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Abstract

Best-first search is a general search technique that uses an
evaluation function to determine what nodes to expand. A*
is a well-known best-first search algorithm for finding least-
cost solution paths on search problems where the cost of a
solution path is the sum of the edge costs. In this paper, we
focus on search problems where the cost of a solution path is
the maximum edge cost. We present an algorithm, MaxBF,
that is analogous to A* but meant to solve these maximum
edge cost problems.
We show that the evaluation function used by MaxBF does
not meet a condition for the admissibility of best-first search
algorithms given by Dechter & Pearl (1985). Additionally,
we show that that condition can be loosened to include the
MaxBF evaluation function without sacrificing admissibility.
Another result shows that, while many choices of heuristic
function may require A* to reopen closed nodes, a heuristic
need only be optimistic to guarantee that it is never beneficial
for MaxBF to reopen closed nodes.
Finally, we show that, although MaxBF never needs to re-
open closed nodes, it may find an alternate path to a closed
node that appears better than the original path. This implies
that a naive version of MaxBF could unnecessarily reopen
closed nodes. We give a specification for MaxBF that care-
fully avoids this inefficiency.

1 Introduction and Overview
Best-first search is a general search technique that uses
an evaluation function to decide which nodes to expand.
At any point in time, a node that the evaluation func-
tion deems “best” will be expanded. A classic best-first
search algorithm is Dijkstra’s single-source shortest-path al-
gorithm, which uses, as an evaluation function, the sum of
the edge costs from the source node to the current node
(Dijkstra, 1959).

Dechter & Pearl (1985) present an algorithm, BF*, which
implements best-first search without specifying a specific
evaluation function. BF* places two conditions on the
choice of evaluation function which allow it to take several
shortcuts and still return an optimal solution. These short-
cuts increase its efficiency over a completely general best-
first search algorithm. The well-known best-first search al-
gorithm A* is a specialization of BF*, where the evaluation
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function isf(n) = g(n)+h(n), the functiong(n) is the sum
of the edge costs on the path taken from the root ton, and
the functionh(n) is estimate of the sum of the edge costs on
a shortest path fromn to a goal node.

In this paper, we present an algorithm, MaxBF, that is
a slightly altered specialization of BF* with the evaluation
functionf(n) = max(g(n), h(n)). Whereas A* is typically
employed on problems where a complete solution path, from
the root node to a goal node, has a cost equal to the sum of
the edge costs, MaxBF is meant to be employed on problems
where the cost of a complete solution path is the maximum
edge cost. Therefore, for MaxBF, the functiong(n) denotes
the maximum edge cost on the path taken from the root node
to n, andh(n) is an estimate of the maximum edge cost on
any path fromn to any goal node.

An optimistic heuristic is sufficient for guaranteeing that
A* meets the conditions for admissibility set forth by
Dechter & Pearl (1985). We show that this is not the case
with MaxBF. Although, by demonstrating that these admis-
sibility conditions can be weakened to include more algo-
rithms, we show that MaxBF with an optimistic heuristic is,
in fact, admissible.

Additional contributions in this paper relate to MaxBF’s
behavior with respect to reopening closed nodes. Since
a node is considered closed when it has already been ex-
panded, reopening closed nodes amounts to allowing the
same nodes to be expanded multiple times. Any graph
search algorithm, including A* and MaxBF, that reopens
closed nodes runs the risk of searching large portions of the
search space multiple times. We show that it is never nec-
essary for MaxBF with an optimistic heuristic to reopen a
closed node in order to find an optimal solution. We also
show that, although it is unnecessary, a naive version of
MaxBF may reopen closed nodes. Additionally, we show
how to avoid this inefficiency.

Finally, we describe a real-world problem space for which
the cost of a solution path is the maximum edge cost. This
problem, finding the treewidth and an optimal vertex elimi-
nation order of a general graph, can be solved by MaxBF.

