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• Field-collected photos are used to cal-
culate visual green effects of individual
trees.

• Airborne Lidar data is employed to ex-
tract key structural variables of sample
trees.

• A model to estimate tree green visibility
using structural variables is established.

• This approach is a practical tool for
large-scale analysis of tree green pres-
ence.
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Urban trees benefit people's daily life in terms of air quality, local climate, recreation and aesthetics. Among these
functions, a growing number of studies have been conducted to understand the relationship between residents'
preference towards local environments and visual green effects of urban greenery. However, except for on-site
photography, there are few quantitative methods to calculate green visibility, especially tree green visibility,
from viewers' perspectives.
Tofill this research gap, a case studywas conducted in the city of Cambridge, which has a diversity of tree species,
sizes and shapes. Firstly, a photograph-based survey was conducted to approximate the actual value of visual
green effects of individual urban trees. In addition, small footprint airborne Lidar (Light detection and ranging)
data was employed to measure the size and shape of individual trees. Next, correlations between visual tree
green effects and tree structural parameters were examined. Through experiments and gradual refinement, a re-
gressionmodelwith satisfactory R2 and limited large errors is proposed. Considering the diversity of sample trees
and the result of cross-validation, this model has the potential to be applied to other study sites. This research
provides urban planners and decisionmakers with an innovativemethod to analyse and evaluate landscape pat-
terns in terms of tree greenness.
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1. Introduction
Z. Chen et al. / Science of the Tota
Urban trees play an import role in residents' daily life in terms of
air quality (Scott et al., 1998; Yang et al., 2005; Jim and Chen, 2009),
local climates (Zhao et al., 2010) and recreation (Arnberger, 2006;
Bernath and Roschewitz, 2008; Rosenberger et al. 2012). In addition,
urban trees provide people with aesthetic benefits which are
closely related to stress relief (Ulrich et al., 1991), mental and physical
benefits (Ode and Fry, 2002; Bhatti and Church, 2003) and attraction
tomigrants (Waltert and Schlapfer, 2010). As a result, growing research
emphasis is put on understanding the patterns and functions of urban
trees.

Among various functions of urban trees, many studies (Thayer and
Atwood, 1978; Buhyoff et al., 1984; Schroeder, 1988; Aoki, 1991; etc.)
have been conducted to examine the role of visual effects of urban
greenery plays in people's perception of local environments. These
studies proved the positive correlation between people's preference to-
wards local landscape design and the presence of greenery. However,
most studies to calculate the visual effect of urban trees have been
qualitative and subjective (Yang et al., 2009). The widely used research
approach for greenery assessment involves the use of photographs
and videos. Nevertheless, this type of on-site surveys requires substan-
tial resources and time and is thus not suitable for large research sites.
Remote sensing images can provide large-scale study with reliable
data sources and some landscape metrics are commonly used for
landscape pattern analysis. Nevertheless, Yang et al. (2009) pointed
out that currently used metrics to quantify the structure of urban
trees, such as canopy cover (Scott et al., 1998), leaf area index (Xiao
et al., 2000), total leaf biomass (Nowak and Crane, 2002), leaf area
density (Kenney, 2000), and green plot ratio (Ong, 2003), were not
suitable for simulating visual effects of urban trees. Different tree
species have a diversity of spatial structures. For some species,
large crown area (2D structures) does not indicate a large height (3D
structures). In addition, understory structures (e.g. the crown shape
and tree leaf density), which have a significant influence on visual
green effects of trees, can hardly be featured using 2D structure vari-
ables. Therefore, specific 3Dmetrics and alternative data sources are re-
quired for better analysing the visual green effects of individual urban
trees.

Previous studies proved that people preferredmore greenery in local
environments (Aoki, 1991; Kuo et al., 1998; Jim and Chen, 2003) and
Aoki (1991) proposed a quantitative finding that most people had a
favourable impression of a street landscape if more than 30% of the
view included greenery. Although some studies have been conducted,
most of them remain qualitative and quantitative understanding of vi-
sual green effects is still challenging. Urban forests are very important
sources that provide people with visual greenness in urban areas. In ac-
cordance with people's growing aesthetic needs of greenery and the
lack of relevant researchmethodology, it is of both theoretical and prac-
tical significance to propose a more efficient approach for approximat-
ing the visual green effect of individual trees. Therefore, the main aim
of this study is to establish a robust regressionmodel to estimate the vi-
sual green effect of individual urban treeswith specific variables derived
using airborne Lidar data.

