation, we can represent all 
possible transpositions in the range -5≤Trans≤+6. We currently 
allow for tempi as slow as half speed, or as fast as double speed: -
4≤Temposym≤+4, using the same quantization degree as for IOIsym: 

TempoTemposym 2log4= . The initial distributions are defined as 

follows: 

• ( )?,?,)( 1 xqPxTrans ==π : the probability of beginning 

a query with Trans =  x. 

• ( )xqPxTempo ?,?,)( 1 ==π : the probability of beginning 

a query with transposition Temposym = x. 
Note that we treat Trans and Tempo as conditionally independent 
in this model. Relaxing this assumption entails some additional 
computational complexity, and a substantial increase in the 
parameterization of the model, but is not conceptually a difficult 
modification. 
We propose two approaches to the shaping of the initial 
distribution πTrans: 

1. Since the overwhelming majority of people do not have 
absolute pitch, we recommend a uniform initial 
distribution: 

12
1)( =xTransπ . 

2. The distribution could be tailored to individual users’ 
abilities, thus the distributions might be quite different 
for a musician with absolute pitch and a typical user. 

We propose a single tack for πTempo. We are able to remember 
roughly how fast a song “goes”. As such, we currently apply a 
normal distribution2 over initial tempo, with 5.1,0 == σµ , again 
in the quantized tempo representation. 

Original (transposed) Query

join + local error

0 0.2 0.4 0.6 0.8 1 1.2 1.4
42

44

46

48

50

52

Time (sec.)

P
itc

h 
(6

0 
= 

M
id

dl
e 

C
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.5

0.6

0.7

0.8

0.9

1

P
itc

h 
tra

ck
er

 c
on

fid
en

ce
 s

co
re

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.1

-0.05

0

0.05

0.1

Time (sec.)

A
m

pl
itu

de

 
Figure 8: Portion of query on "Hey Jude", The Beatles3 

                                                                 
2 In our experiments, we frequently apply normal distributions 

over some probability function, using the normal density 

function: 
πσ

σ
µ

2

2

2
)( x

ey

−−

=
, and then normalize to sum 1 over the 

function range. 
3 The Praat analysis shows two signals, one representing 

frequency, the other representing the confidence score in the 
analysis. Note segmentation was done manually for all examples 
in this paper and all experimental queries. The pitches indicated 
in the score are the weighted average (by confidence) of the 
frequencies observed over the course of each note. The notated 
rhythms are approximations, but timing was left unaltered for 
the purpose of the experiments. 



Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

The initial distribution over these refined states is thus: 
( ) )()()(,, symTempoTransssym TempoTranssTempoTranss ππππ ⋅⋅= , 

the probability of beginning a query with state type s and cluster 

symTempoTrans, . 

4.4 Modulation and Tempo Changes 
Modulation and tempo changes are modelled as transitions 
between clusters. We denote the probability of modulating by x 
semitones on the ith target event as PModu(i, x) (again defined over 
the range -5≤x≤+6). The probability of a tempo change of x 
quantization units is denoted PChange(i, x), allowing for a halving to 
doubling of tempo with -4≤x≤+4. 
Here are possible methods for the calculation of PModu: 

1. In our current implementation, we simply a apply a 
normal distribution over PModu centred at x=0, assuming 
that it is most likely a singer will not modulate on every 
note. The distribution is fixed across all events. 

2. We may wish to take advantage of some additional 
musical context. For instance, we have noted that 
singers are more likely to modulate for a large pitch 
interval. 

