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ABSTRACT

We present an efficient and scalable system that indexes
acoustic music data for content-based music retrieval. Both
the music database and input queries are given in raw audio
formats without metadata or other symbolic information; re-
trieval is targeted at music pieces which are “similar” to the
query sound clip.

Our framework is designed as a series of modular pipeline
stages and phases. Each music file entering the pipeline is
transformed into spectrogram vectors and then into char-
acteristic sequences, representing small segments of audio
features that can tolerate some noise and tempo variations.
These sequences are placed in a high-dimensional indexing
structure. Retrieval results from the index are ranked based
on alignment of short matching segments. Fach module of
the framework can be independently changed or replaced,
and we study their effects by a set of experiments.

1. INTRODUCTION

Past research on content-based music retrieval has primarily
focused on symbolic data rather than acoustic data. With
symbolic data representation of music, the data file keeps
track of each note’s pitch, duration (start time/end time),
strength, as well as other pertinent information. Examples
of such representations include MIDI and Humdrum, with
MIDI being the most popular format. Many operations on
such data are variations of string matching methods. With
acoustic data representation, however, no information about
individual notes is given; only audio intensity values are
recorded as a function of time, sampled at a certain rate,
often compressed to save space. Examples include .wav, .au
and MP3. Symbolic music data can be synthesized into au-
dio signals easily, but there is no known algorithm to do re-
liable conversion in the other direction (i.e., music transcrip-
tion from raw acoustic signals). Therefore, content-based
music retrieval on acoustic data would require a new set of
techniques that differ significantly from symbolic music data
retrieval algorithms.

Because the majority of music data available on the internet
are represented in one of the acoustic formats, it 1s important
to have search and retrieval algorithms on such data. Po-
tential applications include automatic music identification,
music analysis, plagiarism detection, copyright enforcement,
etc. A truly content-based music retrieval system should
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have the ability to find similar songs based on their underly-
ing score or melody, regardless of their metadata description
or file names.

Most music pieces have multiple notes occurring simultane-
ously, a scenario known as polyphony. Polyphony is handled
in symbolic representations by allowing the notes’ timings
to overlap. In acoustic representations, polyphony results in
signals that are the sum of signals that would have been gen-
erated by individual notes. With access only to the final sum
of signals, not individual components, it is very difficult to
reconstruct the individual notes from polyphonic audio. For
decades people have been trying to design automatic tran-
scription systems that extract musical scores from raw audio
recordings, but have only succeeded in monophonic and very
simple polyphonic cases [2, 4, 14], not in the general poly-
phonic case. In our work, we deal with polyphonic music
data without attempting transcription.

2. BACKGROUND

Much of previous work on content-based music retrieval falls
into two categories: symbolic query on a symbolic database,
or monophonic acoustic query on a symbolic database.

e Symbolic query on a symbolic database: Both the query
and the underlying database are in symbolic formats,
such as MIDI and Humdrum. Retrieval problems on such
symbolic data can typically be addressed by methods de-
rived from text searching techniques. Several systems
of this type have been implemented, including the The-
mefinder project (http://www.themefinder.org), where
the symbolic database can be searched using pitch se-
quences, intervals, approximate contours, etc.

o Monophonic acoustic query on a symbolic database: This
problem, also known as Query by Humming or QBH,
has received considerable attention during the past few
years [3, 5, 7, 8, 11, 12]. In such systems, the input
query is typically a user-hummed melody through a mi-
crophone, and the melody is analyzed and matched against
a symbolic database. Human-hummed tunes are mono-
phonic melodies and can be automatically transcribed
into pitches with reasonable accuracy. In order to com-
pensate for possible inaccuracies of human-hummed tunes,
some systems use approximate contour information (up,
down, etc) or beat information to aid the retrieval pro-
cess.

Both of these categories deal with symbolic music databases.
New methods need to be developed to handle acoustic music
databases. Our research focuses on similarity retrieval from
a polyphonic acoustic database in response to a polyphonic
acoustic query. Related work in this area can be catego-
rized based on different definitions of “similarity,” which are
discussed next.
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2.1 Music Similarity Definitions

There is no consensus on the exact meaning of music sim-
ilarity, and it can be defined over a broad continuum, as
in Figure 1. On one extreme, we can regard only identi-
cal digital copies of music as “similar,” and anything else as
dissimilar. With this definition, the music retrieval problem
reduces to a generic data retrieval problem, which can be
achieved through regular hashing and indexing techniques.
Alternatively, we can tolerate some distortions due to sample
rate change, compression, or noise, and still regard the re-
sults as similar. Or, we can tolerate changes in instruments,
vocal parts or tempo, and still regard the results as similar,
as long as the musical “score” remains unchanged. On the
other extreme, we can totally disregard the score, and define
similarity as “within the same genre” - a somewhat subjec-
tive notion. The difference in similarity definitions brings
about different directions in music retrieval research.

