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Abstract 

 

 

Analysis techniques for injection-locked oscillators/amplifiers (ILO) can be 

broadly divided into two classes. To the first class belong methods with a strong and 

rigorous theoretical basis, that can be applied to rather general circuits/systems but 

which are very cumbersome and/or time-consuming to apply. To the second class 

belong methods which are very simple and fast to apply, but either lack of 

validity/accuracy or are applicable only to very simple or particular cases. 

In this thesis, a novel method is proposed which aims at combining the 

rigorousness and broad applicability characterizing the first class of analysis 

techniques above cited with the simplicity and computational efficiency of the 

second class. The method relies in the combination of perturbation-refined 

techniques with a fundamental frequency system approach in the dynamical 

complex envelope domain. This permits to derive an approximate, but first-order 

exact, differential model of the phase-locked system useable for the steady-state, 

transient and stability analysis of ILOs belonging to the rather broad (and rigorously 

identified) class of nonlinear oscillators considered. 

The hybrid (analytical-numerical) nature of the formulation developed is suited 

for coping with all ILO design steps, from initial dimensioning (exploiting, e.g., the 

simplified semi-analytical expressions stemming from a low-level injection 

operation assumption) to accurate prediction (and fine-tuning, if required) of critical 

performances under high-injection signal operation. 

The proposed application examples, covering realistically modeled low- and 

high-order ILOs of both reflection and transmission type, illustrate the importance of 

having at one's disposal a simulation/design tool fully accounting for the deviation 

observed, appreciable for instance in the locking bandwidth of high-frequency 

circuits with respect to the simplified treatments usually applied, for a quick 

arrangement, in ILO design optimization procedures. 
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List of Abbreviations 

 

 

As a useful reference, a list of the main abbreviations adopted throughout this 

thesis is here presented, sorted mainly by appearance, but appropriately grouped for 

a better usability. 

 

Abbreviation Full form Definition 

ILO Injection-locked oscillator page 9 

RILO Reflection-type injection-locked oscillator page 10 

TILO Transmission-type injection-locked oscillator page 10 

LBW Locking bandwidth page 9 

LLI Low-level injection page 9 

MLI Medium-level injection page 99 

HLI High-level injection page 40 

SIDF Sinusoidal-input describing function page 8 

TSIDF Two-sinusoid input describing function page 51 

FDDF Frequency-dependent describing function page 85 

ST Single tuned page 12 

MTNS Multiple-tuned nearly-synchronous page 86 

EDA Electronic design automation page 15 

ADS (Agilent EEsof EDA) Advanced Design System page 15 

HB Harmonic Balance  page 15 

CE Circuit Envelope page 18 

DCE Dynamical complex envelope page 17 

SVA Slowly-varying amplitude page 17 

OLG Open-loop gain page 20 

BLDO Band-limited differential operator page 21 

SS Steady state page 22 

CW Continuous wave page 23 

NDR Negative differential resistance page 48 

ASB Adynamic shifting-bias page 52 

DR Dielectric resonator page 78 

QS Quasi sinusoidal page 85 

QS
2
 Quasi sinusoidal quasi static page 85 

OSB One side band page 91 

LCPM Least common polynomial multiple page 92 
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1. Introduction 

 

 

1.1 Framework and Motivations 

 

Electronic oscillators have been studied for a long time now, and for various 

purposes: in fact, they are the key element of most communication equipments as 

well as of test and measurement systems. Aside from their most common use under 

free running operation (i.e., with no input signal acting upon) there is the possibility 

of a driven operation, with an injection signal of proper amplitude/frequency applied 

to achieve a "synchronized" oscillation through the nonlinear phenomenon of 

"injection phase-locking". 

Injection-locked oscillators are a class of nonlinear circuits with peculiar features. 

They are adopted in the RF and microwave frequency ranges when a highly-

saturated, narrow-band, amplification of a weak signal is required [1]. In this case 

they are also indicated as injection-locked amplifiers to stress their oscillating 

amplifier nature. They can also be adopted to obtain, from a high-power high-

efficiency but noisy oscillator and a low-power low-noise source, a quasi-sinusoidal 

signal with excellent phase noise performances [2,3]. 

Their use has recently been brought back to the top by several new applications, 

for example wireless LAN [4] and wireless body area network receivers [5], as well 

as signal generators with the purpose of filtering and phase-shifting the clock in 

micro-processors [6], or low-power low-noise amplifiers in vital-sign sensors [7]. 

Driven oscillators are also adopted in other applications, such as frequency 

multipliers [8–10], frequency dividers [11–15], alternatives to PLLs [16], self-

oscillating mixers [17,18], or devices for beam-steering of phased arrays [19,20]. 

Because of the nonlinear resonant nature of the equations characterizing such 

circuits, conventional analysis or simulation techniques in the time-domain are 

extremely inefficient, especially if global behavior quality indexes are of interest, 

e.g., for design purposes. The theoretical studies not always account for all practical 

design issues, and the software tools, while extremely powerful in the (numerical) 

evaluation of circuit responses, lack to provide synthetic evidence of the involved 

phenomena. 
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The best example is represented by the evaluation of the locking bandwidth 

(LBW), i.e., the range of frequencies where the phase-lock condition is achieved. 

Especially in case of low-level injection operation, where the LBW is a small 

fraction of the carrier frequency, this search, if carried out numerically, can become 

extremely time consuming (see Appendix A1 for required time durations). For this 

reason, a number of methods have been developed in the past for the study of 

injection locked oscillators in the stroboscopic time-domain, i.e., directly in terms of 

amplitude and phase of the fundamental component of oscillating signals [2,21]. In 

case the analysis is developed in a completely numerical manner (e.g., using Circuit 

Envelope algorithms [22]), there is a significant advantage in terms of computational 

efficiency, but the problem of the lack of a design-oriented tool remains. Also, while 

the steady-state and transient operation are efficiently simulated, the same does not 

occur for the LBW evaluation, which still involves a time-consuming, man-assisted, 

iterative search procedure through the bracketing of stable and unstable solutions in 

the surroundings of the unlock frequency limits. As to the fully analytical 

approaches, while potentially extremely powerful, they have to cope with the 

difficulties of such a stiff dynamical nonlinear problem [2, 23–28]. Therefore, they 

usually ground on substantial approximations of the problem, which either limit the 

class of treatable systems, or reduce the accuracy of the analysis. In particular, it can 

be noticed that while the frequency-domain theory of oscillating amplifiers equipped 

with negative-resistance microwave diodes is relatively complete [24], the same 

does not hold for more up-to-date circuit configurations using RF transistors as 

active element(s) and a transmission-type topology [23]. 

Understanding how to act in order to obtain a given design goal, or forecasting 

global behavioral aspects is left to the designer's intuition. This often leads to 

inefficient cut and try iterative design procedures. Or, as an alternative, a flawed 

non-optimized design can be conducted by means of approximated models and 

procedures, which of course don't allow actual optimizations. 

All of these thorny problems arose during the design of a 10 GHz injection-

locked oscillator, carried out by student Lorenzo Puccio for his Master's Degree 

thesis work, inside the LEM laboratory (Microwave Electronics Laboratory) in 

DIEET Department of the University of Palermo, while I was putting my effort in 

the same lab into my Bachelor's Degree thesis. That way I could see already by then, 

with my own eyes, the difficulties encountered during design and realization steps of 

microwave injection-locked oscillators, and discrepancy between theoretical 
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forecasts and experimental results. That indirect experience contributed to the choice 

of topic for research later conducted over my Ph.D. program. Such circumstance 

stimulated a personal motivation originated by curiosity, which added to theoretical 

and technical reasons above exposed. 

 

 

1.2 Outline of Achieved Results 

 

In this thesis, a novel hybrid (analytic-numerical) approach to the above stated 

design problem is proposed. The aim was to combine high computational efficiency 

with a reasonably wide applicability range, so to cope with real world circuits and 

permit their performance optimization with a design-oriented consistent procedure 

that reduces to the bare minimum cut-and-try iterations. This goal has been achieved 

in various subsequent steps. 

A general, reduced-order, model of the injected oscillator is firstly introduced. A 

perturbation-refined analysis method is then applied, which permits to derive the 

first-order exact set of differential equations describing the circuit behavior in the 

fundamental-frequency complex-envelope domain. This differential model is the 

basis for all subsequent steps, including transient response calculations, phase-lock 

stability analysis and the secondary simplification that permits a simplified, semi-

analytical, investigation of the low-level injection operation, useful for initial circuit 

dimensioning. 

As shown later on through the worked out examples, this perturbation-refined 

first-order exact method do actually achieve the stated goal of combining high 

computational efficiency and reasonably good accuracy for the rather broad class of 

treatable circuits and systems, subsequently widened by virtue of a further novel 

semi-numerical approach. This latter one, fully addressing higher injection signals 

whose investigation has an increasing leading role [12], represents a convenient 

alternative to the use of purely numerical, iterated and simulation-based, design 

approaches usually adopted in practice, with respect to which produces a better 

phenomenological insight due to its partially analytical base. Since it incorporates, 

extending significantly their applicability range, also all previous simplified 

treatments (e.g. the Adler-based methods), it provides a unified design environment 
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for all the steps of an injection-locked system design, with the important difference, 

with respect to some of them, of a solid theoretical ground. 

During the various investigation steps that led, in the three year period here 

described, to the completion of the development of such analysis method, 

intermediate theoretical results have been validated through an extensive campaign 

of simulation and experimental tests. 

 

 

1.3 Thesis Organization 

 

Firstly, the state of the art in the field of free-running and driven oscillators is 

examined. In Chapter 2 classical models for injection-locked oscillators as well as 

newer ones are quickly described, ranging from old Adler's treatment, to recent 

Ohira's method. Different classes of injection locked oscillators are introduced, and 

comparisons between different techniques have been carried out. 

Chapter 3 is concerned with introduction into phasor domain approach, and 

dynamical complex envelope analysis. Fully analytical method, its applicability 

conditions, and explanation of the concepts employed throughout the present thesis 

are examined in depth, e.g., describing functions, dynamical locking stability, Locus 

and Boundary limits, lateral bands. A simple single-tuned example is presented to 

better explain all passages. 

Chapter 4 deals with discovered phenomena related to the shifting of bias point, 

where the interaction between DC and RF signal not only produces quantitative 

effects, but new qualitative consequences are observed, too, especially in terms of 

particular locking regions. 

In Chapter 5 the proposed theory is enhanced to cope with transmission-type 

class circuits, with the main result of the introduction of a new effective quality 

factor instead of classical or loaded ones, usually adopted in literature. Three 

different examples are presented to clarify and validate the presented method. 

An absolutely new approach, addressing high-order feedback-type driven 

oscillators, of circuital or any other nature, is presented in Chapter 6. This semi-

numerical analysis method can be particularly useful when internal topology of the 

circuit is not known, or suitable models are not available, and data can be more 
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easily identified on the basis of direct measurements. An extended step-by-step 

application procedure is presented by means of a rather troublesome example, where 

several parasitic elements (usually neglected in literature) are accounted for. 

In the end, three Appendices include further analyses, an effective comparison 

between time required by simulations with EDA tools versus computation of 

presented methods with mathematical software, and a few extra formulas. 
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2. State of the Art 

 

 

2.1 Oscillators and Injection-Locked Oscillators 

 

A simple oscillator is, as a principle, a circuit composed by an amplifier and a 

resonator, with a positive feedback loop taking the filtered output signal back to the 

input of the amplifier. The natural input noise is amplified until the nonlinearity of 

the amplifying stage reduces the loop gain to unity, landing to a dynamic 

equilibrium. This is - in short - the Barkhausen stability criterion, which is strictly 

applicable only to linear systems, but represents an easy reference for understanding 

oscillators' behavior. 

Since the system is nonlinear, output signal is not a pure sinusoidal indeed. 

Actually, when the resonator has a reasonable quality factor, it can be defined a 

"quasi-sinusoidal" oscillator, since higher harmonics have much lower magnitude 

than the fundamental tone. Moreover, to achieve this property, many systems feature 

a weak nonlinearity, i.e., their state equations can be written in the form: 

(2.1) 
dx

dt
 = A·x + ε f[x] 

where A is the state matrix, x is the state vector, and ε f[x] is the weakly nonlinear 

relationship. The epsilon factor represents the smallness of the "deviation" from a 

pure linear system (which would provide ε = 0). 

Oscillators can be broadly divided into "negative resistance" and "feedback loop" 

types, although both categories can be studied with the same general system theory 

[29]. First ones employ a nonlinear element whose resistance is negative – under a 

differential perspective – which is the case of tunnel diodes, for instance, that 

show an "N-shaped" I-V characteristic. Biasing the element in the descending 

section, a negative differential resistance is exhibited, i.e., to a (small) increase in the 

voltage corresponds a (small) decrease in the current. Under oscillating conditions, 

this negative resistance perfectly balance the positive resistance deriving from the 

losses of the resonator. 
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A positive feedback loop is the main feature of the second above-mentioned class 

of oscillators. The focus this time is on a path designed to bring the oscillation back 

to the input of a loop, thus sustaining the oscillations. Generally this path is well 

defined from a circuital point of view. 

A simple approximation of an N-shaped characteristic is commonly obtained with 

a cubic polynomial nonlinearity, whose smooth qualities ease the treatment. One 

common modeling option for the nonlinear element is the employment of a 

Sinusoidal-Input Describing Function (SIDF) [30], that is a linearization of that 

nonlinear element subjected to a sinusoidal input, as a function of its amplitude and 

phase. 

 (a)  (c)  (e) 

 

 (b)  (d)  (f) 

Fig. 2.1 – Spectrum of an injection-locked osc. under all possible operating conditions [31]: 

(a) free-running oscillation; (b) locked state, fINJ = fOSC ; 

(c,d) detuned locked state, fINJ < fOSC and fINJ > fOSC ; 

(e,f) detuned unlocked state, fINJ ≪ fOSC and fINJ ≫ fOSC 

On various types of oscillators, a specific phenomenon can occur, producing an 

(intentional or accidental) variation in oscillator's output quantities - in terms of 

frequency and/or amplitude (and power, consequently). This behavior, named 

injection locking, can take place when an appropriate external signal drives the 

oscillator to a different steady-state regime. The locked state happens if the detuning 

between free-run and injected frequencies is limited, otherwise an unlocked state 
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will be observed, characterized by a spectrum where many beating tones appear 

(Fig. 2.1). The difference between the maximum and the minimum locking 

frequencies is called locking bandwidth (LBW). The LBW increases when input 

power is higher, with a linear relationship for a Low-Level Injection (LLI). With 

higher injection rates, the bandwidth follows a nonlinear relationship, depicting what 

is known as Arnold Tongue (Fig. 2.2) [32]. 

 

 

Fig. 2.2 – Locking bandwidth shaped as an Arnold Tongue. 

In some oscillators, injection locking represents an interference event, caused by 

an excessive coupling between two or more lines. On the other hand, many circuits 

are specifically designed to benefit from it, such as the several types listed in Section 

1.1. The class represented by saturated amplifiers [33–35] is the one this thesis will 

be mostly focused on, and will be here identified with the name of Injection-Locked 

Oscillators (ILOs), even though this naming is sometimes adopted to refer to all 

circuits based on injection-locking phenomenon as well. Because of their nonlinear 

amplifying nature, ILOs are also defined Oscillating Amplifiers, emphasizing their 

usage on non-monochromatic applications. 



 

 

Older configurations 

classic standalone oscillator

where the drive signal is injected by means of

insulation between input and output ports. These circuits are called 

Injection-Locked Oscillators

Locked Oscillators (TILOs)

designing an oscillator with separate signal

means of a nonlinear active two

It is notable that a 

higher locking bandwidth, 

ferrite circulator [36]. 

device with a large maximum

produce a locking range wider than the one obtainable by means of a reflection

ILO [23]. 

The other main characterizing spec

defined as the ratio between the output power of the IL

power (i.e., the equivalent

amplifiers). Unfortunately, 

injection-ratio value are conflicting each

LBW, and vice versa) and appropriate tr

fulfillment of system-level induced specifications on the IL

    (a)  

Fig. 

(a) Reflection

 

Older configurations detailed in the technical literature consider the usage of a 

classic standalone oscillator, equipped with a nonlinear active one

is injected by means of a circulator, in order to provide power 

insulation between input and output ports. These circuits are called 

Oscillators (RILOs), as opposite to Transmission

(TILOs) [3,23] (Fig. 2.3). These latter ones 

designing an oscillator with separate signal-input and power-output ports

means of a nonlinear active two-port device. 

a transmission-type, while retaining high gain,

bandwidth, often doubling it, moreover eliminating the need for a 

 The employment as oscillating source o

device with a large maximum-stable gain, such as a GaAs FET, is demonstrated to 

produce a locking range wider than the one obtainable by means of a reflection

main characterizing specification of an ILO is the injection

defined as the ratio between the output power of the ILO and the injection signal 

the equivalent of the power gain for conventional, non

amplifiers). Unfortunately, ρ and the locking bandwidth achievable for any given 

ratio value are conflicting each-other (a high value of 

LBW, and vice versa) and appropriate trade-off has usually to be determined for 

level induced specifications on the ILO. 

 

               

  (b)            
 

Fig. 2.3 – Classes of Injection Locked Oscillators: 

) Reflection-type (RILO); (b) Transmission-type (TILO).
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consider the usage of a 

th a nonlinear active one-port element, 

a circulator, in order to provide power 

insulation between input and output ports. These circuits are called Reflection-type 

ransmission-type Injection-

. These latter ones are realized by 

output ports, e.g., by 

type, while retaining high gain, provide a 

eliminating the need for a 

The employment as oscillating source of a three-terminal 

stable gain, such as a GaAs FET, is demonstrated to 

produce a locking range wider than the one obtainable by means of a reflection-type 

the injection-ratio ρ, 

he injection signal 

of the power gain for conventional, non-saturated, 

the locking bandwidth achievable for any given 

other (a high value of ρ implies a small 

off has usually to be determined for 

 

)                  . 

type (TILO). 
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2.2 Adler's Equation 

 

One of the leading milestones in injection-locking theory was posed by a study 

published by Robert Adler in 1946 [26], which means one year before Bardeen, 

Brattain and Shockley invented the first bipolar transistor at Bell Laboratories. 

Despite its age, his work is still one of the main references in this field. Adler 

obtained a differential equation describing the oscillator phase as a function of time, 

employing a simple tuned vacuum tube oscillator as example, where he could 

express: 

(2.2) sin [α]  = 2Q 
E0

E1

 
ω0-ω1

ω0

 

with E0 and E1 the voltage amplitude across nonlinear element under free-run 

oscillation and amplitude of injected signal, respectively, α the phase shift between 

those two signals, ω0 and ω1 the (angular) free-run oscillation frequency and injected 

signal's frequency, respectively. The Q factor represents the quality factor of the 

single tuned resonator. Since the absolute value of sine cannot exceed the unity, the 

relationship (2.2) is used to evaluate the maximum detuning ∆ω0 = ω1 – ω0 at a 

specific E1 injection level, in case of a single tuned (2.3a) or a generic resonator 

(2.3b): 

(2.3a) ∆ω0, max	=	 ω0

2Q
 
E1

E0

 

(2.3b) ∆ω0, max	=	 1

τg

 
E1

E0

 

It is to be noted that the adoption of the group delay τg = – d�OLG/dω, where �OLG 

is the phase of the open-loop gain, is (and is declared as) a valid approximation only 

because of the assumption that all frequencies are near the free-run oscillation one, 

therefore supposing a linear behavior. This is equivalent to considering a low-level 

injection, which is important to be pointed out for next sections' investigations. 
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2.3 Kurokawa's Development 

 

A simple single-tuned (ST) model for the circuit's resonator is inadequate in 

many applications, and some specific behaviors were discussed by Kaneyuki 

Kurokawa [37], like rapid changes in (free-run) oscillation frequency and hysteresis 

effects, that could find no full explanation with such an elementary model, 

especially from a quantitative perspective. He underlined the importance to adopt a 

multiple-resonance model, in order to address some practical considerations. Also, 

he showed the benefits of practical introduction of several resonator networks 

(Fig. 2.4) in order to obtain some performance improvements, like the LBW 

widening or the goal of a greater linearity. Under his conditions, all these resonators 

must have a resonance frequency in the neighborhood of the oscillation one, i.e., the 

whole resonator is modeled as a multiple-tuned nearly-synchronous one. 

 

 

Fig. 2.4 – An oscillator with a multiple-resonant circuit, by Kurokawa [37]. 

Further, Kurokawa studied on expansion of Adler's theory, presenting a 

comprehensive theoretical review for the injection-locking of solid-state ILOs in 

1973 [2], and deriving a similar locking-bandwidth equation. Kurokawa’s work 

covers almost all information on the matter available at that time, and addresses 

both quasi-static and dynamic analyses of the locking range, large-signal injection 

and locking stability. His theory is the first one to introduce the circulator to 

separate the injection signal and the oscillator output signal, and was also used to 

develop a locking bandwidth equation for transmission type injection-locked 

oscillators [23]. His formula differs from Adler's one primarily because Kurokawa 

employs the external Q-factor instead of the loaded one, but still treats it as a 

constant value [38].  
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2.4 Gen-Adler Equation by Roychowdhury 

 

The interest on the topic raised again in 2004 when Behzad Razavi wrote a 

detailed an in-depth summary and analysis of some injection locking peculiarities, 

and enhanced the theory in order to manage quadrature oscillators and then 

frequency dividers [39]. 

This path proceeded in 2009 when Prateek Bhansali and Jaijeet Roychowdhury, 

University of Minnesota, published a generalization of Adler's formula, defining it 

"Gen-Adler equation". That work [27], grounded on the studies carried out by 

Roychowdhury since 2004 [25], presents a method that is not limited to LC 

oscillators, and therefore dependent on quality factor, as the Adler one was. 

Procedure proposed by those authors makes use of PPV (Perturbation Projection 

Vector) phase macromodel to determine the locking range for LLI signals, and 

formulates an analytical equation averaging that model. It lands to: 

(2.4) 
d∆ϕ[t]

dt
 = – (ω1 – ω0) + ω0·g[∆ϕ[t]] 

where 

(2.5) g�∆ϕ[t]� ≡ � χ�∆ϕ[t]+ϕ
1
[t]� · b�ϕ

1
[t]�dϕ

1
[t]

1

0

 

and ∆ϕ[t] ≡ ϕ[t] – ϕ
1
[t] is the phase difference between the oscillator's reference 

phasor and the injection signal phasor, while b[·] is the injection function, defined 

as a 1-periodic function (i.e. b[ω1t] = b[ω1t + 1]). The �[· ] function is a generic 

1-periodic function also. Angular frequencies ω1 and ω2 are the same defined in 

Section 2.2. 

This equation is demonstrated to reproduce Adler's formula under his 

assumptions and peculiar example circuit, but considerably extending the range of 

applicability from this point of view. 

However, it assumes a low-level injection, and is therefore unable to cope with 

higher injection levels. This technique represents the first extension of the linearized 

problem, but cannot tell the basic structure of the amplitude perturbation signal 

and the modifications of the oscillator locking properties compared to small 
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amplitude perturbation. Other studies, later on, have captured and studied the 

modifications of the locking characteristics of the oscillator under an injection of 

noticeable amplitude. 