We have observed no clear trend in tempo changes. Again, we 
simply define a normal distribution centred at x=0. 
Given these definitions, we can now describe the transition table 
A’ for the refined hidden states, incorporating cluster transition 
probabilities: 

ℜ→+−×+−××+−×+−× ]4,4[]6,5[]4,4[]6,5[:' SSA  
















−

⋅













−⋅

=

4444 34444 21

44 344 21

change Tempo

sitionin transpo change  theis n""Modulatio

,,,,

,

,

'

xy

ysymyxsymx

symsymChange

xyModuxy

TempoTransyTempoTransx

TempoTempoiP

TransTransiPa

a  

where i is the index in the target referenced by state y. Consider 
for instance the transition 2,5,1,3, 3

2
1 ++→++ SameJoin . This 

represents a whole-tone modulation of +2 and a tempo increase of 
+1, along with a transition to the Same3 state type. The probability 
of the transition is therefore: )1,3()2,3()3( +⋅+⋅ ChangeModuSame PPP . 

4.5 Local Pitch and Duration Errors 
These errors are modelled in the probabilistic mapping from 
hidden state to observation (or query note.) We define PPError(i, x) 
as the probability of a pitch error x on the ith target event, and 
PRError(i, x) as the similar concept for IOI error, in quantization 
units. 
Here are possible methods for determining PPError: 

1. In our current implementation, we simply apply a 
normal distribution, centred at x=0. 

2. Downey and Nelson [19] notes certain tendencies in 
pitch error depending on pitch interval. We can thus take 
advantage of intervallic context in building pitch error 
distributions. 

Again, we have not as yet determined a clear trend in rhythmic 
error. In our current implementation we apply a normal 
distribution over PRError centred at 0, though we believe an 
examination of the relationship between duration and error 
deviation might be fruitful. 

4.6 Generation of Queries Using Model 
For experimentation, we generate synthetic queries, while varying 
model parameters. The process is straightforward: 

1. Choose an initial state type, tempo scaling and 
transposition from the distributions πs, πTrans and πTempo 
respectively. 

2. Generate a sequence of hidden states using the Markov 
transition matrix model A’, of some predetermined 
length. For each hidden state, generate a query event 
using the local error distributions, PPError and PRError, and 
given the states’ tempo and transposition values. 

Original (transposed)

Query

modulation

local pitch error

 
Figure 9: Portion of query from "American National 

Anthem”, examples of modulation and local pitch error 

4.7 Observation Probability 
Combining all of these factors, we now describe the probability of 
an observation (query note) given a state 

symt TempoTranssq ,,= . 

Using the procedure described in Section 4.2.3, we generate a pair 
of events 

targettarget IOIsymPC ,  and 
queryquery IOIsymPC , . Given 

an “ideal” mapping from state to query event, we would expect: 

used scales log  theof because "compatible" are pairs These

,
, 4444 34444 21

↑

++
=

symtargettarget

idealideal

TempoIOIsymTransPC
IOIsymPC

 

Given these ideal values, we calculate the local error values: 

idealqueryidealquery IOIsymIOIsymRErrorPCPCPError −=−= ,  

The probability that qt would generate the observation 

queryquery IOIsymPC ,  is then: ),(),( RErroriPPErroriP RErrorPError ⋅ . 

We use the shorthand b(qt, ot) to refer to the observation 
probability of the relevant query events ot with respect to state qt. 
In the case of elaborations, a deterministic sequence of hidden 
states can refer to a sequence of query notes. Conceptually, we 
consider the observation probabilities of these sequences in their 
entirety. In practice, this means calculating the observation 
probability over a some segment. 

5. PROBABILITY OF A QUERY 
In music retrieval, we are primarily concerned with calculating the 
likelihood that a certain target would generate a query given the 
model. Using these likelihood values, we can then rank a series of 
potential database targets in terms of their relevance to the query. 
Conceptually, the idea is to consider every possible path through 
the hidden model. Each path is represented by a sequence of states 
Q={q1, q2,…, qT} , which has a probability equal to the product of 
the transition probabilities of each successive pair of states. In 
addition, there is a certain probability that each path will generate 
the observation sequence O={o1, o2,…, oT} (or query.) The 
probability of a query given the model (denoted λ) is: 

( ) ( ) ( )