2 Notation and Preliminaries
The purpose of best-first search is to find a least-cost se-
quence of transitions from a start, orroot, state to agoal
state. A graph is used to represent the space that is searched,



where vertices are states and edges are transitions. In many
problems, a transition is associated with a cost. In the search
graph, this cost is attached to the corresponding edge. A
path through the search graph corresponds to a sequence
of transitions applied to successive states. Asolution path,
from the root to a goal state, corresponds to a solution to the
problem. Anoderefers to a state when reached by a par-
ticular path from the root node. If a search graph is a tree,
then there is exactly one node for each state in the problem
space. If a search graph is not a tree, then there is more than
one path to at least some states in the problem space, thus
there are multiple nodes that correspond to the same state.
Two nodes that include distinct paths to the same state are
referred to asduplicate nodes. A tree expansion of a search
graph is the tree that results from representing each node as
a distinct vertex.

When best-first search applies a transition to a node, it
generatesa new node. When a node is generated, it saves
a pointer back to its parent node. Thus, at any time in the
search, the path that is found by following parent pointers
from a generated node back to the root is referred to as the
node’scurrent path.

To remain consistent with Dechter & Pearl (1985) we use
the following notational conventions. One significant differ-
ence is that we defineg(n) in terms of a maximum edge cost
function as opposed to an additive edge cost function.

C(·) Cost function, defined over solution paths.
c(n, m) The cost of an edge betweenn andm.
f(n) Evaluation function, defined over nodes.
g(n) The maximum of the edge costs along the

current path from the root node to a noden.
h(n) A cost estimate of a cheapest path remaining

betweenn and any goal state.
k(n, m) The cost of the cheapest path fromn to m.
r Root node.

Since a path includes the node it ends on, we can substitute
a path for a node in our notation. For example, ifP is a path
from r to n, then we say thatf(P ) = f(n).

We now state several lemmas that we will use to prove
results later in the paper. The variables in the following lem-
mas are any real numbers.

Lemma 1
If a = x andb ≤ y, thenmax(a, b) ≤ max(x, y).

Lemma 2
max(a, b1, b2, . . . , bn) < max(a, c) if and only ifa < c and
bi < c where1 ≤ i ≤ n.

Lemma 3
If max(a, b) ≥ max(x, y) anda ≥ b, thena ≥ x anda ≥ y.

Lemma 4
a ≥ max(b, c) if and only ifa ≥ b anda ≥ c.

3 Prior Work
Dechter & Pearl (1985) describe a general best-first search
algorithm called BF* (see also Pearl, 1984). It uses aclosed
list to store nodes that have been expanded, and anopen list
to store nodes that have been generated but not yet expanded.

Algorithm 1 BF*
1: Insertr in OPEN
2: while OPEN is not emptydo
3: Remove a noden with minimalf(n) from OPEN and

insert it in CLOSED
4: if n is a goal nodethen
5: Exit successfully, solution obtained by tracing

pointers fromn to r
6: end if
7: Expandn, generating children with pointers ton
8: for all childrenm of n do
9: Calculatef(m)

10: if m 6∈ OPEN andm 6∈ CLOSEDthen
11: Insertm in OPEN
12: else ifm ∈ OPEN andf(m) < f -value of dupli-

cate in OPENthen
13: Remove duplicate from OPEN and insertm
14: else ifm ∈ CLOSED andf(m) < f -value of du-

plicate in CLOSEDthen
15: Remove duplicate from CLOSED and insertm

in OPEN
16: else
17: Discardm
18: end if
19: end for
20: end while
21: Exit with failure, no solution exists

An evaluation function, denotedf(n), is used to estimate
the cost of any complete solution path that extends the cur-
rent path of a noden. BF* begins with only the root node
on the open list, and it progresses with a loop that chooses
a node with thebestf -value in the open list for expansion.
The node is removed from the open list and each of its chil-
dren are generated. For each child node that is generated,
BF* checks the open and closed lists to ensure that it is not
a duplicate of a previously generated node or, if it is, that
it represents a better path than the previously generated du-
plicate. If that is the case, then the node is inserted into the
open list. After every child node has been generated, the
parent node is inserted into the closed list and a new node
is chosen for expansion. This continues until a goal node is
chosen for expansion. See Algorithm 1 for pseudocode

BF* is referred to as a general best-first search algorithm,
because the evaluation function,f(·), is left unspecified.
Thus it is up to specialized algorithms to add an evalua-
tion function for determining in what order to expand nodes.
Dechter & Pearl (1985) ensure that BF* is admissible when
f(·) is optimistic and strongly order preserving.1

Definition Letn be any node in the search graph, andPn be
a least-cost solution path from the root to a goal node among
those that include the current path ton. An evaluation func-
tion f(·) is calledoptimisticif f(n) ≤ C(Pn).