 

 

2.5 Ohira's Determination of the Q-factor 

 

In parallel with Roychowdhury's studies on the matter, Takashi Ohira developed 

a novel approach for the determination of the locking bandwidth. His work, 

published in 2010, is mainly based on his previous examinations on Q-factor of 

oscillator circuits. The aim is to extend the original Adler's relationship, substituting 

its quality factor of the resonator with a new coefficient calculated through  

linear Z[ω] matrix of the network. This makes it a simple method, while applicable 

to a wide class of circuits. 

   

   

 (a) (b) 

 

 (c) (d) 

Fig. 2.5 – Subdivision by Ohira of injection-locked oscillators employing (a, b) one-port active 

device, (c, d) two-port active device. Simple models (a, c) and simple examples (b, d) 

are provided [28]. 
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It considers specifically, as notable examples of different structures, one-port and 

two-port active device oscillators, providing a precise analysis of those two cases 

(Fig. 2.5). However, it addresses only negative real resistance models, and even if it 

can be extended to device including reactive components such as parasitic 

capacitance, by moving them from device to passive network, it is unable to treat 

nonlinear parasitic elements. Nevertheless, it disregards nonlinear dynamic aspects 

of the involved phenomenon, since it doesn't appropriately take cognizance of what 

happens in presence of generic amplitude signals and, above all, it doesn't provide 

the applicability limits for evaluated linear bandwidth. 

 

 

2.6 State of the Art in the EDA Field 

 

Beyond all analytical or semi-analytical approaches, a free-running or injection-

locked oscillator circuit can obviously be simulated by means of Electronic Design 

Automation (EDA) tools. We will adopt as a reference the most popular and 

complete simulation software, that is Advanced Design System (ADS) [22] by 

Agilent EEsof. As already pointed out, these class of circuits are very stiff and 

performing an exhaustive analysis through an EDA software is not practicable. 

The easiest and more straightforward simulation is the one aimed to free-running 

oscillation point evaluation. It is carried on by means of Harmonic Balance (HB) 

algorithm, where the simulation frequency – being unknown – is found inserting in 

series an ideal probe (named "OscPort") in the feedback loop. 

Driven regime conditions can be evaluated in a similar manner. An HB 

simulation permits to obtain steady-state solution (if it exists) under any injection 

amplitude/frequency couple given by the user. But, if a more general picture is 

attempted, some problems arise. Steady-state curves may provide useful information 

about the locking bandwidth, but only if the injection level is not high, and their 

production is not flawless. The best procedure to achieve workable results is quite 

laborious. Here is provided an outlook of it. First required step is finding the value 

of the free-running oscillation, putting injection to zero if present, ensuring to save 

all state variable data in an output automatically-generated file. Second, a frequency-

swept HB simulation has to be performed, deactivating the oscillator mode, for a 

specific amplitude of the injection. Previous saved data is employed, which means 
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the topology of the circuit must not be altered, or the number of involved 

nodes/branches would change and loading the old output file will be impossible. It is 

required to use that information on the free-running oscillation because, otherwise, 

the simulator engine would typically reach the wrong solution, i.e. the lowest one, 

which is normally an unstable one. To better understand those curves, see Sec. 3.6. 

Furthermore, HB simulator is clearly unable to find a regime when in unlocking 

conditions, and if this situation is met it aborts the simulation and returns only data 

generated until that moment. For this reason, it's necessary that the user provides a 

frequency range that doesn't start from a value outside the locking region, which has 

therefore to be known or found by iterated attempts. Setting a stop frequency higher 

of the last locking one is instead possible. In that case the simulator will return an 

error, but all collected data will be given. It is thus possible to try and perform the 

simulation sweeping frequency starting from a value just a little higher of the free-

running oscillation one. This approach usually provides useful indications. But it 

must be remarked that sometimes convergence problems are met even in the simple 

case of a starting point close (little lower or little higher) to the free-run oscillation 

frequency. 

The third type of analysis that is possible to carry on is the traditional transient 

one. In such stiff circuits there are time constants so different that it's impossible to 

choose an integration-step accomplishing high precision on a sufficiently wide time 

range. In fact, there are normally big differences between the period bound to 

oscillations (free-running or driven) and the time needed to reach the regime (e.g., 

for injection case or the start-up time). A regular transient analysis is therefore not a 

viable way to study driven oscillators. 

In Section 3.1 a powerful alternative for the study of transient evolution will be 

introduced, named Circuit Envelope. However, it still offers only a local information 

and, when used to obtain the whole locking bandwidth, or just a few-dots 

approximation of it, it requires an extremely long time. Since its operating principle 

is quite complex, further details are left to Sec. 3.1, while more information on both 

a step-by-step simulation procedure and on time duration is provided in Appendix 

A1. 
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3. Presented Dynamical Phasor Domain Theory 

 

 

3.1 Dynamical Complex Envelope 

 

As described, the study of injection locking phenomenon is more convenient 

when performed in the phasor domain. Since the involved quantities are phasors 

which magnitude and phase can change over time, depending on the injected signal 

instantaneous value, the best way to describe its equations is the employment of the 

dynamical complex envelope (DCE) domain. An example will clarify its 

characteristics and usage. 

When a sinusoidal signal with angular frequency ω is applied to an impedance Z, 

it is possible to describe the current flowing through it by means of the classical 

electric relationship defined in the phasor domain: 

(3.1) I = Z·V = (R	+	j	X)	·	V	·	e	jϕ 

Assuming that amplitude V and phase 	 of the applied voltage are slow functions 

of time, this equation in the dynamical complex envelope domain is obtained: 

(3.2) I[t] = (R	+	j X)	·	V[t]	·	e jϕ[t]	 
In this relation it has been supposed that variables have a slowly varying 

amplitude (SVA). It's possible to think about it as a quasi-static equation that is valid 

every discrete time-step, provided the envelope changes much slower than the 

carrier of the signal. 

Behind these apparently trivial relationships is hidden one more of the 

fundamental bricks in the DCE domain theory. When the frequency of the signals in 

the oscillator under analysis varies over time, but is enclosed inside a narrow band, it 

can be assumed as a constant, and its variation can be handled just as if it was a 

phase variation over time. Joining this together with the capability to treat time 

dependent amplitudes, it is possible to employ the DCE theory to study modulated 
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signals such as those found in high-frequency amplifiers, oscillators, mixers, and 

ILOs. Furthermore, for many of these circuits transient analysis is possible too. 

 

 

Fig. 3.1 – Example of ADS Circuit Envelope simulation process [40]. 

DCE domain theory is notably implemented in ADS in the Circuit Envelope (CE) 

simulation [22,40,41]. The values of amplitude and phase of the sampled envelope 

are used as input signals for HB analyses (Fig. 3.1): at each time step an HB analysis 

is performed, therefore evaluating the corresponding spectrum for that time step. A 

time domain representation of the desired amplitude and phase evolutions is 

obtained through a Fourier series with evaluated time-varying complex coefficients, 
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therefore every single node – independent (e.g., input signal) or dependent – is 

represented by means of the relationship: 

(3.3) v[t] = Re 
�Vk[t] · ejωkt

N

k=0

� 
where ωk is the k-th (angular) frequency, N is the user-defined number of harmonics 

selected in the simulation, and Vk[t] is the coefficient, often referred to as the "k-th 

envelope". 

However, when studying a circuit with analytical procedures, only fundamental 

harmonic is usually considered, considerably simplifying the treatment. In 

particular, when a selective resonator is present, higher harmonics can be neglected 

without great reduction in accuracy. 

 

 

3.2 Method's Application and Equations 

 

The analysis method proposed in the present thesis, in the dynamical complex 

envelope domain, first of all deals with the study of the circuit through its system 

analogy. Please note that this system representation is broader than the only circuital 

subclass, and the following theory can also manage, with little o no variation, 

different settings, e.g., laser oscillators [42–46], mechanical [47], acoustic 

oscillations [48], biological machines [39,49], etc. The theoretical demonstration for 

this approach is based on perturbation theory developed by E. F. Calandra and A. 

Sommariva [24,21], to which considerable extensions have been applied. A very 

specific example will be adopted in this section, in order to better understand the 

main features of the proposed approach, which will be later explained in detail. 

The phasor-domain block diagram related to an example of a simplified driven 

oscillator is depicted in Fig. 3.2, in which the system block GN represents the 

describing function of a conductance-type nonlinear element, i.e., a device whose 

characteristic equation is IO = f [VI], like a tunnel diode. Indeed, a pure real element 

has been chosen for now for the sake of simplicity, which is function of only one 

input variable. All of the voltage/current variables shown in figure are to be intended  
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Fig. 3.2 – Phasor-domain example block-diagram of a simplified driven oscillator. 

in fundamental-mode, and under the above-quoted SVA hypothesis. In this diagram 

a feedback loop can be found by means of the linear feedback impedance ZF, 

generating the voltage VF which is subtracted from the injection voltage VG, to 

restore the VI again. The open-loop gain (OLG) of the free-running oscillator alone 

(i.e., VG = 0) turn out to be therefore: 

(3.4) OLG 
	–	GN·ZF 

In order to obtain, at the resonance frequency (or, more properly, at the 

oscillation frequency), an OLG magnitude equal to unity and phase equal to zero, it 

is clear that GN must be an active element characterized at ωOSC by a negative 

resistance, whose value equals the (positive) resistance exhibited - at the same 

frequency - by the resonator. 

In Fig. 3.3 is depicted a circuital example that can be represented with above 

analyzed block diagram. In this case, impedance ZF is constituted by a second-order 

circuit, precisely a parallel RLC filter. 

As it can be observed from this figure, the conformity with previous block 

diagram is guaranteed by the validity of following relationships: 

(3.5) 

VG	– VF = VI 

IO = GN�VI� ∙ VI 

VF = ZF ∙ IO 

where voltages and currents are generalized time-varying phasors Xn=Xn[t]·e jφn[t], 

with Xn[t] and φn[t] slowly-varying amplitude quantities in the scaled time t/T0 (T0 

being the period of the free-running oscillation). This is tantamount to saying that 
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Fig. 3.3 – Example circuit of simplified driven oscillator. 

their variation is "small" in the period of the fundamental of the oscillation under 

both free-running and phase-locked operation. 

Combining equations (3.5), the frequency-domain nonlinear phasor equation is 

obtained: 

(3.6)  (1	+	ZF	·	GN�VI�)	·	VI = VG 

which characterizes the behavior of injection-locked oscillator, through the 

nonlinearity input voltage VI , as a function of the driven voltage VG. In this specific 

case, the ZF filter is represented by a well known parallel RLC circuit, whose 

impedance equals:  

(3.7) 
ZF = 

RF

1+ jQ
F

(ω2	– ωF
2)

ω · ωF

 

where ωF is the resonance (angular) frequency (1/	�LF	CF), and QF the quality factor 

(ωF RF CF). Now, with a less rigorous demonstration with respect to [21], the same 

DCE equations will be derived, with respect to this particular case. The reasonable 

assumption that ω + ωF ≅ 2ω will thus be made, obtaining the BLDO approximation 

[24] for a single-tuned resonator: 

Rf

Cf

Lf

Gn[Vi] Vg

Zf
Vf

Vi

-

+

+-
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(3.8) 
ZF ≐ 

RF

1+ j2Q
F

(ω – ωF)
ωF

 

Using (3.8) in (3.6) and rearranging, we obtain the in-line equation: 

(3.9) 
(ωF + 2Q

F
 (jω – jω

F
) + ωF R

F 
GN�VI�) · VI	e jϕ

� =  

                                                                  (ωF + 2Q
F
 (jω – jω

F
)) · VG	e jϕ

� 

which analytically defines steady state (SS) values of VI and 	I as a function of the 

injection signal amplitude VG, phase 	G and frequency ω. To work out the 

differential system model we can follow an analogous procedure, in view of the 

theory presented in [24], simply by replacing every jω term with its symbolic 

counterpart (jω + d/dt) and then performing the necessary calculations. This way, we 

firstly get: 

(3.10) 
2Q

F
 VI

'[t] e jϕI[t] + (ωF +	j2Q
F
 (ω – ωF) + ωF R

F 
GN�VI[t]� + j2Q

F
ϕ

I

'
[t])	· 

·VI[t] e
 jϕI[t] = e jϕG[t] (2Q

F
VG

'[t] + (ωF + j2Q
F
 (ω – ωF) + j2Q

F
ϕ

G

'
[t])VG[t]) 

Splitting it into a real and an imaginary equation and rearranging, the normal 

form of differential set of equations is obtained: 

(3.11a) 

VI
'[t] = 

1

2Q
F

(VG[t] (2Q
F
 sin[∆ϕ

IG
[t]](∆ω + ϕ

G

'
[t]) + ωF cos[∆ϕ

IG
[t]])	+ 

 – ωF	(1 + RF GN[VI[t]]) VI[t]) + cos[∆ϕ
IG

[t]] VG
'[t] 

(3.11b) 

ϕ
I

'�t�	= 1

2Q
F
VI[t]

(VG[t] (2Q
F
 cos[∆ϕ

IG
[t]](∆ω + ϕG

'
[t])-ωF sin[∆ϕ

IG
[t]]))+ 

– �∆ω	+	sin[∆ϕ
IG

[t]]
VG

'�t�
VI�t� �																																																																						 

In above equations, ∆	IG = 	I[t] - 	G[t] and ∆ω = ω - ωF definitions have been 

used. Differential system (3.11) fully describes the transient evolution of the VI 
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variable, once GN[VI[t]] describing function, {QF, ωF, RF} circuit parameters and {ω, 

VG[t], 	G[t], VG'[t],	G'[t]} injection functions are known. 

Under free-run conditions (VG[t] = 0), the steady-state oscillation values are 

easily obtained from (3.10), resulting in: 

(3.12a) VI,OSC ∙ �ωF	+	j2Q
F
�ωOSC	–	ωF�	+	RF ωF GN[VI,OSC]� = 0 

(3.12b) �GN[VI,OSC] = –	 1

RF

ωOSC	= ωF

 

 

� 
In this simple case, an analytical solution can be found even without the need to 

describe the analytical form of the SIDF, but this is not a general rule, e.g., in 

oscillators with more reactive components there are two possibilities: or a full 

definition of the GN[VI[t]] is given, or the second of these equations is not  

gained. 

As a simplified example, useful for a better understanding of the involved 

phenomena, it is convenient to study the specific case of a continuous wave (CW) 

injection. Formulas (3.11) reduce to two simpler equations: 

(3.13a) VI
'[t] = VG,CW (∆ω sin[ϕ

I
[t]]+

ωF

2Q
F

cos[ϕ
I
[t]]) – 

ωF

2Q
F

 (1+RFGN[VI[t]]) VI[t] 

(3.13b) ϕ
I

'�t� =	–	∆ω	+ VG,CW

VI�t� �∆ω	cos[ϕ
I
[t]]	– 

ωF

2Q
F

	sin[ϕ
I
[t]]� 

where 	G,SS has been set to zero for sake of compactness, i.e., used as phase 

reference. 

In this process of particularization under specific conditions, special attention 

deserves the low-level injection hypothesis. That is, if we assume that a small VG,CW 

voltage is applied to the free-running oscillator, then only a small perturbation come 

out in all oscillator's variable quantities. In this perturbation theory, an "order of 

smallness" ε must be introduced. A convenient choice for its magnitude is the 

inverse of the Q factor of the resonator, when applicable. 
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In example of Fig. 3.3, this considerations lead to the selection of ε = 1/QF. 

For example, if a VG,CW = O[ε] drive voltage is injected into the ILO, then we obtain 

VI [t] = VI,OSC + ∆VI [t], where ∆VI [t] results in an ε smallness. 

Now, for the purpose of deducing the corresponding LLI system to (3.13), we 

will suppose the following smallness conditions, which are the ones producing 

equations of the same structure of - and very similar to - classical Adler's ones [26]:  

 

(3.14) 

Q
F
 = O�ε-1� 

VG,CW	=	O�ε� 
∆ω =	O�ε2� 
∆VI[t] = O�ε�; 
ϕ

I
[t] = O�1�; ∆VI

'[t] = O�ε3� 
ϕ

I

'�t� = O�ε2� 
 

These equations, together with series approximation of GN[VI[t]] ≅ GN[VI,OSC] + 

GN'[VI,OSC]·∆VI [t], lead to the following LLI CW dynamical complex envelope 

domain system: 

(3.15a) ∆VI[t] = 
VG,CW cos[ϕ

I
[t]]

 RF VI,OSC GN
'[VI,OSC]

 

(3.15b) ϕ
I

'�t� = – ∆ω – 
VG,CW

VI,OSC

∙
ωF

2Q
F

 sin[ϕ
I
[t]] 

It is to be noted that this algebraic-differential system is a well known result in 

literature [24,26,27,50–53]. This can be successfully employed for the stability 

evaluation, but it is not always accurate to reproduce transitory evolution of the 

circuit. For that purpose, full unconstrained system (3.13) should be used. We will 

deepen this argument in Section 3.4. 

 

 



 

 

3.3 Class Defining 

 

Before proceeding further, 

For argument's sake, it has been preferred to introduce 

precise example, whose

purpose of making easy to understand 

sequence of the general 

in use. 

Now, we will clarify the 

must satisfy in order to be treatable with 

complex envelope domain

This class can be 

fundamental-mode ILOs, i.e.

self-starting) "core-oscillator" driven by a narrowband

with a carrier frequency quite close to

Fig. 3.4 – Phasor-domain block

The generalized system 

number of blocks are available 

is now represented by an "

negative conductance (as in previous example was). Therefore, 

controlled variables are now 

the generic case, the transfer function in the feedback loo

block LF. 

In figure is highlighted the "core ILO", which is the main part involved in the 

determination of oscillators' behavior. It includes the 
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Before proceeding further, it is convenient to summarize some relevant aspects. 

For argument's sake, it has been preferred to introduce this treatment exploiting a 

ose peculiarities are especially well-known and clear

purpose of making easy to understand the theoretical structure and 

general approach, as well as the adopted nomenclature for variables 

clarify the limits and the conditions an injection

must satisfy in order to be treatable with this analysis method

domain. 

class can be basically identified as the class of "properly design

mode ILOs, i.e., systems based on a quasi-sinusoidal (unimodal and 

oscillator" driven by a narrowband-modulated injection si

with a carrier frequency quite close to the free-run oscillation one. 

domain block-diagram of the generic driven oscillator system

The generalized system under analysis is represented in Fig. 3.4, 

number of blocks are available in comparison with Fig. 3.2. The nonlinear element 

is now represented by an "N" symbol, meaning it can be different from a simple 

negative conductance (as in previous example was). Therefore, 

controlled variables are now generic XI/XO signals, instead of VI/I

the generic case, the transfer function in the feedback loop is described by the linear 

In figure is highlighted the "core ILO", which is the main part involved in the 

determination of oscillators' behavior. It includes the linear block 
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it is convenient to summarize some relevant aspects. 

treatment exploiting a 

known and clear, for the 

the theoretical structure and standard 

as the adopted nomenclature for variables 

conditions an injection-locked oscillator 

this analysis method in the dynamical 

identified as the class of "properly designed" 

sinusoidal (unimodal and 

modulated injection signal, 

 

 

or system considered. 

represented in Fig. 3.4, where a larger 

in comparison with Fig. 3.2. The nonlinear element 

can be different from a simple 

negative conductance (as in previous example was). Therefore, its control and 

IO, respectively. In 

p is described by the linear 

In figure is highlighted the "core ILO", which is the main part involved in the 

block LG, which takes 
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into account the possibility that injection XS can be of a different type with respect 

of XI, for example injected variable is a current while nonlinear element is voltage 

controlled. Also, it can represent an additional filtering behavior of the circuit under 

test. 

Last two linear blocks in figure, LO and LS, have been added in order to take into 

account for a generic output variable XL that the user may want to analyze. Since it 

can be directly influenced by the drive signal, the linear block LS have been 

included, too. 

All these four LX blocks represent the various time-invariant, passive and linear 

elements of the system, properly grouped. Furthermore, LF block must reproduce a 

high selectivity resonant filter. In first example detailed in previous section, a single 

tuned has been taken, and LF was the (approximated) impedance of a second order 

resonator. When a higher order is given, different possibilities can present. In many 

practical cases, main resonator is well-approximable as a single tuned, and is 

therefore called a "single-tuned like". Otherwise, a more complicated model needs to 

be considered, as we will see in chapter 6. 

About nonlinear (active) elements, they must be all collectable inside the only 

nonlinear block N[XI]. In Section 3.2 we have considered one single nonlinear 

bipole (a simplified tunnel diode) characterized by a real function, but in the most 

general case a series of nonlinear devices, including parasitic effects (i.e., producing 

a complex function), can be appropriately modeled. The main limitation is the 

assumption of a single control variable for the nonlinear active device (or for the 

system block), but this constraint can be considered a reasonable approximation in 

many feedback-type high-frequency TILOs designed exploiting modular/matched 

structures, and nearly unilateral active devices. 

Notice that the use of the SIDF, and its extensions that will be introduced in the 

following, in the circuital context usually assumes that variations of the active 

device bias in the various operating conditions investigated is negligibly small or 

none. A discussion and an example in the case of shifting of the bias point will be 

treated in chapter 4. 

The injection is supposed to be a slowly-varying quantity, both in amplitude and 

phase, narrowband-modulated with a carrier in the neighborhood of the free-run 

oscillation frequency. Amplitude of drive voltage is usually assumed to be of an 

order of magnitude not greater than oscillation voltage, though this will be more 

precisely discussed in the following. 
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3.4 Describing Function and Transient Analysis 

 

From DCE equations (3.11) or (3.13), transient responses can be evaluated with 

very high computational efficiency, via standard numerical integration methods. For 

the sake of simplicity, we will refer to example exposed in Section 3.2. 

The nonlinear conductance there adopted, will be here represented with a 

polynomial, in particular through a standard cubic model. Easy as it may appear, it is 

often not well documented, thus we will briefly summarize its usage before 

proceeding. The appellation "cubic" refers to time domain model, and actualizes in 

the definition of this voltage controlled element, where PN = 3: 

(3.16) iO[t] = � g
Np

vI[t]
p

PN

p=0

 = g
N0

 + g
N1

vI[t] + g
N2

vI[t]
2 + g

N3
vI[t]

3 

Applying a sinusoidal voltage vI[t] = VI[t]·cos[ωt + 	I], and grouping all terms 

with reference to different frequencies, we obtain: 

(3.17) 

iO[t]	=	(g
N0
	+	 1

2
g

N2
VI

2)	+	(g
N1

VI	+	 3
4

g
N3

VI
3)	cos[ωt	+	ϕ

I
]	+ 

+	( 1

2
g

N2
VI

2)	cos[2(ωt	+	ϕ
I
)]	+	( 1

4
g

N3
VI

3)	cos[3(ωt	+	ϕ
I
)] 

where all VI and 	I are slowly varying functions of the time, but it has been omitted 

for a better readability. Please note that gN0 must be zero in order to represent a 

realistic passive element, with no current when zero voltage is applied. 