( )
∑

∑









⋅⋅

⋅⋅
=

=

−},...,,{ all 33

22111

 all

21 132

21

),('),('
),('),(

|,||

T TTqqq TTqqqq

qq

Q

oqbaoqba
oqbaoqbq

QPQOPOP

K

π

λλλ
 

Fortunately, there is considerable redundancy in the naïve 
computation of this value. Using the standard forward-variable 



Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

algorithm [14] provides a significant reduction in complexity. We 
define a forward variable: 

( )λα ,'|,,,)'( 21 sqoooPs ttt == K  

We initialize the forward variable using the initial state 
probabilities: 

( ) ( ) ( )1111 ,'','|)'( osbssqoPs ⋅=== πλα  

By induction, we can then calculate successive values: 

( )∑
∈

++ =
Sx

tsxtt osbaxs
'

1''1 ,'')'()'( αα  

Finally, the total probability of the model generating the query is 
the sum of the probabilities of ending in each state: 

( ) ∑=
' all

)'(|
s

T sOP αλ   

5.1 Time and Space Complexity 
Based on the topology of the hidden model, and the above 
optimization, we can calculate the complexity of the forward-
variable algorithm for this implementation. Since each state type 
has non-zero transition probabilities for at most L+M-1 other 
types, this defines a branching factor (b) for the forward 
algorithm. In addition, any model can have at most bn states, 
where n is the length of the target. 
Updating the transposition and tempo probabilities between two 
state types (including all cluster permutations) requires 
k= 2)129( ⋅ multiplications given the current tempo quantization, 
and the limits on tempo change. Notice that increasing either the 
allowable range for tempo fluctuation, or the resolution of the 
quantization, results in a super-linear increase in time 
requirements! 
So, at each induction step (for t=1,2,…), we require at most knb2 
multiplications. As such, given a target of length n and a query of 
length T, the cost is O(knb2T). Clearly, controlling the branching 
factor (by limiting the degree of join and elaboration) is critical. k 
is a non-trivial scaling factor, so we recommend minimizing the 
number of quantization levels as far as possible without overly 
sacrificing retrieval performance. 

6. SIMULATION RESULTS 
This error model is intended to serve in the context of a music-
information retrieval model. It is comprehensive in the sense that 
it expresses the full range of transformations observed in the pitch 
and IOI domains for queries. Its usefulness, however, lies in the 
ability to discriminate among various hypotheses about the source 
of a query. It has been shown that even a small number of errors 
can lead to (fatally) low discrimination between targets [16]. We 
contend that our subtler, probabilistic model of query errors can 
lead to greater precision in music searches, even when significant 
error is introduced. We used synthetically generated queries to 
demonstrate this claim, over a database of 100 classical/romantic 
themes taken from a musical thematic catalogue [2]. We set the 
model parameters as follows: 

• We allow joins and elaborations up to order three, with 
fixed probabilities as described in Section  4.2.1. 

• We apply normal distributions over each of the 
remaining parameters discussed in the paper, examining 
the effect of error variance for modulation, tempo 
change, local pitch error, and local IOI error. 

Each parameter setting corresponds, roughly, to a level of singer 
ability. As we increase the λ-values, the distribution flattens, so 
that our synthetic singers become increasingly likely to introduce 
increasingly dramatic error to the query. For each of these 
“singers,” we generated 30 queries according to the current model 

settings (and the procedure described in Section 4.6), based on 
randomly chosen database targets. The queries are limited to a 
length of 12 notes, to prevent “default” matches for longer 
queries: such queries might be feasible only against models with 
longer underlying targets. We then posed these queries to the 
model database, evaluating performance based on the likelihood 
rank of the correct model. 
Each synthetic singer is associated with a particular cumulative-
error profile, and a particular non-cumulative-error profile. The 
error distributions associated with these profiles are shown in 
Figure 10 and Figure 11, respectively. The probability of changing 
tempo is with respect to a “tempo change factor” where, for 
instance, 2.0 is a doubling of tempo between two note events. 
Similarly, rhythmic error is shown as a factor of the original IOI 
value. 