1Dechter & Pearl (1985) just call this “order preserving”; we
add “strongly” to differentiate from the upcoming definition of
“weakly order preserving”.
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Figure 1: The nodes and paths referred to in the definition of
strong order preservation. This also applies to the definition
weak order preservation, wherem is γ andPc is Pγ .

An optimistic evaluation function allows BF* to terminate
the first time a goal node is chosen for expansion.

Definition Let n and m be any two nodes in the search
graph; and letPa, Pb, andPc, be any paths such thatPa

andPb are two paths fromr to n, andPc is a path fromn
to m. See Figure 1. An evaluation functionf(·) is called
strongly order preserving (SOP)if the following holds

f(Pa) ≥ f(Pb)⇒ f(PaPc) ≥ f(PbPc)

wherePiPj is the concatenation ofPi andPj .

An SOP evaluation function ensures that when BF* finds
a least-cost path from the root to a node, that path can be
extended into a least-cost path from the root to any other
node. This allows BF* to save only a single best path found
to a node, since no other path can lead to a better solution.

In Section 5 we introduce a specialized version of BF*
with the evaluation functionf(n) = max(g(n), h(n)). This
specialization has been studied in prior work (Dow & Korf,
2007). The relationship between that prior work and the re-
sults in this paper is discussed in Sections 5 and 9.

4 A Weaker Condition for Admissibility
An SOP evaluation function is actually stronger than it needs
to be. While an SOP evaluation function guarantees that a
least-cost path from the root to a node can be extended into
a least-cost path from the root to any other node, we only
care about least-cost paths from the root to goal nodes. It
is actually acceptable for an evaluation function to disregard
duplicate nodes that offer better paths to a node’s descen-
dants, as long as those descendants are not goal nodes.

Definition Let n be any node in the search graph;γ be any
goal node; andPa, Pb, andPγ be any paths such thatPa and
Pb are two paths fromr ton, andPγ is a path fromn toγ. To
illustrate this see Figure 1, but letm andPc in the figure be
γ andPγ , respectively. An evaluation functionf(·) is called
weakly order preserving (WOP)if the following holds

f(Pa) ≥ f(Pb)⇒ f(PaPγ) ≥ f(PbPγ)

wherePiPj is the concatenation ofPi andPj .

BF* with a WOP evaluation function will only discard a
node if it is storing a duplicate node that could result in a so-
lution that is as good or better than the one being discarded.
Thus, to show that BF* is admissible with a given evaluation
function, it is sufficient to show that the evaluation function
is optimistic and weakly order preserving.

Since a goal nodeγ qualifies as the nodem in the defini-
tion of SOP, SOP implies WOP. In the next section, we will
present an evaluation function that is WOP but not SOP.

5 NaiveMaxBF
Here we describe a version of BF* that is meant to
search a problem space where the cost of a solution path
is the maximum edge cost, that is, for a solution path
P = (r, n1, . . . , γ)

C(P ) = max(c(r, n1), c(n1, n2), . . . , c(nk, γ)). (1)

We will refer to search over a space with this cost function
as amax-edge-costsearch. The algorithm, which we call
NaiveMaxBF, is the result of using the following evaluation
function in line 9 of Algorithm 1:

f(n) = max(g(n), h(n)) (2)

where n is reached from the root node via the path
(r, n1, n2 . . . , n), and

g(n) = max(c(r, n1), c(n1, n2), . . . , c(ni−1, n)). (3)

We will frequently analyze the behavior of NaiveMaxBF
when the heuristic function,h(·), is optimistic. That is,

h(n) ≤ k(n, γ) for all goal nodesγ, (4)

wherek(a, b) is the cost of a least-cost path from nodea to
nodeb. Notice that a heuristic is optimistic when it under-
estimates the cost of paths from a node to any goal, whereas
an evaluation function is optimistic when it underestimates
the cost of any complete solution path through a node.