Since we want to consider the fundamental harmonic only, we need to exclude 

both the constant term and higher harmonics. Hence, passing from the time domain 

to the frequency domain: 

(3.18) 

iO,FUND[t] = GN�VI[t]� · VI[t] · cos[ωt +	ϕ
I
] 

IO[t] = GN�VI[t]� · VI[t] 

GN�VI[t]�	=	gN1
	+	 3

4
g

N3
VI

2 
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Finally, subdividing this SIDF with another polynomial representation, but in the 

phasor domain, we get: 

(3.19) 

GN�VI[t]� = � GNp·VI[t]
p

PN-1

p=0

 = GN0	+	GN1VI[t]	+	GN2VI[t]
2 

GN0	=	gN1
 

GN1 = 0 

GN2 = 
3

4
g

N3
 

Therefore, the fundamental mode of a (time-domain) cubic model is completely 

defined by GN0 and GN2 coefficients. 

It is now possible to introduce (in Tab. 3.1) all numerical values employed for 

circuit parameters in following transient evolutions: 

   

ωF = 109 rad/s GN0 = –2 mS 

QF = 100 GN1 = 0 

RF = 1 kΩ GN2 = 1 mS/V2 

 

Tab. 3.1 – Numerical values for example of Sec. 3.2, employed in following transient graphics 

To evaluate a transient response from obtained differential system, the operative 

procedure is quite straightforward. Since the set of equations (3.13) is not solvable 

in analytical closed form, numerical integration will be required to calculate the 

output waveform evolution. Driving the oscillator with a simple signal in continuous 

wave, introduced at time t = 0, the standard procedure requires to: 

1) set injection conditions (i.e. ω, VG); 

2) set an initial condition (i.e. VI,0 ≡ VI [t]|t = 0), which can be the free-running 

oscillation regime, for example; 
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3) insert all above specified numerical conditions into the DCE system, and 

solving it numerically. In this research, this has been accomplished with the 

software Wolfram Mathematica [54]. 

Please note that steady-state values (VI,SS, 	I,SS) can be easily obtained by means 

of those equations, by setting VI'[t] = 	I'[t] = 0. 

For comparison reasons, simulations performed with (3.15) LLI equations have 

been provided also in figures, showing that, in some cases, an excessive 

approximation results from those ones, as previously stated. 

 

 

Fig. 3.5 – Transient evolution of VI[t], VI'[t], �I[t], �I'[t] in the circuit of Fig. 3.3, when driven 

by VG = 10 mV, ω = ωF , starting from oscillation conditions (VI,0 = 1 V, �I,0 = 90 deg); 

solution of full system is green, of LLI system is dashed orange. 
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First simulation, depicted in Fig. 3.5, illustrates the transient evolution of the 

circuit under test when the injection is suddenly activated starting from the 

oscillation condition. In particular, VI,OSC = 1 V, VG = 10 mV, ω = ωF = ωOSC, 

resulting in steady state value VI,SS ≅ 1.005 V. In the four frames represented, VI[t], 

VI'[t], 	I[t], 	I'[t] are shown, respectively. 

In this case, LLI approximation produces nearly the same results of the complete 

solution, that is a common exponential behavior. 

   

 

 

  

Fig. 3.6 – Transient evolution of VI[t], VI'[t], �I[t], �I'[t] in the circuit of Fig. 3.3, when driven 

by VG = 10 mV, ω = ωF , starting from conditions VI,0 = 0.995 V, �I,0 = 170 deg; 

solution of full system is green, of LLI system is dashed orange. 
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When starting condition is not the free-running oscillation regime, a more 

complicated evolution can be exhibited. The case of a lower initial amplitude, and 

more distant phase from its steady-state value, is shown in Fig. 3.6, where 

VI,0 = 0.995 V, 	I,0 = 170 deg. 

This time, two time constant are visible. Both amplitude and phase of VI[t] 

exhibit a double exponential behavior, well indicated by their bell-shaped 

derivatives graphics, too. 

However, a very fast initial transient is also present but not evident from those 

graphics. During this time interval, amplitude shows a (small) falling and rising 
 

   

 

  

Fig. 3.7 – Transient evolution of VI[t], VI'[t], �I[t], �I'[t] in the circuit of Fig. 3.3, when driven 

by VG = 10 mV, ω = ωF , starting from conditions VI,0 = 0.995 V, �I,0 = 170 deg; 

solution of full system is green, of LLI system is dashed orange. 
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evolution, which is not caught by LLI equations, since the order of the 

corresponding algebraic-differential system is too low. That is, derivative of the 

magnitude is different at the beginning, as highlighted by the upper right frame of 

Fig. 3.7. Phase trend has no such trend, instead. 

Let's consider detuned injections cases now. When the angular frequency of the 

drive voltage is 30 krad/s higher than free-running oscillation, an overshoot in 

nonlinear conductance's amplitude is exhibited, and correctly represented by both 
 

   

 

 

 

Fig. 3.8 – Transient evolution of VI[t], VI'[t], �I[t], �I'[t] in the circuit of Fig. 3.3, when driven 

by VG = 10 mV, ω = ωF + 30krad/s , starting from oscillation conditions (VI,0 = 1 V, 

�I,0 = 90 deg); solution of full system is green, of LLI system is dashed orange. 
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full and LLI analyses. Fig. 3.8 shows that its derivative feature an overshoot too, 

while it is to be noted that steady-state value of the phase is not zero any more. 

This detuning width is approximately 60% of the bandwidth calculated at that 

injection level. 

With a detuning width exceeding the bandwidth (e.g., 120% of it, like in Fig. 

3.9), the unlocked state is obtained. In this case, no steady-state regime can be 

reached by the amplitude or by the phase, but it is revealed a periodic movement of 

VI[t] and 	I[t]. It matches with a non-sinusoidal oscillation of the envelope of vI[t] in 
 

   

 

 

 

Fig. 3.9 – Transient evolution of VI[t], VI'[t], �I[t], �I'[t] in the circuit of Fig. 3.3, when driven 

by VG = 10 mV, ω = ωF + 60krad/s , starting from oscillation conditions (VI,0 = 1 V, 

�I,0 = 90 deg); solution of full system is green, of LLI system is dashed orange. 
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the time domain, therefore no sinusoidal regime is achieved. Obviously, respective 

derivatives have a periodic evolution, too. 

As pointed out by this figure, both full system (3.13) and LLI system (3.15) are 

able to correctly illustrate the transient evolution in case of an unlocked state. 

As last example, a free-running oscillation is shown, starting from a zero 

condition, (i.e., startup transient evolution). This event is different from previous 

ones, in fact it is not possible to define any phase evolution, since there is no 

injected signal to use as a reference. Moreover, LLI equations (3.15) cannot be 

applied in this case, since they would provide only a constant value both for VI[t] 

amplitude and phase, i.e., no evolution at all. 

In Fig. 3.10 the startup evolution of present test circuit is reproduced, with both 

VI[t] and VI'[t] being displayed.  

   

 
 

Fig. 3.10 – Free-running startup transient evolution (i.e., VI,0 = 0) of VI[t], VI'[t], 

in the circuit of Fig. 3.3. 

Indeed, since the zero solution is mathematically a possible one, a small 

perturbation to the initial condition had to be added (in particular, a 1 µV voltage), 

whose role is the same played by background noise in real oscillators, in order to let 

the signal move from its initial state. 
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3.5 Dynamical Stability Analysis 

 

First of all, we need to analytically define the steady-state system, obtainable 

from the (3.13) equations, setting VI'[t] = 	I'[t] = 0, still focusing on the specific 

case of a single-tuned (or single-tuned like) oscillator. Solving for cos[	I,SS] and 

sin[	I,SS] and after some rearrangements we get: 

(3.20a) �1	+	RF ωF
2 GN[VI,SS] (2 + RF	GN[VI,SS])

4Q
F

2∆ω2+ ωF
2

�VI,SS
2 = VG,CW

2 

(3.20b) sin �ϕ
I,SS

� 	=	 2Q
F
 RF VI,SS ∆ω ωF GN[VI,SS]

VG,CW(4Q
F

2∆ω2	+	ωF
2)

 

These equations are decoupled, the first being the only needed to evaluate VI,SS, 

while the second permits to evaluate 	I,SS substituting the solution provided by the 

previous one. However, equation (3.20a) cannot be solved in VI,SS in its general 

form until the SIDF is not defined. In the case of a cubic polynomial, it develops 

into a "fake sixth-degree" equation, that is a third-order equation in the variable 

VI,SS
2: 

(3.21a) 
(GN2

2	RF
2	ωF

2)	VI,SS
6	+	�2	GN2	RF	ωF

2(1	+	GN0	RF)�VI,SS
4	+ 

+ �4Q
F

2∆ω2+(ωF	+	GN0RFωF)
2�VI,SS

2 – (4Q
F

2∆ω2+ωF
2) VG,CW

2 = 0 

(3.21b) sin �ϕ
I,SS

�  = 
2Q

F
 RF VI,SS ∆ω ωF (G

N0
+ GN2VI,SS

2])

VG,CW(4Q
F

2∆ω2 + ωF
2)

 

which provides three acceptable solutions, since negative values are meaningless for 

the magnitude VI,SS. 

As already stated, locking-bandwidth (LBW) is one of the principal features of an 

injection-locked oscillator. Steady-state equation provides, in general, more than one 

solution, i.e., more than one possible regime, as shown in the (3.21) example. To 

ascertain if a given equilibrium point, calculated by the fundamental mode spectral 
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balance equation under CW injection, corresponds to locked or unlocked regime, a 

dynamical stability analysis has to be carried out. We will equivalently name them 

stable and unstable points, respectively. 

Stability analysis can be performed with standard Routh-Hurwitz criterion [55], 

after the first step of evaluating the characteristic polynomial of the Jacobian Matrix. 

This method is generally faster than direct eigenvalues calculus, but there are 

alternatives that can ease the evaluation of the local stability conditions, as we will 

describe in the following. 

In order to simplify the exposition, it is often convenient to refer to a 

specific example, therefore part of the treatment will be related to circuit of 

Fig. 3.3, where the order of the system is N=1. 

Calculation of the (2N)⨯(2N) Jacobian Matrix is supported by the form of (3.13) 

differential equations, permitting a standard local linearization technique [56,21], in 

the {VI,SS, 	I,SS} specific point under test. In particular, defining: 

(3.22a) 

f1[VI,SS, ϕ
I,SS

] = VG,CW (∆ω sin[ϕ
I,SS

] + 
ωF

2Q
F

cos[ϕ
I,SS

]) + 

	– 
ωF

2Q
F

 (1	+	RF	GN[VI,SS]) VI,SS 

(3.22b) f2[VI,SS, ϕ
I,SS

] = – ∆ω +
VG,CW

VI,SS

�∆ω cos[ϕ
I,SS

] – 
ωF

2Q
F

 sin[ϕ
I,SS

]� 

The general form of the Jacobian Matrix, in the case of a first-order differential 

system, is: 

(3.23) J = ���
�J11 J12

J21 J22��
��  = 

���
���
�f1�VI,SS

�f1�ϕ
I,SS

�f2�VI,SS

�f2�ϕ
I,SS���

��� 

therefore, substituting from (3.22) and performing the derivatives, we obtain: 
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(3.24) 

J11 = – 
ωF

2Q
F

(1	+	RFGN[VISS]	+	RFVISSGN
'[VISS]) 

J12 = VG,CW	(∆ω cos[ϕ
I,SS

] – 
ωF

2Q
F

sin[ϕ
I,SS

]) 

J21 = – 
VG,CW

VI,SS
2
	(∆ω	cos[ϕ

I,SS
]	–	 ωF

2Q
F

sin[ϕ
I,SS

]) 

J22 = – 
VG,CW

VI,SS

	(∆ω	sin[ϕ
I,SS

]	+	 ωF

2Q
F

cos[ϕ
I,SS

]) 

The corresponding characteristic polynomial, whose roots ascertain the 

eigenvalues whose values determine the circuit's time response to a perturbation of 

the analyzed equilibrium point, is: 

(3.25) p
C

= det[λ·I
	(2N)⨯(2N)

	

 – J ] =� p
n
·λ

n

2N

n=0

 = p
2
λ

2
 + p

1
λ + p

0
  

where in last equivalence N = 1 has been set. Also, note that p2N is a structural unity, 

when its calculation is performed through the steps here described. In this single-

tuned example, the other two terms result: 

(3.26) 

p
1
= 

VG,CW

VI,SS

∆ω sin[ϕ
I,SS

]+ 

+
ωF

2Q
F

�1 + RF	GN[VI,SS] + RFVI,SSGN
'[VISS] + 

VG,CW

VI,SS

cos[ϕ
I,SS

]� 

p
0
=  �∆ω cos[ϕ

I,SS
] – 

ωF

2Q
F

sin[ϕ
I,SS

]�VG,CW

VI,SS

!2

+ 

+
ωF

2Q
F

�∆ω sin[ϕ
I,SS

]	+	 ωF

2Q
F

cos[ϕ
I,SS

]� · 
	·	�1+RF	GN[VI,SS]+RF	VI,SS	GN

'[VI,SS]� 	 ∙ VG,CW

VI,SS
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The (3.26) coefficients here calculated depends on both amplitude and phase of 

the point under test, but it is possible to remove dependence on the phase 

substituting the solution in sin[	I,SS] and cos[	I,SS], mentioned at the beginning of 

this section. The results will not depend on VG,CW either: 

(3.27) 

p
1
= 

ωF

2Q
F

(2 + 2 RF GN[VISS] + RF VISS GN
'[VISS]) 

p
0
= ∆ω2+� ωF

2Q
F

�2

(1+RF	GN[VISS])(1+RF	GN[VISS]+RFVISSGN
'[VISS]) 

Those coefficients are crucial for stability analysis. In fact, in many cases they 

can provide complete information without the need of solving the characteristic 

polynomial. As anticipated before, evaluation of eigenvalues is not required, as any 

other standard method (e.g., Routh-Hurwitz) providing equivalent information can 

be conveniently adopted. 

On the other hand, if a global picture of the LBW-related characteristics of the 

analyzed system is aimed at, avoiding repeated single-point analyses, one can 

directly look for the stability surfaces in the response space {VG,CW, ∆ω, VI,SS}. To 

this purpose, in most common cases one can take advantage of the generalized 

definition of Locus and Boundary introduced in [21] which identify two cylindrical 

surfaces (curves in the plane {∆ω, VI,SS}), that, in combination, define a subset of 

the boundary borders between stable and unstable locking regions. In fact, they 

permit adequate investigation of both the principal locking band (i.e., the one 

surrounding the free-run oscillation frequency with step-continuous dependence on 

VG,CW) or the lateral bands (those associated to hysteresis phenomena) which 

involve only the stability manifolds covered by Locus or Boundary (see Sec. 3.6 for 

more information). Their use alone, i.e., without the support of a complete stability 

analysis through Routh-Hurwitz or equivalent method, is critical only for the 

evaluation of isolated locking bands, which are sometimes erroneously predicted by 

Locus or Boundary (see Appendix A2 for more information).  

In the first-order example under investigation, conditions introduced by Locus 

and Boundary limits are respectively represented by: 
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 (3.28) �p
0
 > 0   

p
1
 > 0   

� (Locus condition)

(Boundary condition)

 

A graphical interpretation of these two conditions in the {∆ω, VI,SS} plane will 

point out the advantages they supply. Both the requirements must be met, therefore 

the stability is observed in the unshaded region of Fig. 3.11, where unstable regions 

(p0 < 0 and p1 < 0) are colored in light red.  

   

 
 

Fig. 3.11 – Stability plane for first-order example of Fig 3.3. Boundary limit is the straight 

line at 0.707 V, Locus limit is the elliptic-like curve. The black dot 

corresponds to the free-running oscillation. 

In this figure some elements might be observed. First, regions in red provide the 

set of unstable points. It means that every couple {∆ω, VI,SS} falling inside the 

shaded area, is not a possible steady-state solution. The oscillator can be 

somehow driven to one of these points, but it will leave that position as soon as 

it is able. Please note that stability borders are only the straight lines, while dashed 
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ones are only provided as a graphical reference, indicating Locus and Boundary 

respective borders. 

The Boundary limit is a horizontal line, i.e., it is not a function of the detuning 

∆ω. That is, it does not depend on injection frequency. This is not a general result, 

but in most examples its trend is a weak function of the detuning, especially in 

comparison with the Locus limit. This latter one, exhibiting in Fig. 3.11 an elliptic-

like shape, is actually the only one involved in case of a low-level injection. In fact, 

when drive voltage is small, steady-state value of the nonlinear voltage will be in the 

neighborhoods of the oscillation value, that is the black dot depicted in figure. Only 

with a high level injection (HLI), possible regimes will be influenced by the 

Boundary limit, as we will see in next section. 

From a practical point of view, the free-running stability must be calculated 

before the steady-state one, obviously. In this case, with a single free-run oscillating 

solution, it is likely that it is stable, but a check must be performed. 

The straightest way to ensure the stability, is to evaluate eigenvalues in the 

specific point, excluding the null eigenvalue λ = 0, corresponding to the positioning 

on the Locus itself. This characteristic is a general one. In the described example, 

substituting oscillation values to the characteristic polynomial, lead to λ1 = –107, 

which, being its real part negative, confirms the stability of the free-running 

oscillation point obtained. If characteristic polynomial is not easy to solve (e.g., it is 

of an high degree, and numerical estimation is not a viable opportunity), then 

Routh-Hurwitz criterion could be carried out, for example. 

In other cases more than one oscillation point can be provided from the DCE 

equations (after appropriate conditions have been set), and a stability analysis is 

necessary for everyone of these solutions. 

 

 

3.6 Steady-State Curves and Locking Bandwidth 

 

Stability regions are especially useful to understand circuit's behavior and 

locking/unlocking transitions when steady-state regimes are superimposed.  

Those latter ones correspond to points in the stability plane that can be obtained 

solving numerically the (3.20) regime DCE system, once a {∆ω, VG,CW} couple has 
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been chosen. By means of the second equation, the steady-state phase can be 

determined, too. 

It is especially meaningful to reproduce in that plane a steady-state curve, 

achieved with the numerical choice of a fixed VG,CW and sweeping the frequency 

detuning as a parameter. The intersection between a steady-state curve and stability 

borders do provide the locking bandwidth.  

   

 
 

Fig. 3.12 – Steady-state curves superimposed over stability plane for first-order 

example of Fig 3.3. (a) VG,CW = 100 mV, (b) VG,CW = 250 mV, (c) VG,CW = 400 mV, 

(d) VG,CW = 500 mV. 

Figure 3.12 shows that for lower injection levels, steady-state curves are elliptic-

shaped (perfect ellipses for injection tending to zero). However, the lower part 

(approximately the lower half) of this ellipse is unstable, which means it can only be 

found in a transient evolution. Given a specific injection, ∆ω sets with a vertical line 

all possible transient evolutions, while VG,CW provides which regimes (black curves) 

are possible. For example, if ∆ω = 1.0 ·  2" MHz (Fig. 3.13) three regimes are 

possible, but only one (the green dot) falls in the stable region, thus the actual 

steady-state solution is identified. 
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Fig. 3.13 – Steady-state curve for VG,CW = 250 mV, superimposed over stability plane for 

first-order example of Fig 3.3. Intersections with dashed blue line ∆ω = 1.0 · 2� MHz are 

displayed with red dots when unstable or green dots when stable. 

For low-level injections a lower branch is in fact present, but it falls (as usual in 

many cases) entirely inside the unstable region. Therefore, the only stable branch 

provides by its own the locking bandwidth, which is determined by the interception 

between it and the Locus border, since the bandwidth is established by the set of 

"green" points as the frequency detuning varies. 

Rising the injection amplitude, higher and lower branches join together (e.g., 

curve c in Fig. 3.12), and the elliptic-like shape is deformed until, as injection 

grows, it becomes a curve without backward paths (e.g., curve d). 

An relevant observation can be made, useful for injection-locked oscillators 

design: it is possible to demonstrate that steady-state curves intercept the Locus limit 

in vertical position, i.e., the derivative tends to infinite. Consequently, if the 

Boundary border is not involved, and infinite in the derivative is found, the 

frequency this event occur is the maximum or minimum possible detuning, 

permitting to analytically evaluate the locking bandwidth. 
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As previously stated, the Boundary border is relevant at higher injection levels. 

Indeed, the distinction between low-level injection (LLI) and high-level injection 

(HLI) can be defined exactly as the transition from a locking band determined only 

by the Locus, and a bandwidth influenced by the Boundary limit. 

   

 

 

Fig. 3.14 – Steady-state curve for VG,CW = 467 mV, superimposed over stability plane for 

first-order example of Fig 3.3. Lower figure is a zoom on region where intersections with 

Locus and Boundary limits lie. Dashed blue line is the section for a sample frequency. 
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At very high injection levels the Boundary is the only limit involved, but there is 

a (usually small) range of injections where both borders are relevant. In Fig. 3.14 we 

can see an example falling in this range (VG,CW = 467 mV). In this case, in an 

interval of detuning frequencies, two stable locking regimes are possible. 

The lower figure displays a zoom on the area where Locus and Boundary borders 

intersect with steady-state curve, and at ∆ω = 2.83 ·  2" MHz we can observe a 

condition like this. In addition to higher stable locking regime, a lower one is 

possible, under the Locus ellipsoid. Which of the two will be obtained depends on 

the locked/unlocked state previously reached, when sweeping injection's frequency 

and/or amplitude. Alternative locking bandwidths like these are usually defined 

"lateral bands", and these are the reason for (small) hysteresis effects often 

observable [37,57–60]. This time, the maximum detuning - and consequently the 

locking bandwidth - is determined by the Boundary limit. 

Similarly to steady-state amplitude curves, phase curves can be plotted 

(Fig. 3.15). However, no stability regions can be superimposed, therefore their usage 

is less relevant to these purposes. 

   

 
 

Fig. 3.15 – Steady-state phase curves for first-order example of Fig 3.3. (a) VG,CW = 100 mV, 

(b) VG,CW = 250 mV, (c) VG,CW = 400 mV, (d) VG,CW = 500 mV. 
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We can observe that at low-level of injection (e.g., curve a), minimum and 

maximum locking frequency corresponds to ± 90 degrees, which is strictly related to 

what many theories (e.g., [26,28]) use as a reference for the locking bandwidth 

itself. But this is not true for higher injections, like in curve c. That's why a rigorous 

demonstration of the LBW under a generic injection level should not make use of 

this approximated equivalence. 

 Finally, let's plot the locking bandwidth for the example under test. To evaluate 

it, a numerical method has been performed, coupling two high order systems. The 

first one connects the Locus limit equation (p0 = 0, from eqn. 3.27) which depends 

on {∆ω, VI,SS}, with the steady-state regime equation for amplitude (3.20a), which is 

a function of {∆ω, VI,SS, VG,CW}. An implicit function VG,CW = f [∆ω] is thus 

eventually obtained, and exploited for the numerical determination of the borders 

depending on the Locus limit. The same procedure is followed to obtain the 

interception with Boundary limits, even if in this simple example its equation 

(p1 = 0, from eqn. 3.27) is not a function of ∆ω, and is therefore easier to produce 

desired results. 