0.5 1 1.5 2
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Tempo Change Factor

Pr
ob

ab
ili

ty
 (l

og
 s

ca
le

)

-6 -4 -2 0 2 4 6
10

-25

10
-20

10
-15

10
-10

10
-5

10
0

Modulation Amount

Pr
ob

ab
ili

ty
 (l

og
 s

ca
le

)

Profile 2 Profile 2

 
Figure 10: Cumulative Error Profiles (Profile 1 has no 

cumulative error) 

-6 -4 -2 0 2 4 6
10

-25

10
-20

10
-15

10
-10

10
-5

10
0

Error (pitch-class)

Pr
ob

ab
ilit

y 
(lo

g 
sc

al
e)

0.5 1 1.5 2
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

Error (IOI factor)

Pr
ob

ab
ilit

y 
(lo

g 
sc

al
e)

Profile 2

Profile 1

Profile 3Profile 2

Profile 1

Profile 3

 
Figure 11: Non-Cumulative Error Profiles 

Notice that the first cumulative-error profile allows for no error of 
this type, thus singers with this profile are assumed not to 
modulate or change tempo. For each singer profile, we indicate the 
number of queries for which the correct target is ranked first, 
ranked at least fifth, and ranked at least tenth. In addition, we 
indicate the Mean Reciprocal Rank (MRR), a standard measure 
used in the Text REtrieval Conference (TREC) benchmarks [21]. 
The “rank” in question is that of the highest rated relevant result. 
In these experiments, only one target is considered relevant to 
each query--the target generating the synthetic query--and, as a 
result, we simply take the reciprocal of that target’s rank. 
Cumulative 

Error 
Profile 

Non-
Cumu. 
Profile 

#  
ranked 

first 

# 
ranked 
<= 5th  

# 
ranked 
<= 10th  

MRR 

1 1 30 30 30 1.0 
1 2 30 30 30 1.0 
1 3 29 30 30 0.983 
2 1 29 30 30 0.983 
2 2 29 30 30 0.975 
2 3 27 28 30 0.920 

Even when substantial error is introduced, discrimination remains 
robust. For instance, our final synthetic singer is more likely than 
not to introduce some local and cumulative error on every event of 
the query, but nonetheless the error model favours the correct 
target in 27 of 30 queries. 



Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

We define a database entry as “problematic” if it is either a false 
positive (ranked higher than the correct target) or a false negative 
(ranked lower than an incorrect target). In our experiments, we 
identified 20 such entries. In order to study the interactions among 
these entries in greater depth, we ran another experiment using 
only these problematic cases in our database. Using the most 
error-prone singer model (cumulative profile 2 and non-
cumulative profile 3), we generated ten queries for each of these 
entries, and calculated the likelihood that each of the 20 problem 
models generated the query. The mean likelihoods of these 
query/target comparisons are shown in a confusion matrix (Figure 
12). Probabilities are shown on a logarithmic scale, since there are 
orders of magnitude difference between values (an ‘X’ indicates 
that a particular comparison had the highest mean probability.) In 
addition, the probabilities for each query are normalized such that 
the highest ranked target has a probability of one. 

-35

-30

-25

-20

-15

-10

-5

0

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

Query Number

Ta
rg

et
 N

um
be

r

Mean Log Likelihood

 
Figure 12: Confusion Matrix for Problematic Entries 

The confusion matrix shows that, on average, the correct model is 
the most likely candidate for all queries, shown by the strong 
diagonal. This suggests that we need not expect uniformly poor 
discrimination for any particular target. More significantly, the 
model tends to favour correct targets over spurious matches by 
orders of magnitude (a factor of over 104 between probabilities on 
average). The MRR value for this set of queries was 0.938, though 
we must emphasize that this is across a smaller database. 