2. Material

2.1. Study site

Cambridge lies in East Anglia about 50 miles north-east of London,
UK and has a typical urban landscape. There are many trees of different
species, shapes and heights in the study site, making it possible to select
a diversity of sample trees. Through experiments using sample trees
with different sizes and understory structures, the acquired regression
models can avoid the bias and limitation caused by unified sample
units. In this case, the model from this study site is more likely to be
transferred to other sites. Furthermore, the availability of qualified air-
borne Lidar data and the convenience to conduct fieldwork make this
site an ideal choice for a case study.
2.2. Data preparation

2.2.1. Lidar data
The Lidar data used in this research was from an ALTM-3033

Lidar System carried on the Aircraft ULM_PA31. This survey was
carried out in central Cambridge in June, 2009 and the average
height of this flight was 800 m. The point cloud included about 10
million records (a comparatively small data set in Airborne Lidar
terms) and the horizontal resolution of the point cloud is, on average,
2 points per m2. The main task of data preparation was to filter some
outliers that were caused by Lidar system error or such factors as
clouds. The main approach for detecting and filtering the elevation
and intensity outliers is the extended local minimum method
(Chen et al., 2012).
2.2.2. Photographs of trees
The photographs of trees were taken across the study site at random

using a Canon 50D camera with an EFS 18–135 mm lens (to avoid the
effect of variation, which may cause error in calculating the value of
tree green visibility, the length of focus was fixed as 18 mm in this sur-
vey). Since a SLR (Single Lens Reflex) camera uses the same lens for
finding views and taking photographs, optical parallax effects are
reduced effectively.

This on-site survey was conducted in July, 2012. Since the airborne
Lidar data and the photo materials were not collected in the same
year, the influence of three years' gap should be taken into account.
Young trees grew and their shapes changed significantly in the three
years whilst mature trees remained the same. As a result, some other
data sources were also included for reference. Airborne Lidar data col-
lected in June, 2002 and airborne photographs collected in June, 2012
(Fig. 1) were comprehensively considered for sample tree selection.
For this research, only those trees that have been present since 2002
and have remained unchanged were regarded as valid sample units. In
this case, the effect of tree growth was efficiently reduced. To make
the results more reliable, photos of different tree genres, including
beech, cedar, hazel, plane, lime, sorbus, horse chestnut and so forth,
were taken for the following analysis.

As it was in summer, all trees provided the most visual greenness.
Therefore, the factor of leaf-on and leaf-off situation was removed and
the differences between evergreen types and deciduous types would
not affect the final results. All these photos were taken under sunny
weather condition to reduce bias from insufficient illumination in the
following process of colour analysis. In addition, to reduce the influ-
ences from blocking effects by buildings, or the overlapping effects of
neighbouring trees, photographs of isolated trees were taken from
unblocked perspectives. For the convenience of measuring the distance
between the photographer (observers) and trees, all these photographs
were taken when the photographer stood on the edges of buildings
or streets. Therefore, the distance, which is a useful variable in the fol-
lowing regression analysis, can be easily determined on the digital
maps produced using airborne Lidar data. Whilst taking the photo-
graphs, the photographer also recorded the position of trees using RTK
(Real-Time Kinematic) GPS tools. Therefore, the individual trees from
the photographs can be geographically correlated with the tree objects
extracted from the produced classification map using airborne Lidar
data.

In accordance with the selection principle, 93 photographs of
individual trees, whose view were not blocked or overlapped by
neighbouring features, were selected for the analysis of tree greenery
visibility.



Fig. 1. Landscape change from 2002 to 2012.
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3. Methods

3.1. Classifying tree objects and analysing tree structures using airborne
Lidar data

Airborne Lidar (Light detection and ranging) data is an advanced
technology that provides researchers with positional data of high hori-
zontal and vertical resolution. Raw Lidar point clouds include ground
points and non-groundpoints. To accurately analyse the vertical pattern
of landscape features, DTMs (Digital Terrain Models) needs to be ex-
tracted from the Lidar point clouds. Many studies have been conducted
in this area and a diversity of filtering methods (Axelsson, 1999;
Vosselman, 2000; Kraus and Pfeifer, 2001; Roggero, 2001; Lohmann,
2002; Bartels and Wei, 2010; Chen et al., 2012) have been designed
for generating DTMs. Chen et al. (2012) proposed an upward-fusion
DTM generation method specifically for deriving DTMs in urban areas.
Thus this method was employed for this case study. Firstly, some pre-
liminary DTMs of different resolution are extracted using the block-
minimum method. Next, upward fusion is carried out between these
DTMs. This process begins with the DTM of the largest grid size, which
is treated as the trend surface. A finer DTM is compared with the
large-scale DTM. By setting proper thresholds, a new DTM is acquired
by updating qualified elevation values from the finer DTM and retaining
the value of the trend surface when the elevation value from the finer
DTM is beyond the threshold. This process continues until all prelimi-
nary DTMs have been included in the upward fusion processing and a
final DTM of high resolution is achieved. When the DTM is generated
from Lidar point clouds, vertical patterns of landscape features (or
refer to nDSM) can be calculated by subtracting the DTM from the
DSM (Digital Surface Model).