“Fingerprinting” techniques focus on finding music record-
ings that are almost identical while tolerating small amount
of noise distortions [1]. The central idea is to extract some
representative “digital signatures” from the acoustic data
which can be hashed and retrieved efficiently. Several propri-
etary systems have been developed at companies such as Re-
latable (http://www.relatable.com), which is working with
Napster on implementing music file filters to enforce copy-
right protection, and *CD (http://www.starcd. com), whose
music identification system tracks songs played on radio sta-
tions and provides users with identification results.

Genre classification techniques focus on classifying music
data (sometimes speech data or other forms of audio data)
based on high-level properties such as energy distribution,
timbre features, brightness, texture, rhythmic patterns, and
so on [13, 15, 16, 17]. In many cases, machine learning
techniques such as automatic clustering are employed during
training.

Somewhere between fingerprinting approaches and genre clas-
sification approaches, there is a large area which remains
mostly unexplored. The corresponding similarity definition
involves similarity in musical scores, regardless of tempo, in-
strumentation or performance style. This definition reflects
an intuitive notion of “same song” as perceived by human
listeners. We focus on this definition here.

2.2 Problem Statement

Informally, our problem can be defined as: given a query
music clip in raw audio format, find similar pieces from the
audio database, where similarity i1s based on the intuitive
notion of similarity perceived by humans: two pieces are
similar if they are fully or partially based on the same score,
even if they are performed by different people or at different
tempo. Retrieval results should be a list of songs ranked by
computed similarity estimate.

We identify five different types of “similar” music pairs, with
increasing levels of difficulty:

e Type I: Identical digital copy

o Type II: Same analog source, different digital copies, pos-
sibly with noise

e Type llI: Same instrumental performance, different vocal
components

e Type IV: Same score, different performances (possibly at
different tempo)

e Type V: Same underlying melody, different otherwise,
with possible transposition

The first two types overlap with what existing fingerprinting
techniques can handle. Our objective is to handle the other
similarity types as well as the first two.

Foote [6] experimented with this kind of music similarity
detection by matching power and spectrogram values over
time using a dynamic programming method. He defined a
cost model for matching two pieces point-by-point, with a
penalty added for non-matching points. Lower cost means a
closer match in the retrieval result. Test results on a small
test corpus indicated that the method is feasible for detecting
similarity in orchestral music. In our previous work [18] we
also employed a dynamic programming matching approach
based on a cost model, but preprocessed the signals to iden-
tify peaks and only matched spectrograms near the peaks.
Furthermore, we used some linearity filtering criteria to dis-
tinguish between a good match and a bad match. Both of
these approaches lack scalability, and performance deteri-
orates rapidly when the database gets large. To address
this issue, we proposed a prototype system using spectral
indexing [19], and further developed it into a scalable frame-
work known as MACSIS (Music-Audio Characteristic Se-
quence Indexing Systemn) [20]. The framework involves multi-
ple pipeline modules which can be independently redesigned
and replaced. In this paper, we study the effects of several
design choices involving such modules.

3. ACOUSTIC INDEXING FRAMEWORK

Figure 2 shows the basic structure of our index-based re-
trieval system, MACSIS. It consists of three phases, which
are summarized below:

e Phase 1 (preprocessing phase): Raw audio is converted
into “indexable” items known as characteristic sequences,
which can be viewed as points in a high-dimensional vec-
tor space with an appropriate distance measure. FEach
characteristic sequence represents a short segment of mu-
sic data. Both the audio database and the query are pro-
cessed in this way. This phase can be further divided
into a pipeline of multiple steps: from raw audio to spec-
trum; from spectrum to event vector; from event vector
to characteristic sequence. Each step in the pipeline can
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Figure 2: Structure of MACSIS

be implemented in different ways, leading to different re-
sults.

e Phase 2 (indexing / lookup phase): Characteristic se-
quences for the audio database (generated by Phase 1)
are indexed in a high-dimensional indexing scheme known
as Locality-Sensitive Hashing, or LSH [9]. This scheme
runs many hashing instances in parallel; in each instance,
the vector is hashed by a function so that similar vectors
are “likely” to be hashed to the same value, with a certain
probability. At query time, characteristic sequences for
queries are looked up in the LSH index to get matching
items.

o Phase 3 (retrieval phase): Matches on characteristic se-
quences are pieced together to find “global” matches.
During retrieval, a characteristic sequence from a query
may match many different items in the database; it may
even have multiple matches within the same music piece,
since many music patterns tend to repeat itself. Possi-
ble tempo changes add to the complexity of the prob-
lem. We make use of the fact that tempo changes must
be uniform in time, and discuss two different methods

(Linearity Filtering vs. Hough Transform) to determine
“global” matches based on partial matches of character-
istic sequences.