   

 
 

Fig. 3.16 – Locking bandwidth (black solid line) for first-order example of Fig 3.3. In dashed 

magenta is reproduces the LLI approximation. 
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In Fig. 3.16 the Locus-related bandwidth limits are the inner ones of the broken 

black line. That is, when injection is lower only Locus is involved, as previously 

discussed. In dashed magenta is drawn the low-level injection approximation results, 

as a comparison, whose analytical equation is the same provided by Adler [26]: 

(3.29) LBWLLI =	ωF

Q
F

·
VG,CW

VI,OSC

 

It is clear from the drawing that (at least in this example) it represents a good 

approximation until a certain amplitude of the drive signal is reached. We will 

discuss more about it in the following chapters. 

The Boundary-related bandwidth limits are instead the outer parts, as more 

evident in zoomed Fig. 3.17, where the LBW is the solid broken line. In green it's 

possible to identify the "Upper Locus"-related limit, i.e., the upper part of the Locus 

limit (see Fig. 3.14 for example), while the Lower Locus is represented by the red  

   

 
 

Fig. 3.17 – Zoomed locking bandwidth (solid line) for first-order example of Fig 3.3. 

Single branches are represented: Lower Locus limit (red), Upper Locus limit (green), 

Boundary limit (orange). Short-dashed lines highlight the hysteresis phenomenon, 

while long-dashed blue line and blue point are the section for the sample injection 

amplitude and frequency chosen in Fig. 3.14. 
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line. As well, the Boundary limit is the orange line, short-dashed when it is non 

influential for the determination of the locking bandwidth, even if a lateral band is 

present. From the black dot to larger detuning frequencies, it is the Boundary to set 

the LBW limit. Hence, the high-level of injection (HLI) can be considered to begin 

here (0.463 V). Multiple locking phenomenon seen in Fig. 3.14 is here emphasized, 

too. In Fig. 3.18 specific regions are depicted, referred to all possible locking modes, 

not only to the locking bandwidth: 

- in green: steady-state regime is locked before reaching the Locus border; 

- in yellow: the locking regime is only limited by the Boundary, i.e., the Locus 

limit is not met across all detuning values; 

- in orange: a locking state does exist after crossing both Locus borders, i.e. under 

the Locus ellipse-like region, but before reaching the Boundary limit. 

When both green and orange colors apply, two locking regimes are possible. For 

example, at a detuning frequency of 2.83 MHz and injection level of 0.467 V 

(blue point P) both a principal band and a lateral band can be found. 

   

 
 

Fig. 3.18 – Zoomed locking bandwidth for first-order example of Fig 3.3 with specific regions 

highlighted: locking before Locus limit (green zone); locking before Boundary limit (orange or 

yellow zones). Two locking regimes are possible in intersection zone with both green and 

orange colors, like the P point example. 
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4. Bias-Shift Related Phenomena 

 

 

4.1 About the Shifting-Bias Effects on NDR Oscillators 

 

Among the various aspects not fully accounted for by the theoretical treatments 

available in the literature , there is the interaction phenomena occurring between DC 

and RF signal components and associated sub-circuits [61]. In fact, in most of such 

treatments, the bias of the active device(s) sustaining oscillations is usually assumed 

as fixed at the quiescent operating point. The analysis is then developed with 

reference to an analytical/behavioral system model that neglects bias-shift 

phenomena which - instead - always occur in practice, though in a more or less 

significant manner [62]. As shown here, even remaining to within the assumption of 

a weakly-nonlinear operation for the core oscillator, the influence of such bias-shift 

can be significant on the (driven or not) oscillator performances. More important, it 

can induce qualitatively new phenomena to occur, which - being unexpected - 

complicate the understanding of the numerical simulation results and can even 

mislead the designer [63]. 

On the basis of the above considerations, a research activity is here reported with 

the aim of developing an investigation method capable of accounting for such bias-

shift phenomena in an efficient and user-friendly manner, so to permit its use more 

as a design rather than as an analysis tool.  

Results here reported are related to a specific - though rather wide - class of 

Negative Differential Resistance (NDR) oscillators operating in a free-running or 

driven (injection-locked) manner, where this problem is strongly present, as detailed 

in literature [64,65]. For such circuits, the investigation is developed in the 

frequency-domain, directly in terms of the time-varying DC and fundamental-

frequency components of the circuit variables in a computationally efficient semi-

analytical way. This will permit to rapidly highlight differences occurring between 

non-shifting and shifting-bias cases, as it is well illustrated even by the simple 

tunnel-diode single-tuned ILO example reported. 
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4.2 DCE Analysis Method Including DC Harmonic 

 

The circuit structure of the class of negative-resistance (driven) oscillators here 

considered is illustrated in Fig. 4.1. There are evidenced: the (Thévenin-equivalent) 

DC power supply net, the nonlinear resistor which models the active device, the 

LB/CB decoupling elements representing the bias-tee network, the linear two-port 

which incorporates the resonator and load-coupling net, and the (Norton-equivalent) 

current generator associated to the synchronizing source, when present. Also 

evidenced are the DC and RF components of the current flowing into the nonlinear 

element, separated by the bias-tee. 

This bias-tee is assumed to be appropriately dimensioned, so to avoid spurious 

oscillations and to guarantee an adequate decoupling between the biasing circuit and 

the resonator. Therefore, the interaction between DC and RF occurs only through the 

nonlinear element common to both meshes. Further considerations on the 

dimensioning of the bias-tee will be made in the following. As evidenced in the 

schematic, the bias supply is here considered time-independent (after power-on).  

As to the negative-resistance active device, it is modeled here as a memoryless, 

voltage-controlled, nonlinear element described in time-domain by the polynomial-

type constitutive equation:  

 (4.1) i[t] = � g
Np

v[t]p

M

p=1

 

 
 

Fig. 4.1 – Circuit structure of the oscillator analyzed (driven if iS ≠ 0 or undriven if iS = 0). 
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 The injection signal source, present only when the driven operation is 

considered, is here restricted to being an unmodulated sinusoidal signal: 

 (4.2) iS[t] =  IS cos[ωSt +	ψ
S
] 

with proper amplitude (IS) and frequency (ωS) so to guarantee stable entrainment of 

the free-running oscillation. Since ψS is a constant, it can be assumed as reference 

phase and set to zero. 

The two-port resonator/load is assumed to incorporate linear passive elements 

only, topologically connected and properly dimensioned so to guarantee, as standard 

in this type of circuits, a quasi-sinusoidal weakly-nonlinear operation of the 

oscillator. This two-port will be quantitatively characterized by means of its 

impedance matrix [z]. 

 Considering all above assumptions, for the DC and RF current components can 

be written: 

(4.3) 

iDC[t] =  I0[t] 

iRF[t] = �  

M

p=1

Ip[t] cos �p · ω t +	ψp
[t]� 

where all Ip[t] and ψp[t] are slowly-varying functions in the fundamental-frequency 

time scale. 

As to the node voltages, considering that the resonator has to exhibit a 

qualitatively parallel behavior (to match the current-defined nonlinear element here 

assumed) and its implied high selectivity, they will be approximated by the first two 

harmonics (DC + fundamental) only: 

 (4.4) vn[t] ≅ Vn,0[t] +	Vn,1[t] cos �ω t +	ϕn,1
[t]� 

with Vn,0[t], Vn,1(t) and 	n,1[t] (n=1, … , N) slowly-varying quantities, N being the 

number of nodes of the circuit. 

The rest of the analysis will be then developed with reference to these two signal 

components only. Of course, a treatment applicable in case of a voltage defined 

nonlinearity, a series type resonator, and quasi-sinusoidal currents could be 
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developed as well, by duality. In particular, we will perform the analysis in the DCE 

domain, by extending the perturbation-refined approach introduced in [24] to cope 

with the presence of a shifting-bias DC component V0[t] in the voltage v[t] across 

the nonlinear element, that adds up to the RF one (V1[t] ≡ V1[t] ej�1[t]). In these 

definitions the number indication of this main node has been omitted for the sake of 

compactness. The subsequent steps can then be developed with reference to the 

frequency-domain (DC+RF) system block diagram of Fig. 4.2, where are evidenced 

only the network variables (I or V phasors) which are essential to the treatment. 

   

 
 

Fig. 4.2 – Frequency-domain block-diagram of the oscillator analyzed (driven 

if IS ≠ 0 or undriven if IS = 0). 

In this block diagram, the nonlinear element is modeled via a Two-Sinusoid Input 

Describing Function (TSIDF), which can be associated to the active device of 

Fig. 4.1 by slightly modifying the original definition set up in [30] to account for 

one of the two input signal frequencies being set to zero. The use of the TSIDF 

permits to cope with the presence of the shifting-bias DC component in a rather 

simple manner. In fact, considering the memoryless nature of the nonlinear element 

modeled via the TSIDF, the quantities I0 and I1 will turn out to be instantaneous 

functions of V0 and V1. We can thus write: 

(4.5) 
 I0 =  I0[V0, V1] 

 I1 =  I1[V0, V1]	e	jϕ1 
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where I1 = I1[t] e
j�1[t], being ψ1[t] = 	1[t]. Notice that, in this specific case, the two 

functions characterizing the TSIDF outputs will be polynomials of M-th degree. 

From the block diagram of Fig. 4.2 stems the following DC constraint: 

(4.6)  V0 = E0 - R0·I0[V0, V1] 

Since the above implicit equation (4.6) can always be solved (analytically or 

numerically) for V0, we can define the function V0[V1] relating – under declared 

assumptions – the instantaneous value of V0 to that of V1 in an adynamic manner. 

This relationship can then be employed to eliminate V0 from I1[V0,V1], obtaining 

a function I1[V1] ≡ I1[V0[V1],V1] which links the RF input to the RF output of the 

TSIDF. This situation is graphically depicted in Fig. 4.2, where the TSIDF and the 

biasing elements E0 and R0 are incorporated into the macro-block bounded by the 

red dashed lines. This macro block, representing a generalized SIDF [30], capable of 

accounting for the "adynamic shifting-bias" relationship I1[V1], is named here as 

ASB-SIDF. To this macro-block is associated the nonlinear ASB negative 

conductance GN[V1] ≡ I1[V1] / V1. Notice that even for simple cases, e.g., cubic 

polynomial nonlinearities, this function can turn out to be quite complicated, for 

example not monotonic (see formula A3.1 in Appendix A3). If we employ this 

definition into the equation expressing V1 as function of IS and I1 and rearrange, we 

get the steady-state equation (under CW operation): 

(4.7) (1	+	z11·	GN[V1])	·	V1 e jϕ1 = z11·	IS 

The general case of a multiple-tuned resonator [66] could be treated as well, 

following an analogous approach. However in this chapter we will only explore the 

case of a "single-tuned like" resonator, i.e., a resonator that is well approximated, in 

the neighborhoods of the oscillation frequency, by a single-tuned equivalent scheme. 

In parallel-structure case analyzed, this is tantamount to saying that the z11 parameter 

can be narrow-band approximated by the (3.8) relationship: 

(4.8) z11[jω] ≅ 
Rr ωr

ωr+j2Q
r
(ω	–	ωr)
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where Qr is the loaded quality factor of the resonator. From steady state-equation 

(4.7) the first-order exact differential model of the adynamic shifting-bias oscillator 

can now be obtained by applying to (4.8) the BLDO algebra, following the method 

described in Sec. 3.2. After replacing the term jω with the symbolic operator 

(jω + d/dt), calculations, rearranging and solving for V1
' and 	1

', we finally get: 

(4.9) 

V1
'[t] = 

ωr

2Q
r

(Rr IS cos[ϕ
1
[t]] – (1 + Rr GN[V1[t]])	·	V1[t]) 

ϕ
1

'�t� =	ωr – ω – 
ωr

2Q
F

·
Rr IS sin[ϕ

1
[t]]

V1[t]
 

The set of equations (4.9), different from (3.13) essentially because of the 

presence of the ASB nonlinearity GN[V1[t]], completely describes the dynamics of 

the phase-locked oscillation under CW injection (or the free-running one, for IS=0). 

From it, steady-state and transient operation can be numerically simulated directly in 

terms of the RF complex envelope components {V1[t], 	1[t]} with high 

computational efficiency. The associated evolution of V0[t] is then straight-

forwardly calculated from the relationship V0[V1].  

The dynamical or phase-locking stability can be evaluated in a semi-analytical 

manner resorting to a local linearization technique (see Sec. 3.5), i.e., by evaluating 

the Jacobian matrix [J] of system (4.9) and its eigenvalues. We will also calculate 

the coefficients of the characteristic polynomial associated to [J], obtaining Locus 

and Boundary stability borders that can be superimposed to the steady-state regime 

curves of V1(ωS, IS) to get a global picture of the locked oscillator behavior, as 

previously done for a similar example. 

 

 

4.3 Examples of Bias-Shift Related Phenomena 

 

To illustrate application of the proposed method, the example oscillator of 

Fig. 4.3 is analyzed here. The active device, a tunnel-diode, is modeled by a 

cubic polynomial nonlinearity with fictitious coefficients {gN1 = 0.07, gN2 = –0.09, 

gN3 = 0.03}. The LC tank circuit is characterized by a resonant frequency fr = 1 GHz  
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Fig. 4.3 – Example circuit: a tunnel diode reflection-type ILO. 

and a loaded Qr = 100 (held fixed by conceptually changing Lr and Cr when the 

equivalent resistance Rr, determined by the source/load matching network, is 

parametrically changed to permit investigation of its influence). The values of 

CB = 250 pF and LB = 250 nH of the bias-tee elements have been balanced to satisfy 

the stated assumption of minimal interaction between DC and RF sub-circuits, while 

maintaining a reasonably fast response of V0 to V1 variations during dynamical 

operation. The equivalent injection signal IS (originated by the generator ES and 

injected via the circulator) has variable frequency and amplitude, to within 

reasonable limits referred to the case at hand. The negative-conductance GN[V1] 

associated to the ASB-SIDF of the biased tunnel diode is depicted in Fig. 4.4 for 

three different values of R0 but the same quiescent point (V00 = 1.4 V). 

As shown, the 15 Ω case does not modify too much the quadratic-like shape of 

the fixed-bias nonlinearity (corresponding to R0 = 0 Ω), while avoiding the spurious 

oscillations associated to this latter case. On the contrary, when R0 exceeds around 

20 Ω, the negative nonlinear conductance is no longer monotonic and non-

conventional behavior for the ILO will be observed. Such situation is well evidenced 

by Figs. 4.5 and 4.6, both of which refer to the case R0 = 50 Ω, but different values 

of Rr. In Figs. 4.5a and 4.6a, the steady-state curves of V1 are reported, as function 

of injection frequency, with equivalent current amplitude (IS) as parameter. 

Superimposed are the stability regions. In Figs. 4.5b and 4.6b, the phase 	1 is 

instead reported (only for stable branches, for better readability). 

Figures 4.5a-b illustrate that the case Rr = 200 Ω does not present unusual 

phenomena with respect to the case of a simple-cubic nonlinearity, non shifting bias 
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Fig. 4.4 – Dependence of GN[V1] on RF signal amplitude V1 (see (A3.1) in Appendix A3) for 

V00=1.4V and different values of R0. Equilibrium points (green when stable, red unstable) of the 

free-running oscillations are superimposed, pertaining to Rr =100 Ω and 200 Ω. 

single-tuned ILO. The free-running oscillation is self-starting (i.e., oscillation at zero 

voltage is unstable) and has a single regime. The entrained operation evidences a 

locking band around the free-running oscillation point, which increases 

monotonically in its frequency span as the injection signal amplitude increases. The 

Locus and Boundary have their customary look, the first one exhibiting an elliptical-

like shape and the second one delimiting, whatever the frequency, an instability 

region extending to zero from a precise minimum sustainable oscillation-amplitude. 

Any initial condition will thus evolve into the stable phase-locked regime associated 

to the specific drive parameters set {ωS, IS}. Of course, while qualitative aspects are 

similar, all quantitative aspects do differ from those that would have been observed 

if the bias resistance R0 was smaller (e.g., 15 Ω) or a canonical fixed-bias ILO 

configuration was involved. 

Quite different situation occurs if the matching network is dimensioned so that 

the equivalent load resistance is decreased to the second test value of Rr = 100 Ω. 

From Fig. 4.4 we can first note that there are two potential free-running oscillation 

points (one dynamically unstable and one stable) but they are not self-starting, since 

the trivial zero solution is stable itself. 

As apparent from Figs. 4.6a-b, the injection-locking portrait is actually much  
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        (a) 

 

        (b) 

Fig. 4.5 – Steady-state curves of: (a) V1[ωS, IS] with stability regions superimposed; 

(b) �1[ωS, IS] for stable branches only. Set#1: V00 = 1.4 V, R0 = 50 Ω, Rr = 200 Ω. 

IS = (α) 1.50 mA, (β) 3.75 mA, (γ) 6.00 mA. 
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        (a) 

 

        (b) 

Fig. 4.6 – Steady-state curves of: (a) V1[ωS, IS] with stability regions superimposed; 

(b) �1[ωS, IS] for stable branches only. Set#2: V00 = 1.4 V, R0 = 50 Ω, Rr = 100 Ω. 

IS = (α) 0.3 mA, (β) 0.7 mA, (γ) 1.3 mA, (δ) 2.0 mA. 
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more complicated than expected from a single-tuned cubic-nonlinearity ILO. In fact, 

the Locus defines now two separated areas associated to the splitting of the curves 

that describe the steady-state regimes. Also the Boundary now has two straight 

borders inside the positive voltage region. As a consequence, while a free-running 

oscillation would not start, a driven one would, even if the injection signal amplitude 

is small. Being dynamically stable, the attraction basin of this forced oscillation 

would capture initial conditions starting from low initial voltage values inside it. In 

addition to these "low output voltage" forced oscillations, a more conventional 

injection-locked regime would occur at higher voltages (above the upper border of 

the Locus or Boundary, depending on frequency detuning), but only if the initial 

conditions are inside its attraction basin. 

It is possible to observe the stability plane as a section of a "stability surface", as 

a function of Rr. With such view, a global analysis becomes much easier, permitting 

to estimate where and how much stability margin is possible to consider, as a safe 

region. Extended Locus and Boundary regions, in this stability space, is drawn in 

Fig. 4.7, where the second Locus area is manifest as the lower cyan region. 

   

 
    

Fig. 4.7 – Stability surfaces, Rr dependent, for R0 = 50 Ω: 

(a) Locus surface (cyan), Boundary surface (dark blue). 
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        (b) 

Fig. 4.8 – Stability surfaces, Rr dependent, for R0 = 50 Ω: 

 Locus/Boundary surfaces (transparent cyan), with orange sections at Rr = 200 Ω and 100 Ω. 

Last figure (Fig. 4.8) highlights very well the specific cases handled in this 

section, i.e., Rr = 200 Ω and Rr = 100 Ω. It is noticeable that when the equivalent 

load resistance decrease below the limit value of about 178 Ω, the trivial zero 

voltage oscillation becomes stable, causing the free-running oscillation to be unable 

to self-start. 
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5. Application on Transmission-Type ILOs 

 

 

5.1 Injection Locking in TILOs 

 

The celebrated paper published by R. Adler back in 1946 was written with 

reference to a vacuum tube triode oscillator [26]. In spite of its simplicity and 

seemingly specific applicability, the formula he derived expresses a quite general 

feature of injection phase-lock phenomenon when the drive signal strength can be 

considered a small perturbation of the undriven regime. This behavior has been 

theoretically and experimentally verified in a very wide range of injection-locking 

systems (also in the microwave range, for reflection or transmission type [2,31]), not 

necessarily of circuital nature, as pointed out in Sec. 1.1. This led, over the years, the 

scientific community to adopt, for the general expression of LBW under low-level 

injection, the celebrated Adler's formula (2.3). 

The problem is now the definition of the various parameters appearing in it: it 

remains critical the definition of the Q-factor. In the past, but also recently, a 

number of research work has been devoted to the generalization of the Adler's Q-

factor [27,28]. While such studies have greatly improved the applicability of the 

original theory to different and more complex circuit topologies, the search for a 

truly general and accurate definition of Adler's equation Q-factor is still not fully 

accomplished. In particular, TILOs using transistor as active devices need further 

investigation (like the one here exposed) in order to better fit their behavior. 

Initially, the typical design of an ILO was made by modifying an already existing 

oscillator with the addition of the circuit elements needed for input signal injection 

and output signal extraction. In the microwave range, this goal was typically 

achieved by connecting the output of a negative resistance diode oscillator (Gunn, 

IMPATT, etc.) to the bi-directional interaction port of a non-reciprocal three-port 

(usually a ferrite circulator), as depicted in Fig. 2.3a. This topological structure of an 

ILO, referred to as reflection-type (Sec. 2.1), has some advantages: the oscillator can 

be designed standalone through conventional techniques, or an already built 

oscillator can be “upgraded” to become an ILO. But the injection efficiency is very 

low and the achievable LBW is consequently very small, at least for reasonable 
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values of the injection ratio. This can make RILOs unattractive even for the narrow 

band applications in which it is commonly adopted. More recently, with the 

pervasive adoption of transistors for most low- and medium-power applications 

(also in the higher microwave range), the presence of separate input and output ports 

has permitted to adopt more efficient circuit structures. In this case, the ILO is 

designed as a whole, incorporating the injection signal mechanism into the 

oscillation one, in circuit configurations usually referred to as transmission-type, as 

schematically depicted in Fig. 2.3b, hence the name TILO. 

Appropriately exploited, the degrees of freedom so achieved permit to obtain 

much better performances for TILOs, especially in terms of band widening. On the 

other hand, the design phase is more complicated, especially when the more flexible 

feedback type topologies are adopted in place of the more conventional negative-

resistance ones, with a structure which can often be cast in the equivalent block 

diagram illustrated in Fig. 5.1.  

In this regard, it has to be noted that, for a truly optimized design of ILOs with 

innovative topologies, the circuit dimensioning problem can became a hard one. 

Indeed, the typical nowadays design approach, involving repeated circuit 

simulations in an iterative loop (often based on numerical optimization algorithms), 

is not well suited for this case. Because of the stiff nonlinear nature of the problem 

at hand, the calculation of ILO performances (notably, the LBW) are extremely time  

 

Fig. 5.1 – Equivalent circuit block structure of the class of analyzed 

injection-locked oscillators. 
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consuming and not easily automatable, even if most advanced EDA software is 

adopted. In fact, the intrinsic slowness of the locking phenomenon makes 

impractical all time domain simulation techniques, and anyhow slow also the use of 

the faster numerical transient envelope based ones [41] (see Appendix A1). 

To solve this design-oriented analysis problem, it is proposed here an approach in 

the fundamental frequency dynamical phasor domain which, because of its semi-

analytical nature, can permit evaluation of all TILO performances in a fraction of 

time with respect to all other approaches, without limiting the range of applicability 

to over-simplified circuit topologies or models, as elsewhere proposed. 