After ground points are filtered, researchers need to extract tree ob-
jects to acquire useful tree structure parameters. There have been two
main approaches for extracting tree parameters: model-based tree
extraction and area-based tree extraction. For years, many studies
(Næsset, 1997; Persson et al., 2002; Brandtberg et al., 2003; Hyyppä
et al., 2004; Peuhkurinen et al., 2007; Yu et al., 2011; Vastaranta et al.,
2012; Kaartinen et al., 2012) have been conducted to extract and accu-
rately analyse 3D tree structures. Although many algorithms for tree
modelling proved to extract tree objects effectively, most methods have
been designed for forest landscapes and have no pre-processing of sepa-
rating trees and buildings, which is a necessary task in tree extraction in
urban areas. Chen and Gao (2014a) proposed an object-based urban
land cover classification method, which can efficiently separate tree and
building objects in urban areas. Therefore this method is used for acquir-
ing tree objects in this research. In accordance with this object-based ap-
proach, the raw point cloud needs to be interpolated to raster images and
thus hierarchical image segmentation is conducted using these raster im-
ages. Based on image segmentation, unclassified objects can be classified
into different categories using the feature of nDSM, intensity, elevation
difference and intensity difference. Due to different landscape configura-
tions, the types of land cover can differ across study sites. Nevertheless,
this method can efficiently segment urban features and separate tree
objects from buildings objects with high accuracy.
With extracted tree objects and the nDSM, a 3D structuralmodel can
be established for each tree objects. Based on this model, structural pa-
rameters of tree objects can be acquired for following analysis. Some
candidate structural parameters are explained as follows:

Area: the crown area of the tree object.
Perimeter: the perimeter of the tree object.
Mean: themean height value of all laser pulses within the tree object.
Max: the largest height value of all laser pulses within the tree object.
Min: the smallest height value of all laser pulseswithin the tree object.
Range: (Max–Min) / Max.
STD: The standard height deviation of all laser pulses within the tree
object.

These candidate parameters can be regarded as independent vari-
ables in the following processing of designing regression models.

3.2. Photograph-based analysis of visual green effects

Yang et al. (2009) employed a photograph-based method for visual
greenery analysis. Yang and other researchers took 2252 photographs
at 563 selected intersections in Berkeley, U.S. By analysing the total
number of pixels of green areas, including foliage of trees, shrubs,
vines, and herbaceous plants, the Green View (GV) was calculated for
each photograph by dividing the amount of total green pixels by the
total amount of pixels within the photograph.

This research employs the photograph-basedmethod to calculate vi-
sual green effects for reference data whilst the image analysis process-
ing strategy employed in this research is slightly different from Yang's
work. Visual greenness provided by 2D land cover types (e.g. a lawn)
is purely decided by their size in the horizontal direction whilst visual
green effects provided by trees can be greatly influenced by their verti-
cal structures. As a result, instead of analysing all visual greenery in the
neighbourhood, this research aims to specially analyse visual greenness
provided by individual trees and quantifies visual green effects of urban
trees using regressionmodels. Therefore, this study does not include the
analysis of 2D greenery and solely focus on visual greenness brought by
individual trees (refer to “tree green visibility” in this paper).

This research attempts to establish a correlation between tree green
visibility and their spatial structures using the software, Photoshop
(Researchers may alternatively choose other image processing tools,
such Erdas, Envi and so forth). Thus, green pixels from other greenery
features are not included in the following analysis. Tomeet this require-
ment, amagicwand tool is employed to decide an area of interest (AOI),
which fits the outline of the target tree. Next, some sample green pixels
are selected from the target tree and the function “colour tolerance” is
used to automatically extract other green pixels similar to sample
green pixels. Since the shadow, light and other factors can influence
the spectral characteristics of leaves in different photographs, the
value of colour tolerance is adjusted respectively for each photograph
to select the most green pixels from the target tree without bringing
in pixels from other features. Finally, tree green visibility for each sam-
ple tree is calculated by dividing the amount of extracted green pixels of

Image of Fig. 1
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the target tree by the amount of total pixels within the photograph. The
process of calculating tree green visibility for each sample tree is also ex-
plained in Fig. 2.

The calculated tree green visibility of each sample tree can be treated
as the independent variable whilst the structure parameters of corre-
sponding sample tree can be treated as independent variables for the
training of regression models.

3.3. Establishing regression models of tree green visibility using
Lidar-extracted indices

Yang et al. (2009) proved that specific structural and positional
parameters, such as total number of viewable trees/shrubs (NTS) and
average height of viewable trees/shrubs normalized by their distances
to the photographer (AHT), strongly correlated with Green View.
However, no quantitative model has been proposed to estimate tree
green visibility using structural variables.

This research explores the correlation between tree green visibility
and structural variables that can be directly acquired from airborne
Lidar data and aims to establish a robustmodel to explain tree green vis-
ibility using these variables. Firstly, correlation analysis is conducted to
find variables that are correlated with tree green visibility. Next, we at-
tempt to establish a regression model to estimate tree green visibility
using these relevant variables. Since there is no existing model to
build on, we start to build a preliminary regression model with a basic
Fig. 2. The methodology of calculating tree green visibility.
form through experiments. To find a satisfactory preliminary model,
both linear modelling and curve estimation are explored. Following
this, additional elements can be added to the preliminary model and
the regressionmodel can be improved gradually. By comparing the effi-
ciency of different regression models in terms of R2 and the amount of
large bias, the optimized regression model is obtained for estimating
tree green visibility using structural variables.

In summary, the methodology of this case study is explained in brief
as Fig. 3.

4. Results

4.1. Tree structure parameters acquired using airborne Lidar data

By adopting the upward fusionmethod (Chen et al., 2012), an output
DTM (Fig. 4b) of 2 m resolution was generated from the raw Lidar DSM
(Fig. 4a). According to an accuracy assessment using 100 control points
collected using Leica RTK GPS andmanual filtering, the average vertical
bias of the generated DTM was less than 12 cm (Chen et al., 2012),
which met the requirements of following procedures.