At query time, the pipeline in Phase 1 can take real-time au-
dio as input and produce characteristic sequences for lookup
and retrieval on-the-fly.

Each phase has several design choices which affect final per-
formance. In the following sections we discuss such choices.
For a detailed treatment of algorithms please refer to [20].

3.1 Generation of Characteristic Sequences
After decompression and parsing, each raw audio file can be
regarded as a list of signal intensity values, sampled at a spe-
cific frequency. CD-quality stereo recordings have two chan-
nels, each sampled at 44.1kHz, with each sample represented
as a 16-bit integer. In our experiments we use single-channel
recordings of a lower quality, sampled at 22.05kHz, with each
sample represented as an 8-bit integer.

This phase can be regarded as a pipeline of three subcom-
ponents.

3.1.1 From Raw Audio to Spectrum

We use the Short-Time Fourier Transform (STFT) to ex-
tract instantaneous frequency distributions from the signals.
We split each signal into 1024-byte-long segments with 50%
overlap, window each segment and perform 2048-byte zero-
padded FFT on each windowed segment. Taking absolute
values (magnitudes) of the FFT result, we obtain a spectro-
gram giving localized spectral content as a function of time.
Other types of signal processing may also be used here; in
this paper we only focus on the STFT.

3.1.2 From Spectrumto Event Vector

This step involves analyzing the spectrogram to identify sig-
nificant “events” in the recording, and to obtain a compact
representation of vectors corresponding to events. In our im-
plementation described below, “events” are defined as peaks
in signal power.

1. Plot the instantaneous power as a function of time.

2. Identify peaks in the power plot, where peak is defined as
a local maximum value within a neighborhood of a pre-
defined size. This definition helps remove certain bogus
local “peaks” which are immediately followed or preceded
by higher values. Intuitively, these peaks roughly corre-
spond to distinctive notes or rhythmic patterns, but with
some errors, which will be compensated later.

3. Extract frequency components near each peak. We take
180 samples of frequency components between 200Hz and
2000Hz. Average values over a short time period follow-
ing the peak are used in order to reduce sensitivity to
noise and to avoid the “attack” portions produced by cer-
tain instruments (short, non-harmonic signal segments at
the onset of each note). This step generates a list of 180-
dimensional vectors.

4. Convert each 180-dimensional vector u; into a more com-
pact representation of # dimensions. We give two alter-
natives here:

o Comb method: For each 180-dimensional vector uy,
convert it into a fF-dimensional vector v; that rep-

resents (3 different pitch levels: vy (K =1,...,0)
represents the pitch pr Hz and is defined by: v, =
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Figure 3: Construction of Characteristic Sequences

Z?=1 Gjipy, where Gj ip, is the frequency compo-
nent of vector u; at frequency ipr Hz. This step
effectively convolves the original spectrum with a
family of comb-like filters. The result is a list of
fA-dimensional vectors, v;, 3 = 1,2,... ,n, where n
is the number of peaks obtained. Intuitively, each
vector estimates the pitch distribution at the corre-
sponding time instant.

o Cepstrum method: For each 180-dimensional vec-
tor u;, take logarithm and perform another Fourier
Transform on it. The result is a list of cepstrum co-
efficients. We take a subset of § coefficients from it
to form a f-dimensional vector v;.

The final list of vectors v;, 3 = 1,2,...,n, are the “event
vectors” that represent n events determined by power peaks.

3.1.3 From Event Vector to Characteristic Sequence
Event vectors only give information on instantaneous spec-
tral contents around each event; they do not specify how the
music progresses. To capture information on rhythm and
music progression, we put together a series of event vectors
to construct “characteristic sequences.”

When peaks (events) are detected in the previous step, we
keep track of time offsets of the n peaks, t1,%5,... ,t,, and
define Vr to be the event vector vy such that tx < 7 < tr41,
i.e., the last peak no later than time 7. It follows that V;, =
v;, and V; is undefined for 7 < ¢;.