 

 

5.2 Dynamical LLI System Model for Analyzed TILO Structure 

 

The circuit block structure of the transmission type, transistor equipped, 

oscillating amplifiers under investigation here is illustrated in Fig. 5.1. There is 

evidenced the single-loop topology comprising the ideal summing network and the 

feedback block “β”, the amplifying transistor, and the selective tank and load-

coupling network. Although not arguable from the figure, it is assumed here that a 

generic circuit with the shown topology belongs to the class of treatable systems 

only if it satisfies appropriate conditions. In particular, it's here assumed that the 

scheme represents a properly designed, self-starting monochromatic oscillator, when 

no input locking signal is applied (VS = 0). This means that the resonator must 

possess adequate high selectivity characteristics. Consequently, we can assume that 

all node voltages will be quasi-sinusoidal quasi-static waveforms under transient 

operation. They can thus be characterized in terms of the relevant first-harmonic 

components (amplitude and phase: VX = VX[t] e 

jφX[t]; with X = {1, 2, G, F, L}), 

which result slowly varying functions of time. Therefore, we can develop the 

analysis in the previously described dynamical fundamental-frequency complex-

envelope domain. In particular, after deep investigation of the problem, the 

equivalent system block structure depicted in Fig. 5.2 have been selected [67]. It can 

be derived from its circuital counterpart of Fig. 5.1 after proper identification of the 

various functional blocks. For the purpose of this analysis, it is important to 

evidence the presence of the YN block which represents the active device. Unlike 

Section 3.2 in which the nonlinearity is modeled using a SIDF, or other treatments 
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Fig. 5.2 – Equivalent system block structure in the fundamental-frequency 

complex-envelope domain. 

employing equivalent single I/O element [24,25,27,28], here a TSIDF (Two-

Sinusoid Input Describing Function) will be adopted, similar to the one employed in 

Sec. 4.2, but notably different in terms of circuital interpretation. In fact, while a 

SIDF model is serviceable to describe in the frequency-domain the instantaneous 

nonlinear relationship between voltage and current of a one-port active element 

(such as a negative resistance diode), this is not the case when two-port active 

elements (such as transistors) are involved. Such variation of the system block 

scheme is the key point that will permit, in the end, to achieve the desired accuracy 

in the simulation of the TILO response. In fact, the use of the TSIDF allows to 

account for the nonlinear dependence of the current IN not only on the input phasor 

V1, but also on the output phasor V2. In formulas, we have: 

(5.1) IN[V1, V2] = YN[V1, V2, ϕ
2
-ϕ

1
] · V1 

which recalls that the dependence of YN on node voltage phases is a differential and 

not an absolute one and, more important, that the TSIDF associated to a memoryless 

nonlinearity is a complex quantity. 

Now, since the voltage phasor V2 is related to the transistor output current via the 

input impedance ZI of the resonator: 
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(5.2) V2 = –	ZI[ω] · I
N

[V1, V2] 

we can combine (5.1) and (5.2) into an implicit set of equations which defines an 

overall, equivalent, TSIDF admittance YT[V1, ω] of the active block (the dashed box 

in Fig. 5.2), implicitly defined through the relationship: 

(5.3) IN[V1, ω] = YT[V1, ω] · V1 

Such nonlinear and frequency dependent mutual admittance YT is capable of 

accounting, in an unabridged way, for all the nonlinear interaction phenomena 

occurring between the active device and its passive, resonant, load. In particular, it 

can model the practically observed dependence of the open loop gain (OLG) on the 

drive voltage amplitude V1 not only in terms of its mid-band magnitude but also of 

its selectivity characteristics (see subsequent Section 5.4, for a numerical example of 

such effect, with Fig. 5.6): 

(5.4) A[V1, ω] ≡ OLG[V1, ω] = 
VF

V1

 = ZF[ω] ·YT[V1, ω] 

By combining (5.4) with the summing element constitutive equation 

(5.5) V1 = VG	+	VF 

after setting φG = 0 as a reference, and rearranging, we get: 

(5.6) �1 – A[V1, ω]� · V1 = VG 

At this point, we can particularize the subsequent steps of this analysis to the 

specific case of low-level injection here considered. If the injection signal VG is 

“small”, we can take advantage of perturbation analysis methods and develop further 

calculations using incremental quantities (with respect to the free-running oscillating 

regime). In particular, for the nonlinear drive voltage amplitude V1 we set: 

(5.7) V1[t] = V1,OSC + ∆V1[t] 
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In last and following equations, the subscript “OSC” indicates evaluation in 

correspondence of the free-running oscillating condition, as calculable from (5.6) 

setting VG = 0, and then solving the resulting nonlinear equation A[V1,OSC, ωOSC] = 

1, either analytically or numerically. When (5.7) is applicable, it is also convenient 

to linearize the open loop gain definition: 

(5.8) A[V1, ω]|
 

 

V1=V1,OSC+∆V1
 ≅ A[V1,OSC, ω] + ∆V1·

dA[V1, ω]

dV1
|

 

 

V1=V1,OSC

 

If we make the additional assumption that the transistor nonlinearity, while 

causing a marked dependence on V1 of the OLG’s mid-band magnitude and 

selectivity, does not appreciably changes its resonant frequency, we can adopt for it 

the following abridged relationship: 

(5.9) A[V1, ω]	≅ 
ωOSC (1+∆V1·Ad,OSC)

ωOSC+2j(Q
OSC

+∆V1 · Q
d,OSC

)(ω – ωOSC)
 

where 

(5.10) Ad,OSC ≡ 
dA

dV1
|

 

 

V1=V1,OSC , ω=ωOSC

  ;        Q
d,OSC

 ≡ 
dQ

dV1
|

 

 

V1=V1,OSC

 

As easily recognizable, this approximation corresponds to a single-tuned like, 

reduced-order model for ZF, as introduced in (3.8), but with a variable Q-factor. This 

single-tuned approximation has been found to be adequate in most practical cases. 

Replacing (5.9) into (5.6) provides the incremental algebraic model which describes, 

in the frequency-domain, the oscillating amplifier regime under continuous-wave 

(non-modulated) low-level injection operation. 

On this basis, we can now make use of the perturbation-refined approach based 

on BLDO algebra [24] to derive the incremental differential model which describes, 

in the complex-envelope domain, the oscillating amplifier dynamics under general 

low-level injection operation. 

As a first step, we quantitatively specify the smallness of the injection signal, 

setting for it the order defining condition: 
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(5.11) VG = O #V1,OSC · Ad,OSC

Q
OSC

$ 
Under above assumptions, and taking for grant also that Ad,OSC and Qd,OSC/QOSC 

will be both O[1], as commonly occurs, the consequential order defining 

relationships can be shown to hold: 

(5.12) 
∆V1

V1,OSC

 = O # 1

Q
OSC

$		 ; 								ω – ωOSC

ωOSC

 = O # 1

Q
OSC

2
$ 

Making use of (5.11) and (5.12) to truncate, to the same order of magnitude, all 

terms appearing into the unabridged CW regime equation (5.6), provides its first-

approximation-exact abridged counterpart: 

(5.13) %2jQ
OSC

ω – ωOSC

ωOSC

 – ∆V1 · Ad,OSC& ·	V1,OSC e	jϕ1 = VG  

which analytically defines steady-state values of ∆V1 and φ1 under CW injection 

(∆V1,SS and φ1,SS), as a function of the injection signal amplitude (VG) and frequency 

(ω), and of the abridged system parameter set {ωOSC, QOSC, Ad,OSC}.  

To obtain the differential system model we can follow an analogous perturbation-

refined procedure, starting from the dynamical analogue of (5.9) that is obtained 

simply by replacing the term jω with its symbolic counterpart (jω + d/dt) and then 

performing the necessary calculations and higher order terms truncations. This way, 

we firstly obtain: 

(5.14) 

∆V1'[t]

V1,OSC

 + j�ω – ωOSC	+	 �1+
∆V1[t]

V1,OSC

� ϕ
1
'[t]� +  

– 
ωOSC

2Q
OSC

 · Ad,OSC · ∆V1�t� = 
ωOSC

2Q
OSC

·
VG

V1,OSC

e – jϕ1[t]  

where ∆V1'[t] and φ1'[t] correspond to derivatives with respect to time. Note that 

Ad,OSC and Qd,OSC represent instead quantities differentiated with respect to V1 

variable (cf. equation 5.10). After manipulation and truncation, the normal form 

differential set of equations is obtained: 
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(5.15) 

∆V1'[t]	=	 ωOSC

2Q
OSC

�VG cos�ϕ
1
[t]� +Ad,OSC V1,OSC ∆V1[t]�  

 ϕ
1
'[t]	=	 – (ω – ωOSC) – 

ωOSC

2Q
OSC

 ·	 VG

V1,OSC

sin�ϕ
1
[t]� 

Equations (5.15) do provide solution to the stated analysis problem. In fact, they 

not only permit to simulate with great computational efficiency the dynamical 

response of the driven transmission-type ILO directly in terms of amplitude and 

phase transients (in a scaled time-domain), but also provide the mean to perform the 

phase-lock stability investigation, i.e., to evaluate the LBW, in a fully analytical 

manner. 

 

 

5.3 Stability Analysis and Locking Bandwidth 

 

Steady-state equation (5.13) provides, in general, more than one solution, i.e., 

more than one possible regime. Whether a given equilibrium point is stable or not 

has to be ascertained via a dynamical stability analysis. Having at one’s disposal the 

differential system equations directly in terms of the complex-envelope components, 

as here provided by (5.15), such analysis can be straightforwardly carried out via a 

local linearization technique, as performed in Sec. 3.5. The LLI linearization here 

performed provide a simpler expression, despite the more complex treatable circuit 

structure. More precisely, we firstly evaluate the 2x2 Jacobian matrix in the 

equilibrium point considered: 

(5.16) J = 

���
���
ωOSC

2Q
OSC

Ad,OSC V1,OSC (ω – ωOSC) V1,OSC

0
ωOSC

2Q
OSC

Ad,OSC ∆V1,SS���
��� 

The coefficients of the associated characteristic polynomial are then obtained:  
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(5.17) 

p
0
	=� ωOSC

2Q
OSC

Ad,OSC�2

V1,OSC · ∆V1,SS 

p
1
	= –	 ωOSC

2Q
OSC

Ad,OSC (V1,OSC + ∆V1,SS) 

The locking stability criteria are eventually obtained by setting the condition that 

both the zero (p0) and first degree (p1) coefficients must be positive, corresponding 

to the Locus and Boundary conditions, respectively. Since the coefficient Ad,OSC is 

required to be negative (for the free-running oscillation stability), and the locked 

oscillation amplitude (V1,OSC + ∆V1,SS) positive, the unique condition remains: 

∆V1,SS > 0. The minimum/maximum (angular) frequency for which phase-lock can 

occur at the given value of injection signal is thus provided by the limit condition: 

∆V1,SS = 0. In view of equation (5.13), this is tantamount to saying that: 

(5.18) '2jQ
OSC

ω – ωOSC

ωOSC

'  = 
VG

 V1,OSC

	 
from which we get: 

(5.19) LBWLLI	=	ωMAX – ωMIN	=	 ωOSC

Q
OSC

·
VG

 V1,OSC

  

Notice that the low-level injection bandwidth expressed by (5.19) is seemingly 

the same to the well known expression derived by Adler (cf. eq. 2.3a), and their 

most recent extension [27,28], with one significant difference: the fact the OLG 

quality factor is evaluated at the oscillation amplitude V1,OSC rather than at V1 = 0 

(i.e., coincident with the loaded quality-factor of the linearized transfer function). 

This fact explains the better numerical agreement achieved by this theory with 

respect to previous methods. It can also be remarked that presented treatment has 

derived stability borders (5.19) without requiring the fictitious assumption of a hard-

limiting of the oscillation amplitude in order to eliminate (5.15a) from calculations, 

as done in [26] and most of the other subsequent related works.  
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5.4 Example #1: a Meissner TILO 

 

To better illustrate the features of the devised approach, a lumped-elements 

Meissner oscillating amplifier is analyzed here as an example of application. The 

circuit structure is illustrated in Fig. 5.3, while the elements values are indicated in 

Tab. 5.1. For the sake of simplicity a purely resistive Shichman-Hodges nonlinear 

model has been adopted for the JFET. The resonant frequency and the loaded Q of 

the tank circuit were set to 160MHz and to 100, respectively. The turn ratio of the 

coils was set to 10 and the OLG margin for oscillation buildup set to +1.6 dB.  

To get started, the nonlinear transfer function A[V1, ω] has to be evaluated. 

Notwithstanding the simplicity of model at hand, its analytical derivation is not 
 

 

VTO = -2 V β = 0.6 mA·V-2 λ = 0 IS = 10 fA 

L1 = 100 nH L2 = 1 nH K = 1 C0 = 10 pF 

CL = 100 nF RL = 10 kΩ VDD = 3 V VGG = -1 V 

 

Tab. 5.1 – Parameters of example circuit of Fig. 5.3. 

 

 

Fig. 5.3 – Meissner type oscillating amplifier. 
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practicable. Therefore a numerical approach has been adopted, resorting to a 

frequency-domain, Harmonic-Balance based, RF circuit simulator (above cited 

ADS, by Agilent EEsof [22]) to analyze the open-loop counterpart of the circuit of 

Fig. 5.3, by sweeping both frequency and amplitude of the sinusoidal “input” drive 

signal V1 (≡ Vgs), and recording the “output” voltage VF (≡ VL1). The corresponding 

graphs of the magnitude at ωOSC and Q-factor of the open loop gain A[V1, ω] are 

reported in Fig. 5.4a and Fig. 5.4b, respectively. As evident from the figure, these 

graphics show a very similar trend, though not identical as it may seem. There are 

evidenced the free-running oscillation point (brown dot) and the associated 

derivatives (red dashed line). The relevant numerical values turn out to be: V1,OSC ≅ 

0.235 V (which corresponds to an output oscillation amplitude of 

VL,OSC ≅ 2.35 V); QOSC ≅ 84.4; Ad,OSC ≅ -2.77; Qd,OSC / QOSC ≅ -2.50. 

With such numerical values, solution of (5.13) as function of injection signal 

amplitude VG provides the family of steady-state response curves illustrated in Fig. 

5.5, where the shaded region indicates the Locus unstable locking region. The stable 

regime is thus unique for a given pair {VG, ω}, and corresponds to the point on the 

top most branch. Black dots indicate the related LBW limits, as calculated with a 

full numerical solution of the circuit of Fig. 5.3, obtained by means of a circuital 

simulation. Aside from observing that they are practically coincident with the 
 

   

 

    (a)   (b)                  . 
 

Fig. 5.4 – Dependence of (a) |A[V1, ωOSC]|, (b) Q-factor, on the transistor drive voltage V1. 
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Fig. 5.5 – Analytically evaluated steady-state regime curves V1,SS[ω] for injected VG 

amplitudes of: (a) 1 mV, (b) 2.5 mV, (c) 5 mV, (d) 10 mV. The pink shaded area indicates 

unlocked regimes. Black dots are locking extremes calculated through ADS simulation. 

analytical solution provided by (5.19), i.e., the vertical tangent points of elliptical 

curves defined by (5.13), it must be remarked that such evaluation has been 

extremely time-consuming. In fact, to numerically determine LBW borders, Circuit 

Envelope option of ADS (ADS/CE) had to be adopted, in a man-assisted iterative 

search procedure, based on bracketing stable and unstable operating conditions, 

discriminated via long-term run phase-locking transients. The simulation time spent, 

of course, was orders of magnitude greater than the one necessary to apply formulas 

derived by proposed method. An example in Appendix A1 shows the comparison 

between the two required time durations. 

Before going on, it must be stressed (see Fig. 5.4b) the non-negligible difference 

between the “linear” value of the Q-factor (= 100) with respect to the “nonlinear” 

one evaluated at the oscillation regime (QOSC ≅ 84). Using the former instead of 

the second would have caused an error in the evaluated locking bandwidth of more 

than 15%. 

The nonlinear behavior of the OLG function is well displayed by the three-

dimensional Fig. 5.6, where amplitude and phase of A[V1, ω] are illustrated. 



Ch.5 - Application on Transmission-Type ILOs 
 

 

 

72 

 

 

Fig. 5.6 – Three-dimensional dependence of amplitude (upper graphic) and phase (lower 

graphic) of A[V1, 2�f] on its variables, for circuit in Fig.5.3. Orange sections are at V1,OSC. 
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The upper 3D graphic shows that the section of the open-loop gain, at a given 

voltage, is shaped as a single-tuned resonator with little or no variation until 

nonlinearities comes in place and (at the oscillation voltage) the middle-band gain 

reaches unity. As well, the phase figure exhibits a nonlinear trade, moving its 

middle-band derivative, as a detailed observation can grant. 

 

 

 

Fig. 5.7 – Influence of a residual FM on the transient response of the example circuit to an 

OQPSK signal: evolution of amplitude (∆V1[t] - ∆V1,SS, upper graphic) and 

phase (�1[t] - �1,SS, lower graphic) errors. 
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As example of use of the dynamical equations (5.15), the effect of a residual FM 

of 12 kHz (peak) on the transient response of the example oscillating amplifier to an 

OQPSK input signal is illustrated. The evolution of the amplitude and phase error 

corresponding to a ± 90º phase transition is shown in Fig. 5.7. While analogous 

curves could have been obtained via ADS/CE the convenience and the 

insightfulness of a semi-analytical approach, as the one provided by (5.15), has to be 

anyhow remarked, especially in view of design optimization purposes. 

 

 

5.5 Example #2: a Colpitts TILO 

 

A different example (Fig. 5.8) is represented by a classical Colpitts scheme with a 

gate driving source and a third capacitor (C0) accounting for both the inductor and 
  

 

Fig. 5.8 – Example circuit: a MOSFET Colpitts injection-locked oscillator. 
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VTO = 2 V KP = 1 mA·V-2 λ = 0 W/L = 1 

C0 = 1.2 pF C1 = 150 pF C2 = 150 pF CBLOCK = 10 nF 

L0 = 133 nH RLOAD = 12 kΩ VBIAS,DC = 5 V IBIAS,DC = 1 mA 

 

Tab. 5.2 – Parameters of example circuit of Fig. 5.8. 

  

 

Fig. 5.9 – Fundamental-frequency equivalent scheme of the example ILO circuit. 

the load parasitic [34]. The MOSFET active device is characterized via a simple 

SPICE/Lev.1 quadratic model with no parasitic elements, biased at 1 mA with a 

fixed DC current source. With the parameters values adopted (see Tab. 5.2), the free 

running oscillation amplitude and frequency result approximately 5V (peak), and 50 

MHz, respectively. Notice the selection of a zero value for λ, purposely made in 

order to better evidence that the differences that will be observed between Q and 

QOSC are not attributable to the small-signal output conductance of the transistor 

(includable in both), and cannot thus be accounted for by any pseudo-linear analysis 

of the circuit, as in [27,28].  
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For such a topology, the system quantities can be identified as follows: VG = VINJ, 

V1 = Vgs, V2 = Vds, IN = Id, VL = VOUT. The corresponding open-loop fundamental 

frequency dynamical equivalent circuit is illustrated in Fig. 5.9, where the double 

non-linearity mark on the VCCS representing the TSIDF current IN[Vgs,Vds, 	dg] 

graphically recalls the dependence of the transistor drain current iD on both vGS and 

vDS (vBS is fixed at 0 V).  

Notwithstanding the simplicity of the transistor model adopted, analytical 

determination of the associated YT[Vgs, ω] is not viable. Therefore, for the 

determination of QOSC, the numerical alternative of using a HB simulator was 

adopted. To this purpose, firstly, the oscillation frequency (fOSC) and amplitude 
  

 
 

 

Fig. 5.10 – Magnitude (upper graphic) and phase (lower graphic) of the simulated open-loop 

nonlinear transfer function A[V1, f - fOSC], normalized to 1, for the limit value of V1 ≅ 0 (dashed 

red line) and for V1 = V1,OSC ≅ 5V (solid blue line). 

(Vgs,OSC) have been obtained from the closed-loop circuit with no driving signal (see 

Fig. 5.9), using the HB-based nonlinear oscillator analysis tool of ADS simulator. 

Then, the open-loop circuit associated to the one in Fig. 5.8 (see Fig. 5.9) was 
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simulated with the standard HB analysis tool of ADS, obtaining the frequency 

response of the open-loop transfer function corresponding to the oscillation 

amplitude above determined. The result of this procedure is graphically depicted in 

Fig. 5.10, where magnitude and phase of A[V1,OSC, ω] are shown (solid blue curves) 

in comparison with the analogous quantities that would be obtained neglecting the 

nonlinear load effect associated to the dependence of iD on vDS (dashed red curves), 

corresponding to the plot of A[0, ω], as obtained from a small-signal (AC) 

simulation. Both curves are scaled to 1 (i.e., 0 dB) at free-run oscillation frequency. 

From above simulation data, the group delay can be easily numerically 

determined and the value of QOSC calculated with the relationship τg,OSC·ωOSC/2 (cf. 

equations 2.3). In this example QOSC ≅ 221, while the conventional loaded Q ≅ 287, 

i.e., around 30% lower. To confirm that this result is the correct value to adopt for 

Q-factor in LBWLLI equation (5.19), an iterative man-assisted search for the  
 

 

Fig. 5.11 – Comparison of locking-bandwidth calculations: previous theory (dashed red), this 

theory (solid blue), ADS/CE simulations (black dots). 

determination of the locking-bandwidth bounds has been then carried out in this 

example too, resorting to multiple phase-locking transient-envelope simulations by 

means of the ADS/CE. 
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The comparison of the LBW calculated with the standard and the proposed 

procedure (dashed red, and blue solid line, respectively) is illustrated in Fig. 5.11, 

where the additional black dots indicate the transient-envelope simulation data. As 

can be seen, the locking stability limits stemming from the proposed approach fit 

very well with the full-simulation (ADS/CE) derived ones, while the use of the Q-

factor as previously defined in the literature would cause a non-negligible error in 

the LBW evaluation. 

The proposed approach, not only exhibits equivalent accuracy at a fraction of 

time, but is also easily automatable. Therefore, it can be advantageously embedded 

into a numerical tuning or optimization loop and can thus become a useful tool for a 

meaningful optimization of the performances of injection-locked oscillators in 

performance-driven design-oriented applications. 

 

 

5.6 Example #3: Designing an X-Band Microwave TILO 

 

The initial motivation for the development of the presented theory was to have at 

one’s disposal a design-oriented analysis method to be adopted for the correct 

dimensioning of a microwave TILO with a novel circuit structure which made no 

use of nonreciprocal input elements. A prototype of this configuration operating at 

10.75 GHz was designed and built, and the results presented in [31]. This feedback-

type TILO [35] is adopted here also to illustrate the application of the proposed 

method and to highlight some design and simulation aspects. The structure of the 

circuit realized is illustrated in Fig. 5.12. There are evidenced: the (50 Ω matched) 3 

dB hybrid Branch-Line Coupler (BLC) committed to the coupling of the in/out 

power, the delay line feeding the transistor amplifier, and the Dielectric Resonator 

transmission-type filter closing the loop. The microwave amplifier was made using a 

single PHEMT device (ATF-36077), out-of-band stabilized and input matched to 50 

Ω (under large signal operation). The output matching network was designed to 

provide reasonable gain under small signal operation and full power under large 

signal operation into 50 Ω. The dielectric resonator (DR) filter was dimensioned  
  



 

 

Fig. 5.12

using advanced electromagnetic

on the basis of the results of the application of the proposed method.