We extracted tree objects from the Lidar DSM using an object-based
land cover classification method (Chen and Gao, 2014). Different from
specific studies of tree extracting method, this method aims to classify
somemain land cover types, including trees and buildings. This method
suits this case study, as the existence of neighbouring buildings and
trees causes common difficulties in applying specific methods for tree
extraction, which are suitable in forest areas. By employing a set of fea-
tures (e.g. nDSM, intensity, elevation difference, intensity difference,
shape index and so forth), thismethod successfully classified a diversity
of tree and building objects. To validate the performance of this classifi-
cation, airborne photographs collected the same time as the Lidar data
were employed and more than 500 reference points across the study
site were randomly generated. The overall classification accuracy was
93.6% and the general classification of tree objects was more than 90%.
Those misclassified tree objects mainly located in the clusters of trees
and buildings. Specifically, this method successfully extracted all isolat-
ed tree objects, including the 93 tree sample trees. To further examine
the extraction accuracy of the 93 tree samples, we compared the classi-
fied trees with manually generated reference objects. The results
proved that the 93 sample trees were extracted with good accuracy.
In terms of tree crown area and perimeter, the mean comparative dif-
ference between extracted trees and reference trees was 6.1% and
7.9%. Therefore, the accuracy of extracted sample trees was qualified
for the following correlation analysis. In addition to trees and buildings,
this method also classified such land cover types as bare ground, lawn,
grass and crop, water and so forth. Since landscape compositions may
differ significantly across different urban areas and these land cover
types are not related to this case study, methodology of classifying
other land cover types is not introduced here.

As themethodology of urban DTM generation and land cover classi-
fication were not the main focus of this research, parameter setting in
details is not explained and only the outputs of DTM generation and
tree extraction were listed as follows (Fig. 4b and c). Researchers can
refer to the two references for more information of the methodology,
results and accuracy assessment. By integrating classified tree objects
with the nDSM (DSM–DTM) (Fig. 4d), structural parameters of trees
were available for the correlation analysis.

4.2. Analysis of tree green visibility

According to the statistics of structural information of 93 sample trees
based on the Lidar-generated tree objects, the range of tree heights was
1.8–23.9 m (STD: 5.62 m), the range of tree crown area was 7.4–
586.6 m2 (STD: 148.46 m), the range of shape index ( Perimeter=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π � Area
p

) was 1.02–1.20 (STD: 0.03) and the distance between trees

Image of Fig. 2


Fig. 3. The process of assessing tree green visibility using airborne Lidar data.
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and the photographer ranged from 6 to 340m (STD: 50.7m), indicating a
variety of sample units. (Fig. 5)

By processing photos of sample trees with the Photoshop tool, the
analysis of tree green visibility was conducted and illustrated in Fig. 6
(When more than one trees appeared in the photograph, only the target
tree would be included in the analysing area, outlined by the wand tool).
Fig. 4. Generated DTM and extracted tre
4.3. Regression analysis

Based on the classified sample trees, several preliminary variables
can be calculated for each tree object using GIS tools. During the on-
site survey, the position of the photographer (viewer) was recorded
and thenmanuallymarked on the digitalmap. So the variable “Distance”
e objects using airborne Lidar data.

Image of Fig. 3
Image of Fig. 4


Fig. 5. Selected sample trees of different sizes and shapes.
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(The distance between the photographer and the target sample tree), as
well as structural parameters of sample trees, can be measured as a var-
iable for further processing.

4.3.1. Correlation analysis
Correlation analysis was conducted to examine the connection be-

tween tree green visibility (“Green”) calculated using field-collected
photographs and structural parameters of trees obtained from airborne
Lidar data. The result of correlation analysis is shown in Table 1.

In accordance with Table 1, “Distance” was the only variable that
was strongly related to visual green effectswhilst tree structural param-
eters (e.g. Max, Min, Perimeter, Area, Range) were closely related to
each other.

4.3.2. Regression model
Since “Distance”was the only parameter that was strongly corre-

lated with tree green visibility, we firstly explored the possibility of
designing a regression model using this variable. By conducting a
series of regression experiments using linear modelling or curve
estimation, the optimum regression model was established as
Green = 2.417 ∗ (Distance)−1.028(R2: 0.735, F: 252.526, df1: 1,
df2: 91, Sig: 0.000). The scatter plot and the trend line of this
model are shown in Fig. 7.

Although an acceptable R2 was achieved using “Distance” as the sole
variable, problems existed in this regression model. According to the
error statistics (Table 2), the mean error of this model was acceptable.
However, there were a large proportion of tree objects with large abso-
lute and relative error. The model estimated value of 20 trees differed
significantly from the actual value of tree green visibility. As a result,
this regression model requires further improvement.