The significance of the word “naive” in the algorithm’s
name reflects the fact that it merely adds an evaluation func-
tion to BF*, whereas, in later sections, we show how a minor
modification to the algorithm can improve its efficiency.

To demonstrate that NaiveMaxBF is admissible, we must
show that (2) is optimistic and, at least, weakly order pre-
serving. Additionally, to demonstrate that the WOP property
applies to a larger set of evaluation functions than SOP, we
show conditions under which (2) is not SOP.

Lemma 5 If the heuristic functionh(n) is optimistic, then
the evaluation functionf(n) = max(g(n), h(n)) is opti-
mistic.

Proof Let Pn = Pr−nPn−γ , wherePr−n = (r, n1, . . . , n)
andPn−γ = (n, ni+1, . . . , γ). We slightly abuse notation
by saying that

c(Pr−n) = max(c(r, n1), . . . , c(ni−1, n)), and

c(Pn−γ) = max(c(n, ni+1), . . . , c(nk, γ)).



Notice thatg(n) = c(Pr−n), by (3), and

h(n) ≤ k(n, γ′) for all goal nodesγ′, and

k(n, γ′) ≤ c(Pn−γ)

because a least cost path fromn to any goal node cannot
cost more than any specific path. Thush(n) ≤ c(Pn−γ).
Furthermore,

f(n) = max(g(n), h(n)), thus

f(n) ≤ max(c(Pr−n), c(Pn−γ)) by Lemma 1, and

f(n) ≤ C(Pn)

becauseC(Pn) = max(c(Pr−n), c(Pn−γ)), by (1).

In previous work, we have shown that (2) is strongly or-
der preserving if the heuristic function satisfies a versionof
the triangle inequality, referred to asmax-consistency(Dow
& Korf, 2007). A heuristic that is max-consistent is neces-
sarily optimistic, therefore this result allows for the possibil-
ity that heuristics that are optimistic but not max-consistent
cause the algorithm to return suboptimal solutions. We now
show that this is not the case, because (2) with an optimistic
heuristic is weakly order preserving.

Lemma 6 If the heuristic functionh(n) is optimistic, the
the evaluation functionf(n) = max(g(n), h(n)) is weakly
order preserving.

Proof We assume that the lemma is incorrect and show a
contradiction. Letna correspond ton when reached by
Pa, and nb correspond ton when reached byPb. Also,
let Pγ = (n, ni+1, . . . , γ) lead fromn to some goal node
γ. As a slight abuse of notation, we say thatc(Pγ) =
max(c(n, ni+1), . . . , c(nk, γ)). Thus, we assume

f(Pa) ≥ f(Pb), i.e.,

max(g(na), h(na)) ≥ max(g(nb), h(nb)) (5)

and

f(PaPγ) < f(PbPγ), i.e.,

max(g(na), c(Pγ)) < max(g(nb), c(Pγ)), (6)

because the optimism ofh(·) implies thath(γ) ≤ 0. From
Lemma 2 we see that (6) implies that

c(Pγ) < g(nb), and (7)

g(na) < g(nb). (8)

We now consider two exhaustive cases and show that both
lead to contradictions.

Case 1:g(na) ≥ h(na) In this case, with Lemma 3 and
(5), it follows thatg(na) ≥ g(nb), which contradicts (8).

Case 2:g(na) < h(na) In this case, with Lemma 3 and
(5), it follows that

g(nb) ≤ h(na), and

g(nb) ≤ k(n, γ′), for all goal nodesγ′,

becauseh(·) is optimistic. This implies thatg(nb) ≤
c(Pγ), which contradicts (7).

Since an optimistic heuristic is sufficient for guarantee-
ing that the evaluation function given in (2) is optimistic and
weakly order preserving, NaiveMaxBF with an optimistic
heuristic function is admissible. The next lemma shows
that (2) with an optimistic heuristic function is not neces-
sarily strongly order preserving. Therefore, the distinction
between strong and weak order preservation in the previous
section is significant.

Lemma 7 An optimistic heuristich(·) is insufficient for
making the evaluation functionf(n) = max(g(n), h(n))
strongly order preserving.