During the design phase of this TILO, the theory presented i

was adopted cyclically for the initial dimensioning and subsequent refining of the 

DR filter and delay line structures to satisfy project specifications. This procedure 

was greatly simplified by the semi

enucleate critical design parameters and use them for their approximate direct 

dimensioning. For the purpose of this 

will be skipped over, wh

To this end, we can refer to the TILO simplified behavioral macro
 

Fig. 5.1
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5.12 – Circuit diagram of the X-band example TILO.

electromagnetic simulation tools after having determined its specs 

on the basis of the results of the application of the proposed method.

the design phase of this TILO, the theory presented i

was adopted cyclically for the initial dimensioning and subsequent refining of the 

DR filter and delay line structures to satisfy project specifications. This procedure 

plified by the semi-analytic nature of the method which permits to 

enucleate critical design parameters and use them for their approximate direct 

g. For the purpose of this example the details of this nested design loops 

will be skipped over, while focusing mainly on application of the analysis method. 

To this end, we can refer to the TILO simplified behavioral macro

5.13 – Macro-model of the example TILO analyzed
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band example TILO. 

simulation tools after having determined its specs 

on the basis of the results of the application of the proposed method. 

the design phase of this TILO, the theory presented in Sections 5.2-5.3 

was adopted cyclically for the initial dimensioning and subsequent refining of the 

DR filter and delay line structures to satisfy project specifications. This procedure 

analytic nature of the method which permits to 

enucleate critical design parameters and use them for their approximate direct 

etails of this nested design loops 

the analysis method. 

To this end, we can refer to the TILO simplified behavioral macro-model shown in 

 

analyzed. 
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Fig. 5.13. The equivalent RLC parallel resonator models the resonant impedance Zeq 

associated to the DR filter, as seen by the “intrinsic” transistor, described as a 

memoryless nonlinear 2D-VCCS element. All the remaining parasitic elements and 

losses/delays are absorbed (as amplitude and phase of the coefficients K1 and K2) 

into the two VCVS elements which model the stages preceding and following the 

transistor. Though not evident from the figure, in present case Zin, i.e., the amplifier 

large-signal input impedance, was dimensioned to 50 Ω, for modularity purposes. 

To achieve the desired locking bandwidth (~4.5 MHz) for the nominal value 

(–20 dBm) of the injection signal, in view of (5.19), one has to obtain the correct 

value of the product QOSC ·  V1,OSC acting on the free design parameter set. In this 

design, features selected are the insertion losses and the loaded Q-factor of the DR 

filter block, which, together with the constraint set on its in/out 50 Ω match, 

determine the position and the distance of the DR puck with respect to the two 

coupled microstrip lines. In our model this induces a parametric dependence of K2 

and Q00 ≡ Q(V1)|V1≈0 on filter geometry. As previously remarked, knowing Q00 does 

not suffice to compute QOSC, and thus to evaluate LBWLLI. Therefore, even if a 

global, parametric, analytical or numerical model of all components (e.g., the DR 

filter) is available, a few design iterations are still required to achieve the targeted 
  

 

Fig. 5.14 – Comparison of locking-bandwidth calculations: previous theory (dashed red), this 

theory (solid blue), measurements (black dots). 
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Fig. 5.15 – Three-dimensional dependence of amplitude (upper graphic) and phase (lower 

graphic) of A[V1, 2�f] on its variables, for circuit in Fig.5.12. Orange sections are at V1,OSC. 
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value of LBWLLI. The situation corresponding to final design is depicted by Figs. 

5.14 and 5.15. In the latter one, the dependence of amplitude and phase of A[V1, ω] 

on drive voltage V1 and frequency f = ω/(2") is illustrated, and oscillation amplitude 

of V1 ≅ 0.176 V is reported. Notice that the amplitude of the open-loop gain at free-

running frequency and V1 ≅ 0 is around 1.78, leaving around +5 dB as gain margin 

for a robust oscillation buildup. The final value of the RLC Q-factor is ≈480, which 

corresponds to a loaded Q-factor of the linearized circuit of ≈435 (Q00 in present 

terminology), which further reduces, because of the nonlinear effects here accounted 

for, to ≈300 (QOSC in our terminology), i.e., 30% less than predicted by current 

theories adopting Adler’s equation [28]. Such improvement in accuracy is clearly 

seen in the graph of Fig. 5.14, which compares the measured locking bandwidth (see 

[31]) with the simulated ones obtained adopting formula (5.19) or the classical one 

(with Ohira's Q-factor). A good agreement between prediction and experiments can 

be observed only in the first case. 

Once more, it must be noticed that to achieve analogous accuracy in the locking 

bandwidth prediction, the only alternative is to adopt a transient envelope numerical 

simulation tool, such as the cited Circuit Envelope [41], which would require several 

repeated simulations in order to determine, by bracketing stable and unstable points, 

the band limit to within a reasonably tight tolerance. Furthermore, each one of these 

searches involves a long transient, even in a stroboscopic time scale, leading to an 

extremely long aggregate simulation time. 
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6. Semi-Numerical Analysis of High-Order ILOs 

 

 

6.1 Overview on Presented Semi-Numerical Method 

 

This chapter deals with the analysis of resonant structures different from simple 

single-tuned (or approximable as single-tuned) ones. As previously discussed, the 

employment of multiple tuned resonators can be exploited to achieve wider locking-

bandwidths [37], and in those cases a ST-like approximation can lead to significant 

inaccuracies, both in terms of a quantitative respect and in terms of qualitative 

effects, not predictable without a proper resonator model. 

For this purpose, a semi-numerical approach can be performed, modeling the 

oscillator tank and all linear subcircuits through numerical transfer functions, built 

from zeroes and poles, and developing a convenient procedure. This method permits 

to easily collect the required data even when the internal topology of the circuit is 

not known, or suitable models are not available, but the only chance (or the simpler 

one) is to identify data on the basis of direct measurements. The nonlinear element is 

represented through a polynomial multidimensional equation, exploiting nonlinear 

measurements provided by instrumentation or acquiring the data by means of regime 

simulations (HB). 

This feature of proposed method has to be remarked, for design purposes in 

particular, in the microwave circuits field, where a trial and error design process is 

often demanded. 

Furthermore, this approach permits a detailed study - also in the case of more 

complex circuits - of oscillator's behavior exhibited when the injection level is not 

low, providing information that is uncomfortable to be obtained through circuit's 

simulation. Semi-analytical prediction of well-known Arnold Tongues, in non-LLI 

conditions, has thus been drawn, while normally determined in ILOs only with 

experimental measurements. 

An example clarifies in the end that presented formulas, though apparently 

complicated, are actually much simpler to apply than it may seem.  
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Fig. 6.1 – General block
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Analyzed ILO System Description and Specific Class 

Defining Conditions 

diagram of the system, introduced in Section 3.3, representing the 

generic ILO that will be here considered, is drawn again for convenience in Fig. 6.1. 

It features a general single-loop feedback structure. It comprises four linear blocks 

representing (appropriately grouped) the various passive elements of the system, and 

one nonlinear block representing the (unique) active device. 

In the case of circuital systems, of principal interest in this 

covers most of the ILOs: the nonlinear active one

RILOs, and several practical configurations of TILOs as well, in fact the active 

element there employed can be usually well approximated by a SISO nonlinearity.

More precisely, it can be shown that all RILO circuits can be fit in the 

1, after proper identification of the Lx (with x = G, F, S, O)

all TILO circuits are covered by the structure of figure, as better detailed later

configurations of practical relevance can be. The main limitation 

assumption of a single control variable for the nonlinear active device 

can be considered a reasonable approximation in many feedback

frequency TILOs designed exploiting modular/matched structures and nearly 

unilateral active devices. 

the generality of the depicted structure has to be further specified in 

order to specifically address the class of fundamental-mode injection

oscillators here considered, in addition to class defining conditions

adly speaking, such class can be identified as the 

General block-diagram of the ILO system class considered, in the DCE domain
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Analyzed ILO System Description and Specific Class 

ection 3.3, representing the 

for convenience in Fig. 6.1. 

It comprises four linear blocks 

ed) the various passive elements of the system, and 

tems, of principal interest in this environment, the 

ive one-port equipped 

RILOs, and several practical configurations of TILOs as well, in fact the active 

element there employed can be usually well approximated by a SISO nonlinearity. 

More precisely, it can be shown that all RILO circuits can be fit in the structure of 

) blocks. While not 

as better detailed later, many 

configurations of practical relevance can be. The main limitation is, in fact, the 

assumption of a single control variable for the nonlinear active device N[XI], which 

can be considered a reasonable approximation in many feedback-type high-

frequency TILOs designed exploiting modular/matched structures and nearly 

has to be further specified in 

mode injection-locked 

oscillators here considered, in addition to class defining conditions already set in 

 class of "properly 

 

, in the DCE domain. 
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designed" fundamental-mode ILOs, i.e., systems based on a quasi-sinusoidal 

(unimodal and self-starting) "core-oscillator" driven by a narrowband-modulated 

injection signal, with a carrier frequency in the neighborhood of the free-run 

oscillation one. Such requirement implicates, primarily, that the filtering block in the 

feedback path (LF) has to possess a "dominant resonance" with adequate selectivity 

and, also, that such quality is not compromised by the frequency response of the 

active block. 

Above cited class-defining conditions, which will be formally defined in a 

perturbationally-rigorous manner in the following, guarantee a quasi sinusoidal (QS) 

behavior of both free running or entrained oscillation under steady-state locked 

operation and a quasi sinusoidal quasi static (QS2) one under transient operation. 

Consequently, it is possible to develop present analysis in the fundamental-

frequency DCE domain, as implicitly assumed in Fig. 6.1. In fact, all Xn (n = I, O, 

G, F, S, L) quantities appearing in this diagram are to be interpreted as generalized 

time-varying phasors: Xn=Xn[t]·e
j�n[t], where Xn[t] and 	n[t] are slowly-varying 

amplitude quantities in the scaled time t/TO, and TO is the period of the free-running 

oscillation. This is equivalent to considering their variations as "small" in the period 

of the fundamental of the oscillation under both free-running and phase-locked 

operation, which doesn't represent an actual restriction in usual cases. 

As a first consequence, we can characterize the nonlinear active element directly 

in the frequency domain, by generalizing the classical SIDF concept to allow for an 

imaginary part, as well as a frequency dependence in addition to the amplitude one: 

(6.1) N[XI, ω] = Nr[XI, ω] + j·Ni[XI, ω]  

The complex nature of such Frequency-Dependent Describing Function (FDDF) 

permits to model more accurately active devices adopted in high-frequency circuits, 

in which the non-negligible influence of parasitic (reactive, both linear and 

nonlinear) elements has to be adequately accounted for (consider, e.g., the negative-

resistance diodes adopted in microwave RILOs [64,65], or parasitics in microwave 

common drain Colpitts circuits [68]). 

Notice that the use of the SIDF (and therefore also of above defined FDDF) in the 

circuital context implicitly assumes that variations of the active device bias in the 

various operating conditions investigated is negligibly small or none. In addition to 

this rather common assumption, here we set a further one, i.e., that the active 
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nonlinear block has an intrinsic bandwidth much wider than the one associated to 

the filtering linear block in the feedback path (LF). As obvious, in the case in view, 

in which the block diagram illustrated represents a properly designed/dimensioned 

quasi sinusoidal oscillator entrained by a nearly-synchronous sinusoidal injection 

signal, the associated high selectivity of the resonator LF makes this assumption 

automatically verified in all practical situations. In fact, with respect to the main 

resonator, in a standard ILO design the parasitic elements associated to the active 

device will certainly turn out to be a minor perturbation of the dominant resonance 

associated to the main filter. 

As a matter of fact, this last assumption would not be strictly required for the 

development of this theory, but will be declared anyhow since it doesn't imply an 

actual constraint on the class of treatable circuits/systems, while it simplifies 

considerably method's application in practice.  

It is now possible to proceed further with the description of the class of systems 

under investigation, which can be broadly indicated as the ILO systems 

characterized by resonant structures of Multiple-Tuned Nearly-Synchronous 

(MTNS) dominant-resonance type, as formally defined below. 

The four linear blocks Lx appearing in Fig. 6.1 are supposed to be characterized 

in the Laplace domain, through their transfer functions of polynomial rational nature 

in the complex-frequency "s" variable: 

(6.2) Lx[s] = Kx 	∏ (s-sxzh)
Hxz

h=1∏ (s-sxph)
Hxp

h=1

      (where x = G, F, S, O) 

with the associated zeroes/poles described by their respective real and imaginary 

parts: 

 (6.3) sxyh = σxyh+j·ωxyh      (x = G, F, S, O;  y = z, p;  h = 1,	..., Hxy) 

As a matter of fact, two possible situations arise when dealing with actual 

circuits. One possibility is that the topology (and element values) of the circuits 

constituting the various blocks are known, i.e., the Lx are of "glass-box" type. The 

other possibility is that the various blocks are characterized as a whole, i.e., the Lx 

are of "black-box" type. In the first case, if the circuit elements of a given block are 

all of lumped nature, the model described by (6.2) follows directly. On the other 
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hand, if one or more distributed elements are present, or if the block is of black-box 

type, the casting of the transfer function associated to it into the form (6.2) would 

require a proper identification in the complex-frequency s-domain. However, it can 

be noticed that the subsequent development of our procedure will simplify this step 

significantly, that can be developed in a narrowband way, directly with reference to 

a real-frequency ω-domain characterization of the block. 

In order to express in a perturbatively rigorous manner our QS2 class-defining 

conditions on linear and nonlinear blocks, it is first necessary to determine the value 

of a normalizing, reference frequency ωR ("a priori" estimate of oscillation 

frequency), as well as to identify the "smallness parameter" ε which characterizes 

our weakly nonlinear system. Since such choices are not critical (to within 

reasonable tolerance limits detailed later), they can be made in several ways, 

depending also on which type of information on the system is available when 

performing this step.  

Indeed, such initial guess can exploit, in addition to the stated high-selectivity of 

the loop filter LF, the here assumed parasitic nature of the reactive components of 

the nonlinearity N[XI, ω], by referring either to the Nyquist diagram of the open-

loop gain of the linearized system (OLG0 = LF[ω]⋅N[0, ω]), or directly to the poles 

of LF[s]. Notice that these quantities are anyhow required for other purposes, first of 

all the preliminary verification of the correct stability properties of the linearized 

system. In fact, the assumed unimodal quasi-sinusoidal oscillation startup from noise 

for the core-oscillator implies the existence of a unique unstable resonant mode, i.e., 

two complex-conjugate natural frequencies sU = σU ± jωU with σU > 0, and 

σU/ωU ≪ 1. In the "glass-box" case, direct (numerical) determination of eigenvalues 

is possible, and such verification step is straightforward. Also, both ωR and ε can be 

defined directly in terms of this unstable mode, through the relationships: 

(6.4)  glass-box case: )	ωR = ωU	
ε = 

2σU

ωU

 = 
1

Q
U

�	 
 the latter grounding on the common association of ε to the inverse of a quality 

factor. 

In the "black-box" case, the simplest solution, but usually adequate, is to 

designate the reference frequency ωR as the (unique) "decreasing-phase" crossover 
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frequency of the Nyquist diagram of (1-OLG0). As to ε, we can associate it to the 

group delay of OLG0 (τg) evaluated at ωR, leading to these relationships: 

(6.5)  

black-box case: 

*+,
+-ωR	
	ω	: Im[OLG0[ω]] = 0, with 

d[arg[1-OLG0]]

dω
<	0

 

ε = 
2

τg[ωR] · ωR

�
O	
τg[ω] = –

d[arg[OLG0]]

dω

 

We can now continue our analysis by introducing an expedient partitioning of all 

poles/zeroes, observing that they can always be subdivided into three types, in 

relation to their position in the complex plane. Such subdivision, whose justification 

will be explained in next section, relies on whether a given pole/zero contributes to 

the dominant resonance (type-1) or to "out of band" parasitic resonances (type-2) or 

aperiodic modes (type-3), all typically present in practical systems also in case of 

correctly dimensioned ILOs. 

Type-1 poles and zeroes, appearing in complex-conjugate pairs (σxyh ± jωxyh), will 

be in number of 2⋅Hxp1 and 2⋅Hxz1, respectively. Similarly, type-2 pairs of poles or 

zeroes are in number of 2⋅Hxp2 and 2⋅Hxz2. Type-3 poles and zeroes will be in 

number of Hxp3 and Hxz3 respectively. Of course, Hxy = 2⋅Hxy1 + 2⋅Hxy2 + Hxy3. 

It is now possible to formally state the specific QS2 class-defining (sufficient) 

conditions. About linear blocks, we require that all type-1 poles/zeroes of LF and LG 

satisfy the following asymptotic relationships: 

 (6.6) 

'ωxyh - ωR

ωR

'  = O[ε]	'2 σxyh

ωR

'  = O[ε]

(x = G, F;  y = z, p;  h = 1,	..., Hxy1) 

with HFp1 > 0, which guarantee their grouping in two square clusters nearby the 

imaginary axis in the neighborhoods of ± jωR, and therefore a dominant resonance in 

LF, at least. Equations (6.6) can be also considered as a formal definition of the 

MTNS tank and coupling circuits characterizing the extended class of ILOs being 

considered.  
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For the nonlinear element it is required, in the frequency band associated to 

type-1 poles/zeroes: 

 (6.7a) |N[XI, ω]	·	LF[ω]| = O[1] 

(6.7b) '∂	Im[N[XI, ω]]

∂	ω '  ≪ /∂	Im[LF[ω]-1]

∂	ω / 

(6.7c) '∂ N[XI, ω]

∂ ω
·

ωR

N[XI, ωR]
'  = O[1] 

which guarantee that the active device has a "level" compatible with the assumed 

weakly-nonlinear nature of the overall system, and that it is adequately wideband 

and does not interfere with the dominant resonance of the filter LF. 

As to the constraints on injection signal, already qualitatively indicated as 

narrowband-modulated with a carrier in the neighborhoods of the free-running 

oscillation frequency, they will be detailed in next section, since relying on 

quantities still to be introduced. 

 

 

6.3 Dynamical System Model Derivation 

 

Let's start the derivation of the ILO-system dynamical model with a standard 

steady-state analysis in the fundamental ω-frequency domain, assuming an entrained 

operation under the action of a CW synchronizing signal. From the block diagram of 

Fig. 6.1, stem the basic relationships: 

(6.8) 

XG + XF = XI 

XG = LG�ω� · XS 

XF = LF[ω] · XO 

XG = LO[ω] · XO	+	LS[ω] · XS 

XO = N[XI, ω] · XI 
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Combining above equations, we obtain the frequency-domain nonlinear phasor 

equation: 

(6.9) (1 – LF[ω] · N[XI, ω]) · XI = LG�ω� · XS 

characterizing the "core-ILO" subsystem (delimited by dashed red rectangle in Fig. 

6.1), to which can be added the auxiliary equation:  

(6.10) XL = LO[ω] · N[XI, ω] · XI + LS[ω] · XS 

which permits to evaluate the overall ILO output variable XL, once XI is calculated. 

For the purpose of subsequent development, it is convenient to introduce a 

frequency scaling with respect to ωR, by replacing LF[ω] and LG[ω] with their 

normalized counterparts, appropriately partitioned in order to highlight the three 

types of poles/zeroes above introduced: 

(6.11) 

LLLL x[Ω] ≡ K 	x · LLLL x1[Ω] · LLLL x2[Ω] · LLLL x3[Ω] 

LLLL x1[Ω] ≡ 
∏  (jΩ-SSSSxzh)(jΩ-SSSSxzh*)

Hxz1

h=1∏  (jΩ-SSSSxph)(jΩ-SSSSxph*)
Hxp1

h=1

 

LLLL x2[Ω] ≡ 
∏  (jΩ-SSSSxzh)(jΩ-SSSSxzh*)

Hxz1 + Hxz2

h=Hxz1 +1∏  (jΩ-SSSSxph)(jΩ-SSSSxph*)
Hxp1 + Hxp2

h=Hxp1 + 1

 

LLLL x3[Ω] ≡ 
∏  (jΩ-SSSSxzh)

Hxz1 + Hxz2 + Hxz3

h=Hxz1 + Hxz2 + 1∏  (jΩ-SSSSxph)
Hxp1 + Hxp2 + Hxp3

h=Hxp1 + Hxp2 + 1

 

where: 

(6.12) 

Ω ≡ 
ω

ωR

 

SSSSxyh ≡ 
sxyn

ωR
  	(x = G, F;  y = z, p;  h = 1,	..., Hxy1+ Hxy2+ Hxy3;  n = 1,	..., Hxy) 

K 	x ≡ 
Kx

ωR
Hxp – Hxz
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The frequency normalization now performed is particularly useful to avoid 

numerical issues (e.g., overflow or underflow) during practical implementation of 

the theory. Notice the reordering of the scaled poles/zeroes SSSSxyh (implied by h≠n) to 

account for the adopted numbering of complex-conjugate pairs. According to (6.6), 

the type-1 SSSSxyh can be rearranged to highlight the intrinsic dependence on ε quantity: 

(6.13) SSSSxyh = ε Γxyh	+	j(1	+	ε	∆Ωxyh)   (x = G, F;  y = z, p;  h = 1,	..., Hxy1) 

where: 

(6.14) 

Γxyh ≡ 
σxyh

ε ωR

 

∆Ωxyh ≡ 
ωxyh	–	ωR

ε ωR

 

0Γxyh0 = O[1] 0∆Ωxyh0 = O[1] 

We can now perform a main step of presented approach toward the derivation of 

the dynamical equations of our MTNS ILO class starting from the frequency-

domain phasor equation (6.9). In so doing, we can adapt to this more general system 

the perturbation-refined technique introduced in [21] by Calandra and Sommariva, 

formalizing a semi-numerical method with easier application. The unique "order 

truncation" step there performed had a twofold role: the elimination of spurious 

modes that arise in the time-domain to dynamical-phasor transformation of network 

variables, and the order-equalization all other quantities. While the first target, 

associated to frequency related terms, is a required one, the second one is not. More 

important, the original procedure adopted for high-order circuits, corresponding to 

our subclass of MNTS-RILOs, though rigorous, is rather cumbersome to apply in 

practice, precisely because of this combined goal which requires to apply order-

truncation only after an intermediate dynamical model is derived from the (glass-

box type) circuit equations. 

Here, with the purpose of extending the method to black-box systems and to 

simplify practical usage, the separation of the two above cited steps is proposed, by 

developing a generalized "one side band" (OSB) version of the BLDO algebra 

introduced in [24]. This goal is achieved, first, by observing that, in force of the 
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above stated class-defining conditions, it is possible to investigate the dynamics of 

the system focusing on the fundamental frequency band alone. We can thus exploit 

the separation of poles/zeroes into three types and employ only type-1 roots. 