With this notation, we construct a set of characteristic se-
quences as follows: for any two nearby peaks which are sep-
arated by fewer than /) other peaks, identify a sequence
of “follow-up” peaks which maintain roughly equal distance
from each other, starting from the two original peaks. The
process is illustrated in Figure 3.

Formally, a characteristic sequence is given by

{Usa Vs+d, ‘/ts+2(f5+d—ts)a V:s+3(ts+d—t3); sy

Vit (M=)t ga—t)}

where M is the predefined length of each sequence, s is the
starting point, which ranges over all possible indexes, and
d is the bracketing control, which takes on small integer
values in the interval [1, D]. Note that if each v vector is
f-dimensional, the dimensionality of each characteristic se-
quence is 3 M.

vector ‘OAS 1114090620081112051712

N

Figure 4: Multiple hashing instances with indepen-
dent hash tables

For the example in Figure 3, the sequence with d = 1 is
{v1,v2, v3, v3, v4, v6 }, which does not align well with the beat
(due to the bogus peak v5); on the other hand, the sequence
with d = 2 is {v1, vs, va, ve, v7, vs}, which aligns perfectly
with the beat. If each v vector is f-dimensional, each length-
6 sequence here is 63-dimensional. The purpose of having
the bracketing control d € [1,D] is to offset the effects of
possible bogus peaks that survived step 2 in Section 3.1.2,
such as vo here.

3.2 Indexing

Each characteristic sequence generated by Phase 1 is a high-
dimensional vector and can be indexed. The design goal of
such an index is to facilitate retrieval of “similar” vectors,
where similarity is indicated by high correlation along a sub-
set of dimensions. Given a query vector, a Locality-Sensitive
Hashing scheme (LSH) [9] is a fast probabilistic scheme that
returns approximate matches with controllable false positive
and false negative rates.

Figure 4 illustrates our LSH implementation. It consists of
many different “hashing instances,” where each hashing in-
stance i1s designed to map vectors into hash values so that
“similar” vectors are hashed into the same hash value with
high probability. Fach hashing instance has its own hash ta-
ble to store hash values as well as the corresponding pointers
to original vectors. If two vectors are truly similar, their hash
values are likely to agree in many of such instances. There-
fore, when we process a query lookup from the hash tables,
we focus on those vectors that match the query on many
different hashing instances.

The key to the design is to find a family of hashing instances
so that “similar” vectors can be hashed into the same hash
value with high probability. In our hashing design, each raw
vector first goes through a simple dimensionality-reduction
routine which picks a random subset of its dimensions. Then,
the sampled dimensions are normalized (to zero mean and
unit variance) and passed through a low-resolution quantiza-
tion grid, so that each dimension is quantized and converted
into a small integer. Finally, the resulting vector of integers
is passed through a universal hashing function in which each
dimension is multiplied by a random weight and their sum
is taken to form the final hash value, modulo the number of
hash buckets.

All the random parameters (dimension samples, quantization
grid lines, hashing weights) are pre-generated and fixed for
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Figure 5: Illustration of Linearity Filtering

each hashing instance, but vary across different instances. If
two raw vectors are “similar,” i.e., with a high correlation co-
efficient with sampled dimensions, it can be shown that they
must be close to each other in Euclidean space with these
sampled dimensions after normalization [21], so they have a
good chance of being mapped to the same point after quan-
tization. Of course they may also be unlucky and happen to
lie across the quantization grid lines even though they are
close to each other. In such cases they will not be mapped
to the same hash value. However, since we have many hash-
ing instances running in parallel, there is a high probability
that they would be mapped to the same hash value in several
such instances. Such probabilities cannot be quantitatively
analyzed without an exact mathematical definition of the
similarity measure. However, the above reasoning suggests
that similarity between raw vectors can be represented by
the number of hashing instances that they match in terms
of hash values.

In our experiments in Section 4, we will study the effects of
adjusting the number of dimension samples, as well as the
quantization grid size.

3.3 Alignment Analysis

Each characteristic sequence represents a short segment of a
music piece. To find similar music given a query, we break
down the query into a set of characteristic sequences and
perform an index lookup. FEach lookup may generate a set
of matches. Our task in this step is to interpret the set of
short segment matches to determine which music piece is
the “global” match. The key fact to be used here is that a
global match must have a set of short segment matches that
are well aligned; tempo changes must be uniform in time.