7. EXPERIMENTAL RESULTS 
To get anecdotal evidence on the ability of our model to 
characterize real singing tendencies, we ran some highly 
preliminary experiments on a small set of queries by five subjects, 
one a professional musician (subject A) and all others without any 
special musical training (subjects B-E). Each subject was asked to 
sing passages from four well-known songs, shown in Figure 13. 
Each passage was repeated twice from memory, and twice after 
hearing a piano rendition of the passage, for a total of 16 queries 
per subject. We augmented our thematic database with the four 
relevant targets for the purpose of these experiments. The sung 
queries were transcribed according to the process outlined in 
Figure 8, using manual note segmentation and automated pitch 
extraction. 
In the absence of sufficient training data for the model, we simply 
used a liberal parameterization, using cumulative error profile 2 
and non-cumulative error profile 3. We plan to extensively train 
our error model based on broad classifications of singer, to further 
improve performance. However, even without the benefit of 
training, we achieved solid performance on the test database for 
all subjects (MRR = 0.949), returning the correct target first for 75 
of 80 queries. 


"Hey Jude" by John Lennon and Paul McCartney 

"Lullaby", trad.

                    
7 

"Do-Re-Mi", by Rogers and Hammerstein

                    
12 

"The Sound of Music", by Rogers and Hammerstein

       
           

Figure 13: Queries 
Table 1: Experimental Results 

 Rank of Correct Target  
 Hey Jude Lullaby Do-Re-Mi Sound of… MRR 
A 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 

1.0 

B 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 1 1 

1.0 

C 1 1 2 18 1 1 1 1 
 1 1 1 1 1 1 1 1 

0.909 

D 1 1 1 1 1 1 1 1 
 1 1 1 1 1 1 4 1 

0.953 

E 1 1 17 18 1 1 1 1 
 1 1 1 1 1 1 1 1 

0.882 

 Overall 0.949 
  

1 1  Before hearing passage 

1 1  After hearing passage 

 
The “Lullaby” was problematic for Subjects C and E. Subject C 
was initially unable to remember the rhythm, though he had a 
rough recollection of the melodic contour. Subject E was unable to 
remember the melodic contour, though he convincingly 
reproduced the rhythm. After hearing the passage, both singers 
sang queries resulting in correct matches. Subject D’s “Sound of 
Music” was occasion for the only other error in these experiments. 
Her third rendition was considerably slower than the version in 
our database. 
With the real queries, we observe much lower probabilities on 
spurious matches, as well. In cases where we did have a correct 
match, the second most likely target was assigned a probability on 
average 1/1017 times the probability of the correct target. For this 
reason, we are optimistic about this model’s ability to scale up to 
much larger databases. 

8. FUTURE WORK 
Even with the generalizations described in this model, a large 
number of parameters remain. We are currently gathering query 
data to train the model, as more in-depth evaluations of 
performance on non-synthetic queries will be essential. Various 
important questions remain to be answered, such as the following:  

• What is the effect of query representation, for instance 
using a conventional note representation rather than 
pitch-class? 

• How can we best tie parameters for training? For 
efficient training, how many equivalence classes can (or 
should) be established? 

• HMMs are amenable to “frame-based” representations, 
which would allow us to bypass the note-segmentation 
stage of query transcription. Instead of modeling the 
query as a sequence of discrete note events, it is 
represented as a sequence of fixed-width time-frame 
analyses. Each state in the target model then has an 
associated distribution over duration – the probability of 
remaining in the state for some number of time-frames. 
We would like to explore the effectiveness of this 



Johnny Can’t Sing: A Comprehensive Error Model for Sung Music Queries 
 

approach, particularly with regards to the tradeoffs 
between time and retrieval performance. 

• We will shortly be integrating an automatic note-
segmenter, currently being developed at the University 
of Michigan, which uses a simple neural-network to 
classify query analysis frames. 