Moreover, we will apply only the mandatory frequency-truncation step, directly 

replacing the {Lx, x = G, F} set with its one side band counterpart: 

(6.15) LLLL x
111[Ω] ≡ KKKK 	x0 · LLLLx1

1111[Ω] 

with: 

 (6.16) 
LLLL x1
11111[Ω] ≡ 

∏  (jΩ-SSSSxzh)
Hxz1

h=1∏  (jΩ-SSSSxph)
Hxp1

h=1

 

KKKK 	x0 ≡ LLLL x[1] LLLL x1
11111[1]⁄  

For the purpose of practical application of our method, such {LLLL x
111} set can be 

considered as the starting point in the setup of an OSB counterpart of the block 

diagram of the core-ILO in Fig. 6.1. 

Through the above definitions, the truncated counterpart of (6.9) can be written: 

(6.17)  1 – KKKK 	F0 
∏  (jΩ-SSSSFzh)

HFz1

h=1∏  (jΩ-SSSSFph)
HFp1

h=1

	N[XI, ω]!XI =  KKKK 	G0
 
∏  (jΩ-SSSSGzh)

HGz1

h=1∏  (jΩ-SSSSGph)
HGp1

h=1

!XS 

It is now convenient to introduce the Least Common Polynomial Multiple 

(LCPM) in the jΩ variable between the denominators of LLLLF
111[Ω] and LLLLG

1111[Ω], and its 

associated maximum order H ≤ HFp1+ HGp1: 

(6.18) PPPP  LCPM[Ω] = LCPM �Πh=1

HFp1
(jΩ-SSSSFph),	Πh=1

HGp1
(jΩ-SSSSGph)�=Πh=1

H
(jΩ-SSSSph) 

Introducing a renaming (into SSSSAh and SSSSBh) of the residual roots of the two 

polynomials in jΩ obtained by the divisions: 

(6.19a) Πh=1

H-HFp1
(jΩ-SSSSAh) ≡ 

PPPP  LCPM[Ω]

Π
h=1

HFp1
(jΩ-SSSSFph)
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(6.19b) Πh=1

H-HGp1
(jΩ-SSSSBh) ≡ 

PPPP  LCPM[Ω]

Π
h=1

HGp1
(jΩ-SSSSGph)

 

and after rearranging, we obtain the in-line equation: 

_ 

(6.20) 

� 	3Πh=1

H
(jΩ-SSSSph)4 –KKKK  F0

3Πh=1

H-HFp1
(jΩ-SSSSAh)4 3Πh=1

HFz1
(jΩ-SSSSFzh)4N[XI,	Ω]	 � ·	XIe

 jϕI 	= 

= KKKK  G0 3Πh=1

H-HGp1
(jΩ-SSSSBh)4 3Πh=1

HGz1
(jΩ-SSSSGzh)4 ·	XSe jϕS 

_  

After explicitation of the ε quantity embedded into {SSSSAh}, {SSSSBh} and {SSSSph} in 

analogy to what done in (6.13), and introduction of the normalized detuning 

∆Ω = (Ω-1)/ε, we can rearrange (6.20) in its order-equalized counterpart: 

_ 

(6.21) 

 �Πh=1

H �-Γph+j(∆Ω-∆Ωph)�� –KKKK  A
�Πh=1

H-HFp1�-ΓAh+j(∆Ω-∆ΩAh)��� · 
· �  �Πh=1

HFz1�-ΓFzh+j(∆Ω-∆ΩFzh)��NNNN [XI]

 

! · XIe
 jϕI = 

= KKKK  B
�Πh=1

H-HGp1�-ΓBh+j(∆Ω-∆ΩBh)���Πh=1

HGz1�-ΓGzh+j(∆Ω-∆ΩGzh)�� · XSe jϕS 

_  

where : 

(6.22) 

KKKK  A ≡ 
KKKK  F0

εHFz1-HFp1|LLLL F[1]|  

KKKK  B ≡ KKKK  G0ε
HGz1-HGp1 	NNNN [XI] ≡ |LLLL F[1]|	·	N[XI, 1] 

Notice that, in force of above assumptions, | KKKK  A | , | KKKK  B/LLLLG[1] |  and  | NNNN [XI] | are 

all O[1]. 
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It has also to be remarked that, in the intermediate calculations that led to (6.21), 

NNNN  [XI], the normalized counterpart of N[XI, ω], has lost its dependence on frequency 

since its wideband nature (6.7) causes the additional terms stemming from such 

dependence, being all of smaller order than the other terms, which ones only are thus 

retained. This fact has an important practical consequence, in that it simplifies 

significantly the nonlinear modeling of the active device for our purposes. Indeed, 

just a simple 1D fitting of fixed-frequency, swept-amplitude CW measurements (or 

simulations) is involved. 

Setting XS=0 into (6.21), provides the algebraic homogeneous equation whose 

equilibrium points define the set of possible free-running regimes, identified by one 

or more pairs {XIO, ∆ΩO}, whose individual dynamical stability will be investigated 

later. However, for the sake of simplicity, this treatment will usually suppose a 

single free-running regime. 

Notice that, while no order constraints apply to the unnormalized oscillation 

amplitude XIO, the normalized detuning ∆ΩO between the free-run oscillation and 

reference frequencies is bound to be O[1]. 

It is now convenient to formally state the "proper injection" conditions for the 

fundamental mode of operation investigated, which actualize in: 

(6.23) 

|LLLLG[Ω]	·	DmXS|
XIO

	=	O[1]  ;   (m = 1,	..., M) 

0Dmϕ
S
0	=	O[1]  																	;   (m = 1,	..., M) |LLLLG[Ω]|	·	XS

XIO

	=	O[1] 

|∆Ω|	=	O[1] 

M = H – HGp1 + HGz1 

where D  = d/dτ is the symbolic differentiation operator in the scaled time τ = ε⋅ωR⋅t. 

Qualitatively, they correspond to the assumption of a narrow-band modulated (or 

unmodulated) drive signal, of amplitude commensurate to the oscillation strength 

and carrier frequency in the neighborhoods of the free-running one. 

Regularity conditions (6.6), (6.7) and (6.23) are sufficient to guarantee the QS2 

nature of the system investigated, quantitatively corresponding to the asymptotic 

constraints: 
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(6.24) 

|D nXI|
XIO

	=	O[1]  ;   (n = 1,	..., N) 

0D nϕ
I
0	=	O[1]  		;   (n = 1,	..., N) 

N = max[H, H – HFp1 + HFz1] 

where N is the stroboscopic order of the system at hand. 

In force of (6.24) and of the OSB frequency-truncations above performed, it can 

now be derived the dynamical equation governing the entrained oscillation simply 

by replacing into (6.21) the scaled injection frequency detuning ∆Ω with ∆Ω – jD , 

which is the equivalent of the jω replacement into jω + d/dt: 

_ 

(6.25) 

 �Πh=1

H �D 	-	Γph+j(∆Ω-∆Ωph)�� –KKKK  A
�Πh=1

H-HFp1�D 	-	ΓAh+j(∆Ω-∆ΩAh)��� · 
· �  �Πh=1

HFz1�D 	-	ΓFzh+j(∆Ω-∆ΩFzh)��NNNN [XI]

 

! · XIe
 jϕI = 

= KKKK  B
�Πh=1

H-HGp1�D 	-	ΓBh+j(∆Ω-∆ΩBh)���Πh=1

HGz1�D 	-	ΓGzh+j(∆Ω-∆ΩGzh)�� · XSe jϕS 

_  

Quantities {XI, 	I, XS, 	S, NNNN [XI]}, although not explicitly indicated, are meant to 

be functions of the scaled time τ. 

Above OSB-DCE equation (6.25) is a main result of our study. It permits the 

complete investigation of the behavior (steady-state, dynamical stability and 

transient operation) of a large class of ILOs under all operating conditions of 

practical meaningfulness. On its basis, in next section a specific application will 

highlight some behavioral aspects of the phenomena occurring in ILOs of high-

order, or under high-level injection (HLI), which received so far minor attention in 

the literature compared to second-order systems or low-level injection (LLI) 

operation. 

It can be remarked that the complex equation (6.25) can be always split into two 

coupled ODEs, solved for the maximum degree derivatives, of the form: 
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(6.26) 
DNXI = FX�XI, 5D nXI6, ϕI

, 7D nϕ
I
8; 5n = 1,	..., N-16�  

DNϕ
I
 = Fϕ�XI, 5D nXI6, ϕI

, 7D nϕ
I
8; 5n = 1,	..., N-16� 

in which, for compactness, the scaled time dependence and the injection-related 

quantities have been omitted. 

System (6.26) can be rearranged in normal form: 

(6.27) D  · y = f
 
[y] 

where 

(6.28) 

y = �XI,  ϕI
, D 1XI, D

1ϕ
I
,	...,DN-1XI, D

N-1ϕ
I
�T  

f
 
[y] = �y

3
, y

4
,	...,	y

2N-1
, y

2N
,	FX, Fϕ�T 

which is more handy for the practical evaluation of transient response through 

numerical integration, as well as for the dynamical stability analysis. 

Before concluding this section, an additional note can be mode. In those (rare) 

cases in which the maximum numerical precision obtainable by this method is 

required, an iterative approach can be adopted for the refinement of the value of ωR, 

and, consequently, the value of NNNN [XI]. The more reasonable choice is to set, in each 

cycle, the value of ωR equal to the oscillation frequency calculated at the previous 

iteration. Notice that a good metric of the quality of the selected value of ωR is 

constituted directly by the size of ∆ΩO, zero value indicating that optimal choice has 

been made. 

 

 

6.4 Locking Bandwidth Calculation and LLI operation 

 

As discussed in previous chapters, locking-bandwidth is one of the principal 

features of an ILO. To ascertain if a given equilibrium point calculated by the 

fundamental mode spectral balance equation (6.21) under CW injection corresponds 
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to locked or unlocked regime, a dynamical stability analysis has to be carried out. 

By exploiting the differential model (6.28), this step is easily performed through the 

associated Jacobian matrix: 

(6.29) J = ���
�									 0

	(2N-2)⨯(2)

	

	 | 	 			I
	(2N-2)⨯(2N-2)

	

										
D1FX 	 D2FX … D2N-1FX 	 D2NFX

D1Fϕ	 	 D2Fϕ	 … D2N-1Fϕ	 	 D2NFϕ ���
�
 

where:  

(6.30) 

DnFX	=	 ∂ FX

∂	y
n

 

DnFϕ		=	 ∂ Fϕ	

∂	y
n

 

and then deriving the characteristic polynomial from (3.25), as previously described 

in chapter 3. 

As it is well-known, its roots determine the eigenvalues, whose nature establishes 

whether a perturbation of the investigated equilibrium point will decay (i.e., stable 

regime) or increase (i.e. unstable regime) with time. Of course, actual evaluation of 

eigenvalues is not a required step, as already pointed out. Other common methods, 

such as Routh-Hurwitz stability criterion, can provide equivalent information and 

can be adopted as well. 

It can be remarked that an important application of the above developed 

dynamical stability analysis is the one pertaining the analysis of equilibrium point(s) 

{∆ΩO, XIO} associated to the free-run operation, which is indeed the first one usually 

performed in an ILO analysis or design stage, as already seen in Sec. 3.5. To this 

purpose, the involved characteristic polynomial (pCO) can be calculated from the 

free-run counterpart of (6.29-6.30), which is obtained by particularizing FX and F� 

for XS = 0, and then dividing the resulting pC by λ. Notice that, if more than one 

stable free-running equilibrium point is ascertained to exist, the ILO design has 

probably to be revised, to avoid potential multimodality problems, unless that 

situation was intentionally created, e.g., for band-widening purposes. 
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Only after this test, it can be investigated the stability analysis of the driven 

oscillator, in a given point {∆Ω, XI,SS}, performing a "locking stability" study. A 

wider look at stability properties of the system can be observed if evaluating Locus 

and Boundary conditions, in the response space {XS, ∆Ω, XI,SS}, equivalent to a 

"parametric" investigation of stable regimes. 

Therefore, joining steady-state equation (6.21) together with Locus and Boundary 
 

 

 

 (b)  (c) 

Fig. 6.2 – 3D space {XS, ∆ω, XI,SS} with stability borders (transparent cyan color) and 

superimposed steady-state curves (dark blue), with reference to example of Fig. 3.3 (i.e., space 

is {VG, ∆ω, VI,SS}). (a) full 3D graphic; (b) low-level injection only, emphasizing linear region; 

(c) view from the top, showing locking-bandwidth limits (Arnold Tongue). 

(a) 
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conditions, we can finally obtain the graphical representation of stability limits in 

the response space, and Arnold Tongues as the projection of the intersection points 

on {∆Ω, XS} plane.  

A simple single-tuned case (the same analyzed in chapter 3) of this 3D illustration 

is depicted in Fig. 6.2, where 3D curves pertaining with regime points (dark blue 

color), and Locus/Boundary stability borders (transparent cyan color) graphically 

outline the whole LBW, under low- and high-level injections. This illustration 

shows the mentioned stability space {XS, ∆ω, XI,SS} of this basic example including 

a main graphic (Fig. 6.2a), a second one limited to lower injection levels (Fig. 6.2b), 

which emphasizes the linear dependence of LBWLLI from XS, while last one (Fig. 

6.2c) provides a view from the top of the main picture, highlighting the profile of the 

Arnold Tongue. 

With such a global picture of the locking bandwidth, it is possible to realize that, 

especially in cases different from ST-like ones, like MTNS systems, a simple LLI 

analysis can prove absolutely unsatisfactory. Usually, this type of simplified 

investigation is considered a good approximation until HLI is reached (that is, with 

definition introduced in Sec. 3.6, where the maximum frequency detuning is 

determined by the Boundary limit), but examples in following sections will point out 

that it is not always true, i.e., in some cases an intermediate region must be 

considered. This leads to the need of the introduction of a medium-level injection 

(MLI), as the region where the LBW is not well approximated by the LLI standard 

analysis (i.e., a linear one), but where the injection is not "high" yet. This novel 

definition, from a practical perspective, obviously means different algorithms need 

to be implemented, but a much better agreement with actual results will demonstrate 

its usefulness, since arbitrarily extending LLI up to HLI region can produce relevant 

errors. 

In order to deepen this new approach, and make a clear comparison, the study of 

LLI approximation must be performed first. To obtain the LLI version of the 

dynamical equations that lead to the Adler-type (linear) relationship between LBW 

and Xs, we can apply a proper perturbative "secondary simplification". 

In particular, the following order conditions are to be supposed: 
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(6.31) 

XS	=	O[ε] 

∆ΩSO	=	O[ε] 

D n∆XI	=	O[εn+1] 

D nϕ
I
	=	O[εn] 

where the incremental variables ∆ΩSO = ∆Ω – ∆ΩO and ∆XI = XI – XIO have been 

introduced, which express the scaled detuning between the injection source and 

oscillation frequencies, and the difference between entrained and free-running 

oscillation amplitude, respectively. 

Making use of (6.31) into DCE equation (6.25), and truncating it to the minimum 

ε-order (i.e., eliminating all higher order terms), after appropriate rearranging, we 

eventually get an algebraic-differential system of the form: 

 (6.32) 
∆XI[τ] = XS�KXc cos�ϕ

I
[τ]� 	+	KXs sin�ϕ

I
[τ]�� 

Dϕ
I
[τ]	=	–	∆ΩSO	+	XS�Kϕc cos�ϕ

I
[τ]� 	+	Kϕs sin�ϕ

I
[τ]�� 

where the four K(⋅)(⋅) coefficients are real valued numbers, all O[1]. 

Equation set (6.32) generalizes the classical Adler-type differential model 

adopted for the LLI operation analysis. Unlike other derivations, the above proposed 

one provides a consistent and rigorous theoretical basis for the LLI model 

calculation. An LLI locking-bandwidth novel formula is then derived, first solving 

above equations under steady-state conditions, then performing some further 

calculations. It finally results, employing above defined normalized quantities: 

(6.33) LBW 	LLI = 29Kϕc
2 + Kϕs

2		XS 

Although (6.33) correctly describes the initial part of ILO Arnold Tongues, 

characterized by an ωO-centered, symmetrical and linearly dependent on XS locking 

bandwidth, it has to be remarked that it cannot be safely adopted outside the validity 

range defined by conditions (6.31). So far, the LLI range has been defined in a rather 

qualitative manner, and LBWLLI usually extrapolated to XS values well above the 

ones guaranteeing a reasonably accurate calculation. This practitioner's habit can be 
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partly justified by the fact that the separation between LLI and HLI is rather sharp in 

single-tuned like systems, and arbitrary extension of LLI range up to this switchover 

point does not involve excessive inaccuracy in such simple systems. On the other 

hand, as shown in next example section, when more complex tank and coupling 

circuits are involved, as in the general MTNS case, the MLI range that joins LLI and 

HLI is characterized by a LBW with a nonlinear dependence on XS. Blindly using 

LBWLLI in place of the correct LBW can thus involve significant inaccuracies, 

especially considering the fact that the useful range of injection values adopted in 

practical situations often falls in that MLI range. Summing up, notwithstanding the 

attractive simplicity of the LLI analysis, a full analysis (MLI and HLI) is thus 

necessary to determine, at least, if the range of XS values to be handled permits to 

adopt the LLI simplification without excessive errors or not. 

Overall theory has been tested and verified by applying it to several examples. In 

following section, a "not quite simple" circuit is presented, as it will be clear soon. 

 

 

6.5 Example of Application 

 

1) General Analysis and Nonlinear Block 

As example of application of the exposed method, it has been chosen a double-

tuned circuit employing a tunnel diode (depicted in Fig. 6.3, values in Tab. 6.1), 

similar to the circuit structure proposed by Kurokawa in [37] to obtain a wider 

locking bandwidth, where several parasitics elements have been added. In picture, a 

biasing and stabilizing network is visible, followed by the fourth order tank-and- 

coupling network, while R0 load resistor, together with VS injection voltage, 

represents the simplest model of an ideal circulator (at the right side of section "B"). 

The two resonators (L1/C1 parallel, L2/C2 series) carry two natural frequencies in the 

surrounding of 1 GHz, with a relative asynchronicity between them of 7.5 MHz. In 

this example, LX linear functions have been chosen to be obtained from circuit 

white-box topology, with an analytical method, to achieve a wider generality. It 

would be equally possible to start from numerical LX transfer functions, which 

would obviously lead to simpler steps. Nonlinear resistor is represented by a 

polynomial function (see eq. 3.16) of an high degree (seventh), in order to better fit 

the trend of a tunnel diode. For nonlinear capacitance, classic Nanavati tunnel diode  
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Fig. 6.3 – Double-tuned tunnel diode injection locked oscillator circuit diagram. 

 

 

gn0 = 0 gn1 = 0.124113 gn2 = –0.37968 gn3 = 0.783802 

gn4 = –7.58186 gn5 = 27.3113 gn6 = –37.0946 gn7 = 17.6641 

CJ0 = 1.5 pF V� = 0.67 V FC = 0.85 

RX = 0.3 Ω LX = 0.15 nH CPKG = 1 pF 

(a) 

 

EDC = 0.39 V RDC = 10 Ω LDC = 22 µH CDC = 220 nF REXT = 4.7 Ω 

(b) 

 

L1 = 52.85 pH R1 = 1.11 mΩ C1 = 475.7 pF 

L2 = 599 nH C2 = 0.0426 pF R0 = 50 Ω 

(c) 

 

Tab. 6.1 – Parameters of example circuit of Fig. 6.3. (a) tunnel diode with parasitics, 

(b) biasing and stabilization network, (c) tank and coupling network and circulator. 
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model [69] has been instead employed: 

(6.34) C[vN[t]] = CJ0 �1- 
vN[t]

Vϕ

�2:  

where the (conventional) limiting in its derivative has been added, fixed when vN[t] 

exceeds FC·V� = 0.5695 V. The capacitance corresponding to tunnel bias point (bias 

fixed at vN,DC = 0.3 V, iN,DC = 6 mA) is about 4.92 pF. 

Since we suppose to have at disposition the "real" element, including its 

parasitics, we chose to proceed to a black-box approach for N[VI, ω], fitting what is 

seen at the left of section "A" in figure with a polynomial function of two variables, 

i.e., seventh degree function of VI, fifth degree function of ω. The employment of 

such an high degree guarantees an optimal match of numerical results with the ones 

that could be obtained by an analytical approach. Since of their large quantity, those 

48 complex coefficients are not reported here, and has been preferred a graphical 

representation (Fig. 6.4).  

 

Fig. 6.4 – Graphical representation of N[VI, ω]: red lines have constant VI (from 0 to 0.3 V, a 

step every 50 mV), with f swept from 0.85GHz a 1.15GHz; dashed blue lines have constant f 

(from 0.85GHz to 1.15GHz, a step every 75MHz), with VI swept from 0 to 0.3 V. Brown curve 

corresponds to constant frequency value of ωR/(2�). 
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2) Linear Blocks 

From circuit topology, some involved voltages and currents are directly identified 

(XI = VI, XO = IO, XS = VS), while the remaining ones are indirectly found 

(XG = XI|Xo=0, XF = XI|Xs=0). This way, LG and LF are calculated through the 

relationships XG/XS and XF/XO, respectively. Notice that LF here corresponds to 

impedance seen by section "A", looking at right hand side, in absence of any 

injection signal. Similarly, LS and LO are obtained, producing on the whole the 

following transfer functions: 

_ 

(6.35) 

LG	=	 0.00008889	SSSSG2(0.00007234 	+	SSSSG)(0.003346	+SSSSG)

5.233∙10-9	+	0.00007235	SSSSG	+	SSSSG2	+0.01685	SSSSG3	+2	SSSSG4	+0.01670	SSSSG5	+	SSSSG6
 

LF	=	- 4.7(1.637∙10-8+0.0002263SSSSG	+SSSSG2+0.08782	SSSSG3+2.001SSSSG
4+0.08804	SSSSG5+SSSSG

6)

5.233∙10-9	+	0.00007235	SSSSG	+	SSSSG2	+0.01685	SSSSG3	+2	SSSSG4	+0.01670	SSSSG5	+	SSSSG6
 

LS	=	 0.5(5.233∙10-9	+	0.00007235SSSSG	+	SSSSG2	-	0.009917SSSSG
3	+	2	SSSSG4-0.009865SSSSG

5+	SSSSG6)

5.233∙10-9	+	0.00007235	SSSSG	+	SSSSG2	+0.01685	SSSSG3	+2	SSSSG4	+0.01670	SSSSG5	+	SSSSG6
 

LO	=	- 0.004444	SSSSG2(0.00007234 	+	SSSSG)(0.003346	+SSSSG)

5.233∙10-9	+	0.00007235	SSSSG	+	SSSSG2	+0.01685	SSSSG3	+2	SSSSG4	+0.01670	SSSSG5	+	SSSSG6
 

_  

where SSSSG = s/(2"·109) has been introduced for compactness. A graphical 

representation of these functions is depicted in Fig. 6.5. 