Proof To show that (2) with an optimistic heuristic is not
necessarily an SOP evaluation function, we will give a
counter-example in which the SOP condition is violated. We
will use the same notation as in the proof of Lemma 6. Also,
let Pc = (n, ni+1, . . . , m) lead fromn to some nodem. Let
ma bem reached byPaPc, andmb bem reached byPbPc.

Consider the graph shown in Figure 1 with the following
path costs

c(Pa) = 1

c(Pb) = 2

c(Pc) = 1

and the following heuristic function values

h(n) = 3

h(m) = 1

For this example to be valid, the heuristic function must be
optimistic. Thus, assume that any path to any goal node that
follows from nodem has at least one edge with cost at least
3. Notice that this heuristic function violates a max-cost ver-
sion of the triangle inequality. Although this is typicallynot
desirable, there are certainly heuristic functions for which it
is the case.

First, notice that

f(na) = max(1, 3) = 3, and

f(nb) = max(2, 3) = 3.

Thus,
f(na) ≥ f(nb)

Second, notice that

f(ma) = max(1, 1) = 1, and

f(mb) = max(2, 1) = 2.

Thus,
f(ma) < f(mb)

which contradicts the definition of SOP.

6 NaiveMaxBF Does Not Need to Reopen
Closed Nodes

When BF* generates a node that is a duplicate of a node
in the closed list, it is possible that the new node repre-
sents a better partial solution path than the old node. This
is detected when the new node’sf -value is less than the old
node’sf -value. Since it is possible that the new node will



lead to better solutions than the old node, it is necessary to
remove the old node from the closed list and insert the new
node in the open list. This process is referred to as reopening
a closed node, and it is seen in lines 14–15 of Algorithm 1.

An optimal solution in a search with an additive cost func-
tion, as is the case with A*, must include a shortest subpath
to every node on a complete solution path. For max-edge-
cost search, only a single edge cost (the maximum) deter-
mines the cost of the entire solution path. Thus, the subpaths
from the root to each node on the solution path do not need
to be least-cost, as long as they cost no more than the maxi-
mum. Consider two distinct paths from the root to a node. If
the optimal solution cost is greater than the costs of eitherof
these partial paths, then it doesn’t matter which of the two
paths is saved and which is discarded. We can detect this
with an optimistic heuristic function that lower-bounds the
cost of paths from a node to any goal node. Thus, the algo-
rithm MaxBF with an optimistic heuristic function guaran-
tees that once a node is chosen for expansion, no other path
through that node can lead to a better solution. Showing this
formally is the main result of this section. We begin with
several helpful lemmas.

At all times in a best-first search, each node either has
not been generated yet, is in OPEN, or is in CLOSED. The
following lemma gives a result about the status of certain
nodes when a given node is chosen for expansion.

Lemma 8 During the execution of NaiveMaxBF, for every
pathP fromr to any noden either (1) every node preceding
n onP is on the closed list, or (2) there is at least one node
precedingn onP that is on the open list.

Proof Shown by induction on the length of paths fromr to
n. For the basis, consider all paths fromr to n of length one.
Sincer is the only node precedingn on these paths, andr
is always on either OPEN or CLOSED, the lemma holds for
paths of length one.

For the inductive hypothesis, assume that the lemma holds
for all paths fromr to n of lengthi. Given a path fromr to n
of lengthi+1, Pn = (r, n1, . . . , ni−1, ni, n), there is a path
of lengthi from r to nodeni: Pni

= (r, n1, . . . , ni−1, ni).
Since the lemma holds for paths of lengthi, we know that
either all of the nodes precedingn onPni

are on CLOSED,
or at least one is on OPEN. If there is at least one on OPEN,
then the lemma holds forPn. If all are on CLOSED, then
ni has been generated (whenni−1 was expanded) and now
resides on either OPEN or CLOSED. Thus the lemma holds
for all paths fromr to n.

Thus, there is no node precedingn that has not yet been
generated and is, itself, only preceded by closed nodes.

Lemma 9 During the execution of NaiveMaxBF, given two
nodes on the open list,n andm, if n is chosen for expansion,
then the following holds

max (g(m), h(m)) ≥ g(n)

Proof Line 3 of Algorithm (1) specifies that ifn was chosen
for expansion, then

f(m) ≥ f(n), i.e.,

max(g(m), h(m)) ≥ max(g(n), h(n)).