This type of large bias mainly resulted from lacking variables which
featured the tree size. As the 93 sample trees included in the present
study were of different sizes and large trees can provide much more
green visibility than small trees from the same distance away, this re-
gression model was more likely to produce large bias when analysing
large or small trees.
To enhance the reliability, more variables concerning the tree size
need to be added to the regressionmodel as well as “Distance”. Accord-
ing to the result of correlation analysis, there were no other variables
that were directly correlated with tree green visibility. Therefore,
composite variables proposed using “Distance” and other variables
were required for better regressionmodels. Yang et al. (2009) indicated
that such parameters as Average height of viewable trees/shrubs
normalized by their distances to the photographer (AHT)were correlat-
ed with tree green visibility. Inspired by previous research, several
composite variables were designed. Since “Area”, “Perimeter”, “Mean”
and “Max”were direct indicators of the tree size and strongly correlated
with each other, each composite variable was designed to include
the “Distance” and one variable concerning tree size. The statistics and
comparison of different regression models are shown in Fig. 8 and
Table 3.

According to Table 3 and Fig. 8, all these composite variables
strongly correlated with tree green visibility. The regression models
established using these variables achieved satisfactory results in
terms of R2, mean error and so forth. Among the four composite
variables, the regression model built using “Area/Distance2” had
the smallest R2 and most large errors. The possible reason may be
explained as follows. In the horizontal direction, tree green visibility is
directly related to the crown diameter of the trees. On an orthophoto,
the outline of ordinary trees is near-circular in shape. In this case, the
map derived variable Perimeter ≈ π ∗ Diameter and the variable
Area≈ π ∗ (Diameter/2)2. Therefore, the variable “Perimeter” is linearly
correlated with available tree size in the horizontal direction whilst the
variable “Area” is not.

Although the R2 andmean bias of regressionmodels with composite
variables were satisfactory, a large amount of sample trees with obvious
bias (between the observed tree green visibility and model estimated
tree green visibility) still existed. As a result, the factor of tree shapes,
as well as tree sizes, should be added to these models. To further
improve regression models, another variable, “Range” was included
in composite variables. When the size of a tree object and the distance
between the tree and the viewer are fixed, a larger Range value is
more likely to produce larger green visibility. Therefore, several

Image of Fig. 5


Fig. 6. Analysis of tree green visibility.
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advanced composite variables were designed, such as Perimeter ∗ Range/
Distance2, Max ∗ Range/Distance2, Mean ∗ Range/Distance2 and
Area ∗ Range/Distance2. Based on these variables, regression models
were established and compared (Table 4 and Fig. 9).

In accordance with Table 4 and Fig. 9, the accuracy of regression
models using composite variables Perimeter ∗ (Range/Distance2 and
Max ∗ (Range/Distance2 was notably improved from previous models
Table 1
Correlations between tree green visibility and shape parameters of tree objects.

Factors Green Area Distance Perimeter

Green .188 − .461⁎⁎ .197
Area .188 .257⁎ .979⁎⁎

Distance − .461⁎⁎ .257⁎ .260⁎

Perimeter .197 .979⁎⁎ .260⁎

Max .167 .820⁎⁎ .299⁎⁎ .867⁎⁎

Mean .140 .690⁎⁎ .285⁎⁎ .751⁎⁎

Min − .128 − .242⁎ − .033 − .225⁎

STD .190 .844⁎⁎ .148 .874⁎⁎

Range .257⁎ .625⁎⁎ .180 .703⁎⁎

Correlation coefficient: Pearson; N = 93.
⁎ Correlation is significant at the 0.05 level (2 tailed).
⁎⁎ Correlation is significant at the 0.01 level (2 tailed).
in terms of the amount of sample units with large bias. Both models
had small mean error and less than 10% sample trees had large relative
error. The model Green = 0.451 ∗ (Perimeter ∗ Range/Distance2)0.559

achieved the best regression result. Through simulation, only 4 sample
trees had large absolute bias and 1 tree had large comparative bias. In
addition, the largest bias occurred in this model was the smallest
amongst all regression models. The reason why the combination of
Max Mean Min STD Range

.167 .140 − .128 .190 .257⁎

.820⁎⁎ .690⁎⁎ − .242⁎ .844⁎⁎ .625⁎⁎

.299⁎⁎ .285⁎⁎ − .033 .148 .180

.867⁎⁎ .751⁎⁎ − .225⁎ .874⁎⁎ .703⁎⁎

.946⁎⁎ − .043 .904⁎⁎ .728⁎⁎

.946⁎⁎ .143 .789⁎⁎ .624⁎⁎

− .043 .143 − .245⁎ − .428⁎⁎

.904⁎⁎ .789⁎⁎ − .245⁎ .700⁎⁎

.728⁎⁎ .624⁎⁎ − .428⁎⁎ .700⁎⁎

Image of Fig. 6


Fig. 7. Regression model of tree green visibility using variable “Distance”.
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“Perimeter” and “Range” had a better regression result may be that
Perimeter and Range describe the characteristics of trees in different
directions whilst both “Max” and “Range” describe the size and shape
of trees in the vertical direction.

4.4. Cross-validation

To examine the validity of the optimum model Green = a ∗
(Perimeter ∗ Range/Distance2)b, K-fold cross-validation was
adopted for the accuracy assessment. According to the size of the sam-
ple, 93 sample units were randomly divided into 10 groups: 7 groups
with 9 units and 3 groups with 10 units. Each time, 9 groups were
used for training and 1 group was used for validation. Iteratively,
every sample unit was used for accuracy assessment once. The result
of cross-validation is shown in Table 5.