 

3) Angular Reference Frequency 

For the choice of ωR, we firstly calculate OLG0 (see Section 6.2) and, after some 

calculations, we obtain ωR = 2"·1.00315 GHz and ε = 0.01346. As described in the 

theory, OLG0 has been evaluated also because it can be adopted to verify the 

wideband linear stability, therefore ensuring that system under analysis has only one 

possible self-starting oscillation. In this example, treatable as a white-box since its 

topology is known, eigenvalues are found, as a comparison, producing 

ωR = 2"·0.99250 GHz and ε = 0.01601. The difference in ε value is not relevant, 

since its value is not critical, but only its order of magnitude. 

About the goodness of the choice of ωR, it must be remarked that, if high 

precision is required, its value can be improved with iterations of the whole 
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Fig. 6.5 – Linear blocks transfer functions over frequency (GHz), amplitude (left) and phase 

(right, in degrees). From top to bottom: LG, LF, LS, LO. Superimposed to LX functions (green 

lines) are OSB LLLLX
����  functions (dashed red lines), even though differences are imperceptible. 

procedure. In this case, as second iteration, the fOSC value obtained below can be 

employed as the new starting ωR(2) = 2"·0.99251 GHz, which immediately 

converges to definitive value: 2"·fOSC(2) = 2"·fOSC(∞) = ωR(∞) = 2"·0.99264 GHz. As 

easily noticeable, value provided by eigenvalues is significantly more precise, but 

this doesn't compromise method's validity. 
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In following accounts, it has been employed the set provided by black-box 

analysis, in order to evaluate all results in the worst case. 

 

4) N-Block Conditions 

Now, conditions (6.7) for block N are verified, observing a positive validation. 

Please note that these inequalities are generally respected in practical cases. In this 

example, inside observation bandwidth, the following values are obtained: 

(6.36a) max[|N[VI, ω] · LF[ω]|] ≈ 4.5 = O[1] 

(6.36b) max ;'∂ Im[N[VI, ω]]

∂ ω
'<≈ 8·10-12≪ 3·10-10 ≈ min #/∂ Im[LF[ω]-1]

∂ ω
/$ 

(6.36c) 0.5 < '∂ N[VI, ω]

∂ ω
·

ωR

N[VI, ωR]
'  < 1.9 

 

5) Normalized Linear Functions and Types Identification 

Once ωR is defined, normalized LLLL F[S] and LLLLG[S] functions can be obtained, where 

SSSS  = s/ωR (thus similar to 6.35 representation), and zeroes and poles can be 

partitioned into three types, as previously described: 
 

L F[SSSS] 

zeroes 
type-1 

-0.03646 ± j 1.00023 

-0.007314 ± j 0.9929 

type-2 -0.000113 ± j 0.00006 

type-3 (none) 

poles 
type-1 

-0.005760 ± j 0.9911 

-0.002528 ± j 1.0026 

type-2 -0.000036 ± j 0.00006 

type-3 (none) 

LG[SSSS] zeroes 

type-1 (none) 

type-2 (none) 

type-3 

-0.003335 

-0.000072 

0 

0 
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LG[SSSS] poles 
type-1 

-0.005760 ± j 0.9911 

-0.002528 ± j 1.0026 

type-2 -0.000036 ± j 0.00006 

type-3 (none) 
 

 

6) L-Blocks Conditions 

Conditions (6.6) are easily validated:  

(6.37) 

max ;'ωxyh - ωR

ωR

'<  = 0.008851 ≅ 0.7ε = O[ε]

 

max ;'2 σxyh

ωR

'<  = 0.07291 ≅ 5ε = O[ε] 

 

 

7) OSB-Truncated Functions 

It's finally possible to describe LLLL F1
11111[Ω] and LLLLG1

11111[Ω], which, respectively multiplied 

for KKKK 	F0 and KKKK 	G0, produce LLLL F
111[Ω] and LLLLG

1111[Ω] OSB functions: 

(6.38) 

LLLL F1[Ω] = 
(0.9929  + j	0.04351) - (1.993  + j	0.04377) Ω + Ω2

(0.9937 + j	0.008281) - (1.994  + j	0.008288) Ω + Ω2
 

LLLLG1[Ω]	=	 1

(0.9937 + j	0.008281) - (1.994  + j	0.008288) Ω + Ω2
 

KKKK  F0 = – 4.699 + j 84.08·10-3 

KKKK  G0 = – 22.15 – j 18.17·10-9 

 

8) LCPM 

The Least Common Polynomial Multiple, whose function is simply to transform 

(6.17) in an in-line equation, results, in this example where LLLL F
111[Ω] and LLLLG

1111[Ω] share 

the same denominator (as usual for circuital cases), equal to either of the two:  

(6.39) PPPP  LCPM[Ω] = (0.9937 + j	0.008281) - (1.994  + j	0.008288) Ω + Ω2 
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9) Steady-State Equation 

Equation (6.20), characterizing the steady-state regime, results for this example: 

(6.40) 
�PPPP  LCPM[Ω]	–	KKKK  F0·	Num[LLLL F1

11111[Ω]�	·	N[VI,	Ω]�	·	VIe
 jϕI 	= 

= KKKK  G0 ·	Num[LLLLG1
11111[Ω]�	·	VSe jϕS 

where (6.38-6.39) provide numerical values for above quantities, and Num[LLLL x1
11111[Ω]] 

has been adopted to indicate the numerator of LLLL x1
11111[Ω] (with x = F, G). The 

normalized counterpart of this equation, corresponding to (6.21), is reported in 

Appendix A3 (equation A3.2), and is employed for graphics drawn in Fig. 6.6. 

 

10) Normalized Function for N-Block 

From (6.22) we can proceed to the determination of NNNN [VI], which, on the basis of 

what has been so far described, obviously emerge as a polynomial function of 

seventh degree in the only VI variable: 

(6.41) 

	NNNN �VI�	=	�– 2.727 + j 1.654� + �0.05886 + j 0.1032�VI +  

+ (46.41 + j 6.394)VI
2 + (96.59 + j 208.4)VI

3 – (1398  + j 2765)VI
4 + 

+ (7288  + j 18702)VI
5 – (21851 + j 62556)VI

6 + (28213  + j86344)VI
7 

Similarly, last coefficients are found: 

(6.42) 
KKKK  A = – 0.1026 + j 1.835·10-3 

KKKK  B = 0.1222 + j 0.1002·10-3 

 

11) Injection Conditions 

Equations (6.23) define the conditions for maximum injection amplitude and 

maximum (normalized) acceptable detuning. In particular: 

(6.43) 
max�VS�  = O[0.233 V] 

max�|∆Ω|�  = O[1] 
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            (a) 

 

            (b) 

Fig. 6.6 – Steady-state curves of: (a) VI,SS[∆ΩSO, VS] with stability regions superimposed; 

(b) �I,SS[∆ΩSO, VS] for stable branches only. VS = 20 mV, 50 mV, 80 mV, 110 mV, 140 mV. 



Ch.6 - Semi-Numerical Analysis of High-Order ILOs 
 

 

 

110 

establish that maximum injection amplitude must be order of 0.233 V, e.g. VS = 1 V 

would be acceptable, while VS = 10 V would not. Maximum corresponding 

unnormalized detuning frequency is order of 13.5 MHz. 

 

12) DCE Equations 

DCE system, corresponding to (6.26) equation set, was obtained from the 

numericized (6.25) counterpart with some simple steps, but since it results extremely 

long (several pages) it is here omitted for the sake of brevity, though it is detailed in 

Appendix A3 (see equation A3.3). This formula is employed for the study of 

transient evolutions. 

 

13) Locking Stability 

From previous equation we can calculate Jacobian matrix and, by its means, we 

can immediately ascertain that the only free-running oscillation (VIO = 0.1626 V, 

∆ΩO = – 0.7877, equivalent to an oscillation frequency of 0.99251 GHz) is stable, 

because associated eigenvalues' real parts are all negative quantities: 

(6.44) λ1 = – 0.4159;   λ2 = – 0.4139 + j 0.4853;   λ3 = – 0.4139 – j 0.4853 

Afterwards, steady-state curves and stability borders are drawn, achieved by 

numerical means. These pictures are in Fig. 6.6, where both amplitude and phase 

regimes have been displayed. 

  

14) Locking Bandwidth (HLI, MLI, LLI) 

Solving numerically the intersection of stability equations and steady-state 

equations, locking bandwidth bound to Locus (MLI) and Boundary (HLI) limits are 

eventually obtained. The LLI approximation is given by the equation set: 

(6.45) 
∆VI[τ] = VS�0.254311 cos�ϕ

I
[τ]�  + 0.193757 sin�ϕ

I
[τ]�� 

Dϕ
I
[τ] = – ∆ΩSO + VS�0.689621 cos�ϕ

I
[τ]�  – 1.69507 sin�ϕ

I
[τ]�� 

resulting therefore: 
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(6.46) LBW  LLI = 29Kϕc
2 + Kϕs

2	 VS = 3.66 ·  VS 

which, unnormalized, corresponds (in Hertz) to: 

(6.47) LBWLLI = 49.432 · 106 ·  VS 

Graphic of all of these locking limits is illustrated in Fig. 6.7, where the upper 

part of the Locus limit, i.e., the only influent at LLI level (see lower injection 

steady-state curves in Fig. 6.6), is drawn in green color. It is manifest from picture 

that LLI approximation (dashed magenta line) is not accurate beyond about 40 mV. 

The other half of the Locus limit (the lower part) is the red curve. The orange line 

corresponds to the Boundary border, while the black dots were obtained through 

laborious ADS/CE simulation, whose disadvantages have already been profusely 

discussed in previous chapters. It must be remarked that the slight difference 

noticeable at high injection level is due to a different value in the central 

(oscillation) frequency, i.e., the overall bandwidth is approximately correct since it 

is mainly a shift in evaluated frequencies. 

Comparison with Ohira's LBWLLI value [28] is not possible in this example, since 

the parasitic nonlinear capacitance inside the nonlinear element is not covered by its 

theory. 
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            (a) 

 

            (b) 

Fig. 6.7 – Locking bandwidth for example of Fig 6.3. Figure (a) depicts overall bandwidth, 

while in figure (b) single branches for MLI/HLI limits are represented: Lower Locus limit (red), 

Upper Locus limit (green), Boundary limit (orange). LLI approximation is the dashed magenta 

line. Black dots represent ADS/CE simulations. 
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7. Conclusions and Future Work 

 

 

In this thesis work, the problem of developing a unified analysis method for 

computer-assisted simulation, in the frequency domain, of the steady-state and 

dynamical response of fundamental mode injection-locked oscillators was addressed 

and, to a good extent, solved. The key point has been a proper combination of 

analytical, perturbation-theory based, and numerical techniques, so that the high 

order differential model associated to the complex practical circuit structures 

characterizing modern ILOs can be treated in a semi-analytical way. In fact the 

"reduced" stroboscopic nonlinear differential model that approximates, in a 

perturbationally rigorous first-order exact manner, the dynamics of the entrained 

oscillation can be built directly in terms of an accurate, measurement or simulation 

based, characterization of the resonant structure and of the active element, with no 

need for over-simplification of the actual data, as instead required by other 

analytical methods of the literature, making the proposed technique, among all 

available ones, the most suitable in various cases. 

On the other hand, with respect to purely numerical approaches employing state 

of the art simulation techniques in the frequency domain (as it is discussed in 

introduction, time-domain simulators are not at all suited for such stiff class of 

circuits), as the "Circuit Envelope" available in the Agilent EEsof ADS suite, the 

semi-analytical method proposed has the advantage of giving a better insight into 

phenomena and is thus more adapt to design-oriented use. It can also be noticed that, 

while the class of treatable circuits is not so wide as for the general-purpose CE 

simulation engine of ADS, this limitation is more theoretical than practical for the 

specific design task of ILOs here being focused on, since all "well-designed" real-

world RILO configurations are treatable, and so are most of the TILO configurations 

currently adopted in the technical practice. It has also to be remarked that ADS/CE 

shares with all other purely numerical approaches the specific disadvantage of not 

landing to an efficient evaluation of the locking-bandwidth of an ILO, and even less 

to its optimization. This feature is instead embedded into the stability analysis of the 

proposed approach which permits a direct numerical evaluation of LBW no matter 

the injection signal amplitude, with no need for time-consuming iterated analysis for 

the search of the locking boundaries. A further positive feature of such stability 
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analysis is that, in case of low-level injection, it transits in a smooth way into an 

explicit LBW calculation, in a manner similar to the Adler-like simplified methods 

commonly applied in the technical practice but without the associated applicability 

limitations. 

Of course, with respect to the use of ADS/CE – or other analogous general-

purpose simulation software tools in the dynamical complex envelope domain that 

could be developed in the future – the non purely-numerical nature of the proposed 

approach requires some additional preliminary steps to determine the "one side 

band" (OSB) model of the resonant structure and the fundamental frequency domain 

model of the active device. However, as the method application to practical circuits 

has shown, in performing such tasks, one can take a significant advantage of the use 

of any of the several EDA tools (e.g., an HB-based one, for best efficiency and 

integration) and/or of the symbolic-analysis software packages nowadays available 

in the market. As discussed above, such additional effort appears more than 

balanced by the availability of a semi-analytic explicit and compact nonlinear 

differential model describing the ILO dynamics, as the presented examples testify. 

Among the several indirect results coming out from the extensive application of 

the method (in its various development phases) to the investigation of practical ILO 

configurations, at least one has to be highlighted. It is the importance of introducing, 

between the classical "low-level" and "high-level" injection a third range: the 

"medium-level" of injection. In its regard, it can be first noticed that this operating 

mode is not evident in "single-tuned like" configurations where the error in 

bandwidth evaluation extending the LLI simplified calculation up to the HLI limits 

is quite small, and can thus be neglected. A quite different situation occurs when the 

more modern MTNS tank and coupling network adopted for band-widening 

purposes are involved. In this case, as well illustrated by the example of Section 6.5, 

the LLI formula for LBW provides inaccurate predictions at injection levels quite 

lower than the HLI limits. Differently stated, the "normal" injection levels for such 

class of ILOs do require the use of an unabridged (MLI or HLI) formulation, if 

reliable results are sought for. The investigation performed has demonstrated that the 

common belief that an initial design of an ILO can be developed with reference to 

an Adler-like formulation is not grounded, not theoretically nor practically. 

Before concluding, it can be pointed out that, notwithstanding the very 

encouraging results already achieved, some additional tasks are still required to 

bring to completion the work done, by aggregating the individual aspects of the 
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developed theory into a unified one. In fact, the last months' investigation (not yet 

published) has clearly shown that not much additional work, with respect to what 

presented here, is needed to combine the semi-numerical generalized OSB devised 

analysis approach with a multiply-controlled nonlinear model of the active device. 

This would permit to extend to more general circuit topologies the preliminary work 

already done in accounting for the bias-shift phenomena as well as the (nonlinear) 

dependence of active two-ports not only on input but also on output signal 

amplitudes. As a matter of fact, with some more effort, it could be also possible to 

extend the proposed technique to account for lower/higher harmonics in addition to 

the fundamental one, not only to improve accuracy of simulation (which would not 

be required in case of properly designed ILOs, as previously remarked) but also, and 

more importantly, to extend the applicability to harmonic/subharmonic injection, 

thus permitting the investigation and the design of injection-locking based frequency 

dividers and multipliers, whose interest in practical application in low-power 

integrated circuits has greatly increased over the last few years. 
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Appendices 

 

 

A1. Comparison Between Step-by-Step Procedures for LBW 

Evaluation: EDA Simulations vs. Proposed Method 

 

With regards to algorithms of interest for the specific purpose, among the 

simulation techniques actually implemented on commercial EDA tools, the main 

ones are available in well-known Agilent EEsof Advanced Design System (ADS) 

simulation software [22]. It will be considered as the reference for comparisons in 

this section, also because it is the most widely used in its field, nevertheless. 

In order to evaluate the locking-bandwidth of an ILO circuit, some steps are 

required when adopting an EDA tool, such as the one under test. First of all, of 

course, time is needed to set the system up by creating the schematic with desired 

models and instructing the correct simulation's parameters. Then, an Harmonic 

Balance simulation (in "oscillator mode") must be performed to find the free-

running oscillation frequency, which is the reference for choosing next detuning 

frequencies. 

After these preliminary steps are completed, it's time to try and guess the locking 

bandwidth. Let's suppose we already have an estimation of the LBW, therefore our 

job is eased by this projection. What we need to do is activating the injection source 

and - for every XS defined injection level desired - launching a Circuit Envelope 

(CE) simulation [40] at the guessed frequency detuning. If an unlocking state is 

found, a periodic (or semi-periodic) movement of the regime envelope is observed. 

In this case, the corresponding {XS, ∆ω} couple can be marked as outside of the 

LBW, and a lower detuning must be tried next. But, if a constant regime value is 

reached for obtained envelope (corresponding to a sinusoidal regime, in time 

domain), there are two possibilities: either this is actually a locking condition, or it's 

necessary to repeat the simulation for a longer simulated time. In fact, it is frequent 

that an envelope transient seems to have reached a stable regime, but indeed it is 

about to show its unlocked state in next time steps, as it can be shown by increasing 

the simulated time. In Fig. A1.1, an example of an unlocked state (red) that exhibit 
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            (a) 

 

            (b) 

 

            (c) 

 

            (d) 

Fig. A1.1 – Steady-state (magnitude and phase) simulations of circuit in Fig. 5.3, through 

ADS/CE simulation, exhibiting (a, c) a locked state; (b, d) an unlocked state. Graphics (c, d) 

show a longer time. 
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the same behavior of a locked regime (blue) if observed for 2 ms instead of 10 ms, 

from a Circuit Envelope ADS simulation of example depicted in Fig. 5.3. 

This behavior represents a problem slowing down the whole simulation process. 

Of course, a time-domain simulation would only produce even slower simulation 

steps, and is therefore not to be considered as a valid alternative. 

A comparison between time durations required by ADS/CE simulation and 

application of presented technique (implemented in Wolfram Mathematica [54], see 

Chapters 3 and 5 for details) is finally reported in Tab. A1.1, related to above cited 

example. A huge difference clearly emerges, and an even bigger difference could be 

observed in more complex circuits, where the growth in single CE simulation time 

(e.g., 150 seconds) increases overall required EDA simulation time. 

 

    

 ADS simulation 
Proposed method (implemented in 

Wolfram Mathematica) 

set-up time 

drawing schematic, inserting 

parameters, HB simulation of fOSC 

describing circuit, inserting 

parameters, solving equations 

about 8 minutes about 14 minutes 

LBW 

evaluation 

time 

Every CE simulation is approximately 

35 sec (on an Intel Core i7 machine, 

with 8GB of RAM memory). On 

average 5 iterations needed every step. 

We consider 10 different injection 

values, where left and right band limits 

are required for each one. 

Evaluation of complete 

(LLI/MLI/HLI) bandwidth 

through numerical integration. 

about 35 sec ·  5 ·  10 ·  2 ≈ 58 min about 7 seconds 

TOTAL time about 1 hour 6 minutes about 14 minutes 

 

Tab. A1.1 – Comparison between time durations for ADS/CE simulation vs. proposed method 

implemented in Wolfram Mathematica. 

 



 

 

A2. Examination of 

 

In some rare cases, Locus and Boundary limits, 

together as a whole, provide incorrect 

[21], all stability border

always true, i.e., some Locus/Boundary limits can be not a stability limit.

when this issue appears, it is easy to locate

"isolated" stable region, particularly unlikely to happen in reality.

In Fig. A2.1 an example is provided to visualize such a behavior. It is an ideal 

injection-locked oscillator with a polynomial negative conductance and 

RLC resonators. Its parameters are

As manifest from figure A2.2a, there is a small 

conditions erroneously indicate a stable region, while (Fig. A2.2b) Routh

conditions display it as an unstable region. An ultimate verification test, performed 

through eigenvalues in a point inside that zone, confirms, as 

region is an unstable one.

 gN1 = -0.2·10

R1 = 10 kΩ

R2 = 10 kΩ

Tab.
  

Examination of a Possible Issue with Locus/Boundary 

In some rare cases, Locus and Boundary limits, which must always be considered 

, provide incorrect "holes". In fact, because of their definition

, all stability borders are part of Locus/Boundary borders, but 

always true, i.e., some Locus/Boundary limits can be not a stability limit.

n this issue appears, it is easy to locate and adjust, since it shows itself as an 

"isolated" stable region, particularly unlikely to happen in reality. 

 

Fig. A2.1 – Double-tuned example circuit. 

n example is provided to visualize such a behavior. It is an ideal 

locked oscillator with a polynomial negative conductance and 

s. Its parameters are displayed in Tab. A2.1. 

As manifest from figure A2.2a, there is a small area where Locus/Boundary 

conditions erroneously indicate a stable region, while (Fig. A2.2b) Routh

conditions display it as an unstable region. An ultimate verification test, performed 

through eigenvalues in a point inside that zone, confirms, as expected, that this tiny 

region is an unstable one. 

 

0.2·10-3 gN2 = 0 gN3 = 0.1·10

= 10 kΩ L1 = 7.97 nH C1 = 3.19 pF

= 10 kΩ L2 = 5.29 nH C2 = 4.77 pF

 

Tab. A2.1 – Parameters of example circuit of Fig. A2.1.
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/Boundary  

which must always be considered 

because of their definition 

are part of Locus/Boundary borders, but the converse is not 

always true, i.e., some Locus/Boundary limits can be not a stability limit. However, 

, since it shows itself as an 

 

n example is provided to visualize such a behavior. It is an ideal 

locked oscillator with a polynomial negative conductance and two simple 

area where Locus/Boundary 

conditions erroneously indicate a stable region, while (Fig. A2.2b) Routh-Hurwitz 

conditions display it as an unstable region. An ultimate verification test, performed 

expected, that this tiny 

= 0.1·10-3 

= 3.19 pF 

= 4.77 pF 

Parameters of example circuit of Fig. A2.1. 
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            (a)   

 

            (b)   

Fig. A2.2 – Stability borders for example of Fig. A2.1, functions of the normalized detuning 

frequency ∆ΩSO. Graphic (a) represents limits provided by Locus/Boundary conditions, while 

graphic (b) limits provided by Routh-Hurwitz conditions. 
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A3. Extra Formulas 

 

Among the ones excluded from the body of presented work, a few long formulas 

have been considered interesting enough to be included in this appendix section. 

The first one is the negative conductance formula described in Sections 4.2-4.3: 

_ 

(A3.1) 

 
_  
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Steady-state normalized equation (6.21), actualized for example of Sec. 6.5 (see 

step 9), descends from equation (6.40). Substituting with example quantities, and 

normalizing nonlinear functions, it results: 

_ 

(A3.2) 

 
_  

 

Similarly, DCE equation set (see Sec. 6.5, step 12) can be obtained from (6.25), 

performing some calculations and solving for VI''[τ] and 	I''[τ]. As already declared, 

it is quite long: 

_ 

(A3.3a) 
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_  
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_ 

(A3.3b) 
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