Thus, the lemma follows from this and Lemma 4.

Definition A nodenp is called apredecessorof a noden if
there is a path fromr to n that includesnp. Note thatnp is
not necessarily on the current path ton, and thatn may also
be a predecessor ofnp.

Lemma 10 During the execution of NaiveMaxBF, consider
a noden on the open list and one of its predecessorsnp also
on the open list. LetP be a least-cost solution path among
those that include the current path ton. LetP ′ be a solution
path that includes the current path tonp, and includesn
followingnp. If C(P ) > C(P ′), then the following hold

g(n) > g(np) (9)

g(n) > k(np, n) (10)

g(n) > k(n, γ), for all goal nodesγ. (11)

Proof Observe that

C(P ) = max(g(n), k(n, γ)), and

C(P ′) ≥ max(g(np), k(np, n), k(n, γ)).

Thus, from the lemma’s condition,C(P ) > C(P ′), it fol-
lows that

max(g(n), k(n, γ)) > max(g(np), k(np, n), k(n, γ)).

The lemma follows from this and Lemma 2.

Finally, we show the main result of this section.

Theorem 11 The first time a noden is chosen for expansion
by NaiveMaxBF, letP be a least-cost solution path among
those that include the current path ton. If the heuristic func-
tion is optimistic, then there is no solution pathP ′ that in-
cludesn such thatC(P ′) < C(P ).

Proof To show by contradiction, assume there existsP ′ that
includesn such thatC(P ′) < C(P ).

Let P ′

r−n be the subpath ofP ′ from r to n. First of all,
notice thatP ′

r−n cannot be the current path ton, because that
would makeC(P ′) ≥ C(P ), which is not the case. Also,
notice that all of the nodes onP ′

r−n precedingn cannot be
on CLOSED. If they were, that would imply thatn had been
previously generated withP ′

r−n as its current path. Since
P ′

r−n is notn’s current path now, the old version ofn would
have had to have been replaced with a superior duplicate in
the open list. This only happens iff(newn) < f(old n).
Sincef(·) is weakly order preserving, that would mean that
C(P ) ≤ C(P ′), which is not the case. Therefore, all of
the nodes onP ′

r−n cannot be on CLOSED. Furthermore,
by Lemma 8, at least one node must be on OPEN; call this
nodenp.

Notice that both Lemma 9 and Lemma 10 apply to this sit-
uation, because both nodesn andnp are on OPEN, noden
is chosen for expansion, and we are assuming that some so-
lution path throughnp andn is better than the best solution
path that continues the current path ton. Also,n follows np

on that path.
We now consider two exhaustive cases and show that they

both lead to contradictions.



Case 1:g(np) ≥ h(np) From Lemma 9, it follows that

max(g(np), h(np)) ≥ g(n).

Thus, in this case,g(np) ≥ g(n), which contradicts (9).
Case 2:g(np) < h(np) In this case, with Lemma 9, it fol-

lows that

g(n) ≤ h(np), and

g(n) ≤ max(k(np, n), k(n, γ))

becauseh(·) is optimistic. This contradicts the fact that
both (10) and (11) hold.

Corollary 12 Once a node has been expanded by Naive-
MaxBF with an optimistic heuristic, it never needs to be re-
opened.

Proof The reason BF* allows a closed node to be reopened
is that a new path has been found to a node that may lead to a
better solution path than the duplicate node in the closed list.
Since Theorem 11 shows that this isn’t possible for Naive-
MaxBF, there is never a need to reopen a closed node.

7 NaiveMaxBF May Reopen Closed Nodes
In the previous section we showed that NaiveMaxBF with
an optimistic heuristic does not need to reopen closed nodes
in order to find an optimal solution. Nevertheless, we now
will show that, in certain situations, it will reopen closed
nodes. Recall that a closed node is reopened when a new
path is found to a node on the closed list, such that the new
duplicate node has a lesserf -value than the closed node.
This is tested for on line 14 of Algorithm 1. Now we show
that this can occur during a NaiveMaxBF search.

Theorem 13 On a problem space where the cost of a solu-
tion path is the maximum edge cost, NaiveMaxBF with an
optimistic heuristic may find a new path to a node on the
closed list that has a lesserf -value than a previous path.