Each match between two music pieces s and r contains a tu-
ple (query-offset, matching-offset) which indicates time off-
sets of the two matching points. If we plot a 2-D graph
with the matching time points of s on the horizontal axis vs.
the corresponding points of r on the vertical axis, a “good”
match would contain a straight line while a “bad” match
would not. Without tempo change, the straight line should
be at a 45-degree angle. With possible tempo change, the
line will be at a different angle, but it still should be straight.

We discuss two different methods to find out how well two
pieces match: Linearity Filtering and Hough Transform.

3.3.1 Linearity Filtering
Linearity Filtering is illustrated in Figure 5. We examine
the 2-D graph of matching points, fit a straight line through
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Figure 6: Illustration of Hough Transform

the points (using least mean-square criteria), and check if
any points fall too far away from the line. If so, remove the
most out-lying point and fit a new line through the remain-
ing points. Repeat the process until all remaining points lie
within a small neighborhood of the fitted line. (In the worst
case, only two points are left at the end. But in practice we
stop when too few points remain.)

The total number of matching points after this filtering step
is taken as an indicator of how well two pieces match.

3.3.2 Hough Transform

Hough Transform is a computer vision technique that locates
“hidden” lines or shapes from an image [10]. We use it here
to help us locate the straight line hidden in the 2-D matching
plot.

In Figure 6, the top graph shows a possible plot with match-
ing points. The longest “line” (starting at (3,1) at a 45-
degree angle) corresponds to the actual match, while possi-
ble shorter lines (such as the parallel one to the right) are
results of repeated patterns common in real-world music.
Other scattered points are due to error or random matches.
Each point has an associated weight, which indicates confi-
dence of the match (obtained from the previous step).
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To find the hidden straight line from the matching plot, we
model the hidden straight line by the equation r = as + b,
where r and s are the matching time offset values of two
music pieces. The values of a and b are estimated in the
following way: each matching tuple (so, 7o) votes (with its
own weight) for a set of possible (a, b) values that satisfy ro =
aso +b. In this case, each matching tuple votes for a straight
line in (a, b) space. After all matching tuples cast their votes,
the (a,b) pair that receives the highest vote becomes the
winner. If the vote is large enough, then we conclude that
r = as + b is the hidden straight line we are trying to find.
The bottom graph of Figure 6 illustrates the voting process.
This vote can also be used to measure confidence in matching
these two music pieces.

4. EXPERIMENTS

Experiments have been conducted on a database of 2,000
minutes of music recordings. Our data collection is done in
two ways, by digitally ripping CDs into .wav format, and
by recording CDs or tapes into PCs through a low-quality
microphone. The latter is intended to add some realistical
noise to test the system’s robustness and performance in a
practical environment. Both classical and modern music are
included, with classical music being the focus. Queries are
given in 30- to 60-second clips.

Five types of similarity are defined according to Section 2.2.
Type I is the easiest (identical digital copies) while Type V
is the most difficult (similarity in melody). Sound samples
of each type can be found at the website http://www-db.
stanford.edu/"yangc/musicir/. “Correct” similarity pairs
(based on the music title) are hand-annotated in the database
for evaluation purposes, but are not made available to the re-
trieval algorithm. For each query, the retrieval engine ranks
candidate items from the database. If the “correct” answers
appear within the top 5 matches, then 1t 1s considered cor-
rect. For each similarity type, retrieval accuracy is defined
as the percentage of “correct” answers returned.

Our result graphs are based on a set of 220 queries. Both
classical and modern music queries are used. Because LSH
indexing is probabilistic in nature, each run may generate a
slightly different result due to random initializations. There-
fore, we run queries multiple times with different random
seeds, and average the results. Due to the lack of standard-
ized testbed collections among music retrieval researchers,
we are not able to provide performance comparisons with
other systems.

As we discussed in Section 3, the MACSIS framework con-
sists of many modular components that can be independently
modified to affect performance. In this section, we focus on
the following variable components; each component has a
default choice when we modify other components:

e At query time, one way to speed up retrieval is to process
only a small sample of characteristic sequences from the
query rather than the entire query. The samples can be
taken randomly with a fixed sampling rate. We evaluate
performance with different query-sampling rates. Default
choice: sampling rate = 5%.

e After peaks are extracted during event detection, we com-
pare two methods to construct event vectors: the comb
method and the cepstrum method, as described in Sec-
tion 3.1.2. The dimensionality of event vectors, £, is
an adjustable parameter. Default choice: comb method,

8= 24.

e During construction of characteristic sequences described
in Section 3.1.3, we adjust the following parameters: se-
quence length M and bracketing control ). Default choice:
M=6,D=3.

e During each LSH instance described in Section 3.2, we
adjust the number of dimension samples and quantization
grid size. Default choice: number of dimension samples
= 8, quantization grid size = 1.2.

e During alignment analysis, we compare two methods:
Linearity Filtering and Hough Iransform, as described in
Sections 3.3.1 and 3.3.2. We study how they respond to
changes in query-sampling rate. Default choice: Hough
Transform.