The result from Table 5 proved the validity of this regression model.
Each test obtained similar regression parameters with satisfactory R2

and small mean error and the amount of sample units with large error
was controlled efficiently. Considering the diversity of sample trees, the
general form of the regression model Green = a ∗ (Perimeter ∗ Range/
Distance2)b has the potential to be transferred to other study sites. To
decide the optimum setting of parameters for different study sites,
researchers can choose some local sample trees (the more sample trees,
the more reliable the regression model is) to conduct regression experi-
ments following the same strategy employed in this research.

5. Discussion

5.1. The design and variations of the photography and modelling strategy

5.1.1. The setting of camera angle
The setting of SLR cameras and the design of photograph strategy

was decided for the validity and practicality of the experiment. As intro-
duced, the approach of taking tree photoswas to approximate the view-
ing window to one eye of the photographer. The length of focus was
Table 2
Error statistics of regression model established using variable “Distance”.

Mean error Largest error Error N 0.1

Green = 2.4169 ∗ (Distance)−1.0284 0.054 0.192 15

Mean relative
error1

Largest relative
error

Relative
error N 50%

Green = 2.4169 ∗ (Distance)−1.0284 45.37% 277.02% 20

1 Relative error: Abs(estimated value − observed value) / observed value ∗ 100%.
minimized so that no additional zooming in effects was added to the
viewer's scope. When taking photographs, the photographer was re-
quired to stand still and face the target tree directly with a vertical
angle. Some sample trees did not show completely in corresponding
photographs, especially those taken when the photographer was not
far away from the target tree. The reason why the photographer did
not adjust the angle of the camera accordingly to include the complete
crown of all sample trees was explained as follows. If the photographer
aimed to fully include the crown area of target trees, the angle of camera
needed to be adjusted to different degrees. (Sometime, it was even im-
possible to include the entire crown of very big trees at a close distance).
In this case, it would be very difficult, and sometimes impossible
to normalize the value of tree green visibility in terms of camera
angle. To make the calculated value of tree green visibility comparable
between different photographs of sample trees, it was an efficient
way to use a fixed angle. In addition, the vertical angle is more likely
to simulate people's actual perception of local tree green presence.
As a result, using a constant, vertical angle to take photographs of
sample trees can efficiently reduce the uncertainty which may be
caused by the changing angles and enhance the reliability of the regres-
sion model.

Another factor that may influence the calculation of tree green visibil-
ity is the height of viewers. The height of the photographer (camera) for
this case study is 172 cm, which may be a bit shorter than the average.
But the difference (usually several cm) causes very limited influence on
the calculation of tree green visibility, considering the distance between
the sample tree and the photographer (usually more than 10 m).
5.1.2. The size of photographs
In addition to the choice of focal length (in this research, it was fixed

as 18 mm), another factor that could lead to uncertainties in the calcu-
lated value of tree green visibility was the size (more specifically,
width–height ratio) of the photographs. In the photographs of sample
trees, trees usually do not occupy the entire horizontal space. As
the tree green visibility is calculated by dividing all pixels in the
photographs with green pixels from the target tree, a larger value of
width–height ratio can lead to a smaller value of tree green visibility.
In this case study, the width–height ratio of all taken photographs was
decided as a default setting: 3:2,whichwas similar to the default setting
of most SLR cameras. Even if therewere some differences in this param-
eter, it won't havemuch influence on the general form of the regression
model. As long as the size (width–height ratio) of the photographs is
fixed for a case study, it remains as a constant in calculating tree green
visibility and establishing regression models. Therefore, the value of
the photograph size only influences the value of the variable “a” in the
regression model, Green = a ∗ (Perimeter ∗ Range/Distance2)b whilst
the general form of the regression model remains the same.

Image of Fig. 7


Fig. 8. Regression model of tree green visibility using composite variables.
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5.1.3. The design of regression models
As discussed, the top structure of some sample trees did not show

completely for such factors as the focal length, tree height, the distance
between the viewer and the sample tree. A unified form of the regres-
sion model (without considering whether the complete tree crown
can be seen or not) was proposed in this research to estimate tree

Image of Fig. 8


Table 3
Statistics of regression models established using different composite variables.

R2 F Sig Mean error Largest error Error N 0.1

Green = 0.409 ∗ (Perimeter/Distance2)0.575 .834 457.0 .000 .0425 .153 7
Green = 0.897 ∗ (Max/Distance2)0.574 .845 496.6 .000 .0464 .188 9
Green = 1.081 ∗ (Mean/Distance2)0.556 .811 390.5 .000 .0478 .162 13
Green = 0.210 ∗ (Area/Distance2)0.522 .765 296.3 .000 .0489 .211 13