Proof We demonstrate that this is possible by giving an ex-
ample where it occurs. Consider the following search graph
and corresponding heuristic function.2
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One can easily verify that the givenh(·) is an optimistic
heuristic. We now trace through several steps of Naive-
MaxBF.

2This example uses a directed graph, but an undirected graph
would lead to the same result.

• OPEN= {r}, CLOSED= {}
Initially r is chosen for expansion, removed from OPEN,
and inserted in CLOSED. Nodesn1 andn2 are generated
and inserted in OPEN with the followingf -values

g(n1) = 1, f(n1) = max(1, 4) = 4

g(n2) = 3, f(n2) = max(3, 2) = 3

• OPEN= {n1,n2}, CLOSED= {r}
Noden2 is chosen for expansion, removed from OPEN,
and inserted in CLOSED. Nodeγ is generated and in-
serted in OPEN with the followingf -value

g(γ) = max(3, 5) = 5, f(γ) = max(5, 0) = 5

• OPEN= {n1, γ}, CLOSED= {r,n2}
Noden1 is chosen for expansion, removed from OPEN,
and inserted in CLOSED. A duplicate of noden2 is gen-
erated, which we will calln′

2, with the followingf -value

g(n′

2) = max(1, 1) = 1, f(n′

2) = max(1, 2) = 2

Notice thatf(n′

2) < f(n2), thus NaiveMaxBF has found
a path to noden2 that has a lesserf -value than the current
path ofn2 when it was expanded.

If we continue the example in the proof,n2 will be re-
opened, and, in the next step, it will be expanded for a sec-
ond time. In the next section we will show how a minor
modification to the algorithm can make it avoid this sort of
redundant search.

8 MaxBF
Theorems 11 and 13 say that, although it is never benefi-
cial for NaiveMaxBF with an optimistic heuristic to reopen
closed nodes, it may still do so. When a closed node is re-
opened, it is possible that the algorithm will re-search theen-
tire subtree rooted at that node. The amount of effort wasted
on node reopening and reexpansion is problem dependent,
though in pathological cases the algorithm would unneces-
sarily search the tree expansion of the search graph.

We can eliminate this inefficiency simply by never re-
opening closed nodes. This is done by removing lines 14 to
15 from Algorithm 1. We refer to this algorithm as MaxBF
and include the pseudocode in Algorithm 2.

Whereas NaiveMaxBF simply added a specific evaluation
function to BF*, as does A*, MaxBF accounts for the fact
that, with (2) as an evaluation function and an optimistic
heuristic, allowing closed nodes to be reopened can only
lead to unnecessary work.

9 Application: Treewidth
Treewidth is a fundamental property of an undirected graph
that is meant to measure how much a graph is like a tree.
A tree itself has a treewidth of one, while a clique withn
vertices has a treewidth ofn − 1. One way of finding the
treewidth of a graph is by searching over the space of vertex
elimination orders. As we will see, this search space uses a
maximum edge cost function.

Eliminatinga vertex from a graph is defined as the process
of adding an edge between every pair of the vertex’s neigh-
bors that are not already adjacent, then removing the vertex



Algorithm 2 MaxBF
1: Insertr in OPEN
2: while OPEN is not emptydo
3: Remove a noden with minimalf(n) from OPEN and

insert it in CLOSED
4: if n is a goal nodethen
5: Exit successfully, solution obtained by tracing

pointers fromn to r
6: end if
7: Expandn, generating children with pointers ton
8: for all childrenm of n do
9: Calculatef(m)← max (g(m), h(m))

10: if m 6∈ OPEN andm 6∈ CLOSEDthen
11: Insertm in OPEN
12: else ifm ∈ OPEN andf(m) < f -value of dupli-

cate in OPENthen
13: Remove duplicate from OPEN and insertm
14: else
15: Discardm
16: end if
17: end for
18: end while
19: Exit with failure, no solution exists

and all of its incident edges from the graph. Avertex elimi-
nation orderis a total order over the vertices in a graph. The
width of an elimination order is defined as the maximum
degree of any vertex when it is eliminated from the graph.
Finally, thetreewidthof a graph is the minimum width over
all possible elimination orders, and any order whose width
is the treewidth is anoptimal vertex elimination order.