Finally, tests on much larger databases will be necessary. While 
we believe that meta-data in the query process (genre, era, 
instrumentation) will allow us to restrict searches to a subset of a 
database or library, it is reasonable to assume that a large number 
of targets will be relevant to many searches.   

9. ACKNOWLEDGMENTS 
We gratefully acknowledge the support of the National Science 
Foundation under grant IIS-0085945, and The University of 
Michigan College of Engineering seed grant to the MusEn project. 
The opinions in this paper are solely those of the authors and do 
not necessarily reflect the opinions of the funding agencies. 
We would also like to thank members of the MusEn research 
group for comments and advice. This group includes Greg 
Wakefield, Bryan Pardo, Norman Adams, and Mark Bartsch. 

10. REFERENCES 
[1] L. R. Bahl, F. Jelinek, and R. L. Mercer. A maximum 

likelihood approach to continuous speech recognition. IEEE 
Journal of Pattern Analysis and Machine Intelligence, 1983. 

[2] H. Barlow and S. Morgenstern. A Dictionary of Musical 
Themes. Crown Publishers, 1948. 

[3] M. Bartsch and G. Wakefield. To catch a chorus: Using 
chroma-based representations for audio thumbnailing. In 
WASPAA01. 

[4] W. Birmingham, B. Pardo, C. Meek, and J. Shifrin. The 
musart music-retrieval system. D-Lib Magazine, 2002. 

[5] P. Boersma. Accurate short-term analysis of the fundamental 
frequency and the harmonics-to-noise ratio of a sampled 
sound. In Proceedings of the Institute of Phonetic Sciences. 

[6] A. Durey. Melody spotting using hidden Markov models. In 
Proc. of International Symposium on MIR, 2001. 

[7] W. Birmingham et al. Musart: Music retrieval via aural 
queries. In Proc. of International Symposium on MIR, 2001. 

[8] B. J. Feng. The Structured Composite Source Representation. 
PhD thesis, University of Michigan, November 2001. 

[9] Stefan Kurtz. Foundations of sequence analysis. 
citeseer.nj.nec.com/kurtz01foundations.html, 2001. 

[10] K. Lemstrom. String matching techniques for music retrieval. 
Technical report, University of Helsinki, 2000. 

[11] D. Mazzoni. Melody matching directly from audio. In Proc. 
of International Symposium on MIR, 2001. 

[12] B. Pardo and W. Birmingham. Automated partitioning of 
tonal music. In Proc. of FLAIRS 2000. 

[13] E. Pollastri. An audio front end for query-by-humming 
systems. In Proc. of International Symposium on MIR, 2001. 

[14] L. R. Rabiner. A tutorial on hidden markov models and 
selected applications in speech recognition. In Proc. of the 
IEEE, 1992. 

[15] J. Shifrin, B. Pardo, C. Meek and W. Birmingham. HMM-
based musical query retrieval. In Proc. of Joint Digital 
Libraries Conference, 2002. 

[16] T. Sorsa. Melodic resolution in music retrieval. In Proc. of 
Symposium on MIR, 2001. 

[17] E. Terhardt and W. D. Ward. Recognition of musical key: 
Exploratory study. J. Acoust. Soc. Am., 1982. 

[18] E. M. Voorhees and D. Harman. Overview of the fifth text 
retrieval conference. In The Fifth Text REtrieval Conference, 
1996. 

[19] S. Downie and M. Nelson. Evaluation of a Simple and 
Effective Music Information Retrieval Method. Proc. ACM-
Sigir Conference, Athens, Greece. 

[20] Mongeau, M.,Sankoff,D., Comparison of Musical Sequences, 
Computers and the Humanities 24,Kluwer Academic 
Publishers 1990, 161-175. 

[21] Text REtrieval Conference Web Site. http://trec.nist.gov.

 