Mean relative error Largest relative error Relative error N 50%

Green = 0.409 ∗ (Perimeter/Distance2)0.575 34.20% 136.07% 17
Green = 0.897 ∗ (Max/Distance2)0.574 34.39% 132.66% 18
Green = 1.081 ∗ (Mean/Distance2)0.556 36.69% 152.51% 21
Green = 0.210 ∗ (Area/Distance2)0.522 38.77% 240.02% 25
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green visibility and performed well in dealing with a variety of sample
trees. In addition to a unified regression model, future researchers
may also explore the possibility of employing piecewise functions to es-
timate tree green visibility according to the tree height and the distance
between the viewer and the tree. By establishing the linear correlation
using the focal length, the distance and the height of the tree, a distance
threshold, where the complete tree crown can be observed, can be de-
cided. Based on this threshold, researchers may establish different re-
gression models of tree green visibility according to the distances
between viewers and trees. Piecewise functionswork efficiently to ana-
lyse tree green visibility in different situations, especially when only
part of tree crowns appears in the viewers' scope. Due to detailed anal-
ysis of tree crown structures, one disadvantage of employing piecewise
functions is that this type of regression model can be very complicated
and requires much processing time when applies to large sites. On the
other side, the unified regression model can be easily implemented for
evaluating tree green visibility in large sites, which is discussed in the
following part.
5.1.4. The shape and diversity of sample trees
On orthophotos, tree crowns are usually of a near-circle shape.

However, generally, some trees have asymmetrical shapes from a hori-
zontal perspective and viewers can observe different amount of tree
greenness from different positions (with the same distance). To exam-
ine the influence of positions on observed tree green visibility, some ex-
periments were conducted. The photographer took photographs for 10
randomly selected trees and compared tree green visibility from differ-
ent positions. The results indicated that the mean comparative differ-
ence between calculated tree green visibility from different positions
was only 5.6%. As a result, the fact of observation position would not
influence the analysis of tree green visibility and the form of regression
model significantly. In future study, however, tree green visibility
from different frontal facets can be further examined based on individ-
ual tree models established using airborne Lidar data of very high
resolution.
Table 4
Statistics of regression models established using advanced composite variables.

R2 F

Green = 0.451 ∗ (Perimeter ∗ Range/Distance2)0.559 .837 468.8
Green = 0.920 ∗ (Max ∗ Range/Distance2)0.545 .828 439.1
Green = 1.143 ∗ (Mean ∗ Range/Distance2)0.539 .811 389.9
Green = 0.223 ∗ (Area ∗ Range/Distance2)0.477 .721 235.0

Mean relative er

Green = 0.451 ∗ (Perimeter ∗ Range/Distance2)0.559 16.73%
Green = 0.920 ∗ (Max ∗ Range/Distance2)0.545 32.91%
Green = 1.143 ∗ (Mean ∗ Range/Distance2)0.539 36.76%
Green = 0.223 ∗ (Area ∗ Range/Distance2)0.477 42.78%
Although themethodology was only implemented in one study site,
sample trees of different species, sizes and shapes were selected for es-
tablishing the regression model. As a result, the validity and generality
of regression model would not be weakened significantly, which may
be caused by the excessive use of single-species sample trees.

As most trees in the study site have a freely-growing shape, some
trees included in the sample have irregular crown shapes (Fig. 10).
According to error statistics, many large errors in the regression model
were caused by these sample units. As a result, regression models pro-
posed in this research may be more effective when applied to some
sites with regular tree shapes.

5.2. Application of tree green visibility analysis

Yang et al. (2009) employed a photography-based approach to ana-
lyse the visual green effects of urban greenery. Although this study
achieved high-quality results, the methodology required much time
and human resources. On the other side, many studies have been con-
ducted to accurately extract 3D tree structures. These studies mainly fo-
cused on analysing some key variables of trees and predicting the
quantitative ecological and economic value of these trees, yet few stud-
ies attempted to link tree structures to visual greenness of individual
trees, which is closely related to people's aesthetic and recreational per-
ception (Arnberger, 2006; Bernath and Roschewitz, 2008). To fill this
gap, this case study aims to link the two types of research by establish-
ing correlations between visual green effects of individual urban trees
and tree structural parameters extracted using airborne Lidar data.
The proposed regression model provides researchers with a more effi-
cient approach for analysing visual green effects of individual trees. In
addition, as airborne Lidar detects trees from an overhead perspective
whilst the photography method observes trees from the horizontal di-
rection, this case studymay also provide potential reference for research
on integrating airborne Lidar data with other data sources from differ-
ent perspectives (e.g. ground-based Lidar data).

The regression model of tree green visibility can be applied for such
studies as landscape pattern evaluation. As introduced, the presence of
Sig Mean error Largest error Error N 0.1

.000 .0413 .125 4

.000 .0490 .174 11

.000 .0471 .175 13

.000 .0479 .182 12

ror Largest relative error Relative error N 50%

53.73% 1
121.36% 9
173.30% 20
334.21% 23



Fig. 9. Regression model of tree green visibility using advanced composite variables.
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greenery is positively related to people's rating of local environment.
This research proved that the size, height of trees were not the only fac-
tors that affected visual greenness, as the distribution and understory of
trees also have some influences on tree green visibility. So a large value
of total tree cover area and mean tree size does not necessarily indicate
a satisfactory perception for local residents and the photograph-

Image of Fig. 9


Table 5
The result of cross-validation.