Finding the treewidth of an undirected graph is central to
many queries and operations in a variety of areas, includ-
ing probabilistic reasoning and constraint satisfaction.De-
termining the treewidth of a general graph is NP-complete
(Arnborg, Corneil, & Proskurowski, 1987), therefore it is a
natural candidate for heuristic search techniques.

The treewidth of a graph can be found by searching over
the space of vertex elimination orders. For a simple exam-
ple, consider searching for an optimal elimination order for
the graph in Figure 2. The corresponding search space is
shown in Figure 3. Eliminating a set of vertices from a graph
leads to the same resulting graph, regardless of the order in
which the vertices are eliminated. Thus, the state in this
search space can be represented by the unordered set of ver-
tices eliminated from the graph. At the root node, no vertices
have been eliminated, and, at the goal node, all three ver-
tices have been eliminated. To transition from one node to
another, a vertex is eliminated from the graph. The cost of a
transition, which labels the corresponding edge in the search
space, is the degree of the vertex at the time it is eliminated.
A solution path represents a particular elimination order,and
the width of that order is the maximum edge cost on the so-
lution path.

This search space is an example of a max-edge-cost
search space for which MaxBF is intended. An existing
algorithm, BestTW (Dow & Korf, 2007), is an enhanced
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Figure 2: An undirected graph.
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Figure 3: The treewidth search space for the graph in Fig. 2.

version of NaiveMaxBF for finding treewidth. As men-
tioned in Section 5, Dow & Korf (2007) established the
admissibility of this algorithm by showing that a so-called
max-consistent heuristic implies that the evaluation func-
tion, f(n) = max(g(n), h(n)), is strongly order preserv-
ing. Additionally, Dow & Korf (2007) incorrectly stated that
the heuristic used by BestTW was max-consistent, when, in
fact, it is not. Fortunately, we have shown that only an op-
timistic heuristic is required forf(n) = max(g(n), h(n))
to be weakly order preserving. Thus, BestTW is admissible
and the error is insignificant. Nevertheless, given the results
in this paper, it is possible that BestTW could save some
wasted effort by not reopening closed nodes, as is done with
MaxBF.

10 Conclusions
While best-first search is a well studied heuristic search tech-
nique, most existing research has focused on applying it to
problems with additive cost functions. In this paper, we have
applied best-first search to problem spaces where the cost of
a solution path is the maximum edge cost. We have given an
algorithm, MaxBF, that is analogous to A* and designed for
these maximum edge cost problem spaces.

While Dechter & Pearl (1985) demonstrated that a best-
first search algorithm is admissible if its evaluation func-
tion is optimistic and strongly order preserving, we have
shown that the evaluation function used by MaxBF is not
strongly order preserving if the heuristic function is merely
optimistic. We have also shown that a weakly order preserv-
ing evaluation function is sufficient for admissibility, and
that MaxBF’s evaluation function meets that condition if the
heuristic function is optimistic.

It is well-known that A* requires a consistent heuristic
function to avoid reopening closed nodes. We have shown



that, with just an optimistic heuristic function, MaxBF never
needs to reopen closed nodes. This does not mean that the
first time a node is chosen for expansion a least-cost path
to it has been found, thus a naive version of MaxBF may
reopen and reexpand closed nodes. In pathological cases it
would search the tree expansion of the search graph. We
have shown how to ensure that MaxBF avoids this ineffi-
ciency.

Finally, we have described an important problem,
treewidth, that is critical to many active research areas, and
to which MaxBF can be applied.

Acknowledgments
Thanks to the anonymous reviewers for some very helpful
comments and recommendations.

References
Arnborg, S.; Corneil, D. G.; and Proskurowski, A. 1987.

Complexity of finding embeddings in a k-tree.SIAM
Journal on Algebraic and Discrete Methods8(2):277–
284.

Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*.Journal of the Asso-
ciation of Computing Machinery32(3):505–536.

Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs.Numerische Mathematik1:269–271.

Dow, P. A., and Korf, R. E. 2007. Best-first search for
treewidth. InProceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, 1146–1151. Van-
couver, British Columbia, Canada: AAAI Press.

Pearl, J. 1984.Heuristics. Reading, MA: Addison-Wesley.