Figure 7(a) shows the retrieval accuracy of using “sampled”
queries at different sampling rates. A subset of characteris-
tic sequences from the query clip is sampled at random and
fed into the retrieval engine. Five lines in the plot corre-
spond to five different similarity types. Figure 7(b) shows
the corresponding execution times in seconds for the com-
plete set of 300 test queries. The “sampled” query approach
results in a significant speedup, while not sacrificing much
in performance when the sampling rate is above 5%.

Figure 8 compares the comb method and the cepstrum method
during event vector construction, while varying dimensional-
ity (3 of event vectors. In general, the comb method performs
better and faster than the cepstrum method. With the comb
method, as event vector dimensionality is increased, accu-
racy goes up and then slightly down, but the difference is
not significant. We set the default dimensionality to be 24,
where the average retrieval accuracy is high.

Figure 9 studies the effects of changing M and D values
during construction of characteristic sequences. As [) goes
up, retrieval accuracy improves, but execution time also in-
creases, due to the increased number of characteristic se-
quences to be processed. As a compromise, we set the de-
fault D value to be 3, where execution time is not too high
and retrieval accuracy is reasonable. As M increases, exe-
cution time decreases slightly because the total number of
valid characteristic sequences goes down. However, a larger
M means less tolerance to music variation and noise. On the
other hand, a very small M may tolerate too much variation
and cause different music pieces to be returned as similar.
As a result, we choose 6 as the default value for M.

Figure 10 shows the retrieval accuracy and time when ad-
justing indexing parameters within LSH instances: number
of dimension samples and quantization grid size. A smaller
number of dimension samples leads to higher retrieval accu-
racy, because of the higher likelihood that two similar char-
acteristic sequences get hashed into the same bucket. How-
ever, execution time skyrockets as the number of dimension
samples is reduced, since the hash structure is no longer ef-
fective when too many items fall into the same hash bucket.
Same for the quantization grid size: a larger grid tolerates
more variation and makes similar sequences more likely to be
hashed into the same bucket. So a larger quantization grid
size leads to higher retrieval accuracy but longer execution
time. On the other hand, when the number of dimension
samples 1s set too small or the quantization grid size is set
too large, accuracy begins to suffer, since dissimilar charac-
teristic sequences start to appear “similar.” As a compro-
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mise between retrieval accuracy and execution time, we set
the default number of dimension samples to be 8, and the
default quantization grid size to be 1.2.

Figure 11 compares Linearity Filtering with Hough Trans-
form at different query-sampling rates. The two methods
take roughly an equal amount of time to execute. In terms
of retrieval accuracy, the Hough Transform is better, at al-
most all sampling rates. This difference is partly due to the
fact that Linearity Filtering is sensitive to outlying points in
the matching plot, and may not be able to locate the hidden
straight line when too many random points exist. Hough
Transform is more robust to this problem.

In most of our experiments, the system performs very well
for similarity types up to Type IV (same score but different
performances). Type V is not well handled, since it includes
pitch transpositions which are not taken into account with
our feature vector design.

5. SUMMARY AND FUTURE WORK

We have presented our MACSIS spectral indexing frame-
work to perform content-based music retrieval on acoustic
data with acoustic queries. The framework involves mul-
tiple modules that can be implemented in different ways.
A set of experiments have been conducted to study the ef-
fects of various design choices. Experiments have shown that
proper choice of these modules can lead to an efficient sys-
tem which detects music content similarity while tolerating
tempo changes, some performance style changes and noise,
as long as the changes are not too much and the different
performances are based on the same score.

Further study is desired to find ways to automate selection
of certain parameters to optimize performance.

Each of the three phases of the algorithm may need fur-
ther refinement. Better signal processing techniques can be
used in phase 1 to generate a more meaningful sequence rep-
resentation; improved indexing techniques in phase 2 may
further reduce false hits and speed up the lookup process;
more elaborate matching methods in phase 3 could lead to
more accurate high-level similarity estimation from low-level
matches. We are also planning to augment the algorithm to
handle more of the type-V case including transpositions.
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