ID Regression model R2 mean error Largest error Error N 0.1

1 Green = 0.447 ∗ (Perimeter ∗ Range/Distance2)0.561 0.840 0.064 0.117 1
2 Green = 0.459 ∗ (Perimeter ∗ Range/Distance2)0.563 0.843 0.063 0.102 1
3 Green = 0.444 ∗ (Perimeter ∗ Range/Distance2)0.560 0.844 0.035 0.064 0
4 Green = 0.450 ∗ (Perimeter ∗ Range/Distance2)0.565 0.865 0.063 0.127 2
5 Green = 0.458 ∗ (Perimeter ∗ Range/Distance2)0.572 0.854 0.035 0.074 0
6 Green = 0.459 ∗ (Perimeter ∗ Range/Distance2)0.568 0.841 0.016 0.032 0
7 Green = 0.458 ∗ (Perimeter ∗ Range/Distance2)0.561 0.839 0.030 0.060 0
8 Green = 0.449 ∗ (Perimeter ∗ Range/Distance2)0.559 0.825 0.034 0.094 0
9 Green = 0.412*(Perimeter ∗ Range/Distance2)0.504 0.768 0.040 0.078 0
10 Green = 0.455 ∗ (Perimeter ∗ Range/Distance2)0.558 0.840 0.033 0.066 0
Mean error and total large error 0.041 0.127 4
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modellingmethod provides landscape planners a quantitative approach
to analyse, evaluate and improve tree green visibility. Researchers may
find the variable “Distance between the viewer and the target tree” dif-
ficult to apply with practical meaning. However, this variable may be
transferred to “Distance between a building (street) and the target
tree” when we aims to understand how much tree greenness can ac-
quire from some given location. In this case, the implementation of
this method can be of practical reference to urban planners. For in-
stance, by calculating the distance between a building and its surround-
ing trees, as well as the structural characteristics of these trees,
researchers can calculate total tree green visibility for each building in
the study site. Based on the analysis of tree green visibility, urban plan-
ners maymake some adjustments on local landscape patterns to enable
people from most buildings to enjoy tree green presence. Chen et al.
(2014) conducted a comparative study to compare 3D urban landscape
patterns between Cambridge and residential area in Canvey, UK using
Lidar-extracted 3D landscape models. This case study revealed the spa-
tial structures of individual buildings and trees, as well as tree-building
patterns, using a diversity of 3D landscape metrics. Based on high-
resolution 3D urban landscape models, future researchers can analyse,
compare and evaluate large-scale landscape configurations in terms of
tree green visibility, which provides useful reference for enhancing
urban landscapes to meet people's need for urban greenery.

The research of assessing tree green visibility can be further extend-
ed. Due to limited time and resources, all the photographs were taken
from the side of streets or edge of buildings. In future studies, photo-
graphs can be taken from different floors of buildings (Fig. 11). In this
case, by adding the vertical position of viewers to a regression model,
people's perception of tree greenness from different floors may also be
calculated.

The regression model proposed in this research is an idealized
model, as the overlapping effects caused by neighbouring trees and
view-blocking effects caused by neighbouring buildings have not been
Fig. 10. Some sample trees with ab
comprehensively considered. To improve the current model, more ex-
periments including multiple trees and tree-building clusters should
be carried out. By employing proper algorithms of geometric and spatial
analysis, enhanced models of tree green visibility can provide more
practical and reliable reference for urban planners.

To improve landscape configurations, quantitative analysis of tree
green visibility can be integratedwith peoples' aesthetic preferences to-
wards the amount of tree green visibility, which may be acquired
through normalized surveys across different study sites. In that case,
landscape planners can have reliable and transferable criteria to quanti-
fy, compare and evaluate general tree greenness in different urban
areas.
6. Conclusion

As proposed by previous studies, the average height of trees/crowns
normalized by their distances to the photographer was correlated with
visual greenery. This study proved that some composite variables,
such as “Perimeter/Distance2”, “Perimeter ∗ Range/Distance2”, “Max/
Distance2”, “Mean/Distance2” and so forth were strongly correlated
with the visual green effect of individual urban trees. In addition,
some regression models were designed with variables derived from
airborne Lidar data to quantitatively calculate tree green visibility
which achieved satisfactory effects. Amongst these models, Green =
a ∗ (Perimeter ∗ Range/Distance2)b proved to be the optimum model.
This model had small mean error and the amount of sample units
with large error was controlled efficiently. Considering the diversity of
sample trees and the results of cross-validation, this model has the po-
tential to be applied to other areas. Another model Green =
a ∗ (Perimeter/Distance2)b, which includes no height variables and
can be implemented using remote sensing images,may be employed al-
ternatively by researchers who have no access to airborne Lidar data.
normal understory structures.

Image of Fig. 10


Fig. 11. Tree greenness observed from different heights.
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Compared with on-site photographing, it is more feasible for re-
searchers to conduct a large scale project assessing tree green visibility
using airborne Lidar data. In line with the public's growing emphasis
on local environment and natural perception, the visual green effect of
urban trees is becoming an important factor which relates to people's
aesthetic and recreational preferences. As a result, this research pro-
vides urban planners and policy makers with an approach to analyse,
evaluate and enhance local landscape patterns to offer people more
available tree greenery.
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