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École Normale Supérieure de Lyon – Université
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Abstract

Two main and not necessarily compatible objectives when implement-
ing the product of two dense matrices with interval coefficients are ac-
curacy and efficiency. In this work, we focus on an implementation on
multicore architectures. One direction successfully explored to gain per-
formance in execution time is the representation of intervals by their mid-
points and radii rather than the classical representation by endpoints.
Computing with the midpoint-radius representation enables using opti-
mized floating-point BLAS and, consequently, the performance benefit
from the performance of the BLAS routines.

Several variants of interval matrix multiplication have been proposed,
which correspond to various trade-offs between accuracy and efficiency,
including some efficient ones proposed by Rump in 2012. However, to
guarantee that the computed result encloses the exact one, these efficient
algorithms rely on an assumption on the order of execution of floating-
point operations, which is not necessarily satisfied by most implementa-
tions of the BLAS.

In this paper, an algorithm for interval matrix product is proposed
that satisfies this assumption. Furthermore, several optimization proce-
dures are proposed, and the implementation on a multicore architecture

∗Submitted: February 21, 2013; Revised: November 22, 2013; Accepted: November 26,
2013.

91

nathalie.revol@ens-lyon.fr
philippe.theveny@ens-lyon.fr
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compares reasonably well with a non-guaranteed implementation based on
MKL, the optimized BLAS of Intel: the overhead is less than 2 for matrix
size up to 3,500. This implementation also exhibits good scalability.

Keywords: interval arithmetic, interval matrix multiplication, BLAS, gemm, parallel
computer, multicore
AMS subject classifications: 65Y05, 65G40, 65F30, 65-04

1 Introduction

When implementing the multiplication of two dense matrices with interval coefficients,
two conflicting objectives must be met. A first objective is to get accurate results, i.e.
results that do not overestimate too much the exact results, and preferably with known
and bounded overestimation ratios. A second objective is to get results quickly, in this
work particularly, we want to exploit the capabilities of multicore architectures and of
the corresponding programming paradigm, namely multithreading. Several algorithms
that offer different trade-offs between these two objectives are established by Nguyen
in [12].

The difficulties one has to face when implementing an interval matrix multiplica-
tion are manifold. Implementing interval arithmetic through floating-point arithmetic
relies on changing the rounding mode, either rounding downwards and upwards with
the representation by endpoints, or rounding to-nearest and upwards with the so-called
midpoint-radius representation, using the midpoints and radii. Whether the rounding
mode is kept unchanged or modified by BLAS routines is undocumented. Further-
more, whether the rounding mode is properly saved and restored at context switches,
as in a multithreaded execution, is not documented either, as is pointed out in [8].
Another issue in numerical floating-point computing which also impacts the behavior
of routines in interval arithmetic is the non-reproducibility of computations, especially
on HPC systems, as noted in [4]. This phenomenon originates, in particular, from
the fact that floating-point addition is not associative, and thus the order of the addi-
tions performed in, for instance, the sum of many numbers depends on the number of
threads, the scheduler, the storage in memory of these numbers, etc. Thus it is not re-
alistic to rely on any assumption on the order of floating-point computations, which is
a problem for the applicability of Theorem 2.1 in Section 2. A last kind of difficulty is
related to the programming of multicore architectures. Since optimized libraries, such
as MKL [6], optimized by Intel for its processors, exhibit good performance, a first
idea is to try to use these libraries to benefit from their performance. However, since
these libraries do not fulfill any assumption on the execution order of their operations,
as mentioned above, they cannot be used, and one turns to coding and optimizing the
code by hand, using for instance OpenMP and “helping” the compiler to vectorize the
code. Getting good performance in the development of such codes is difficult.

In this paper, we focus on algorithms for interval matrix multiplication. Various
formulas are based on the midpoint-radius representation, ranging from exact ones, as
in [11, pp. 22-23], to the faster ones in [15] that resort to 4 calls to BLAS floating-
point matrix multiplication, and including intermediate ones in terms of accuracy
and number of calls to BLAS routines given in [12, Chapter 2]. Algorithms that
use interval matrix multiplication to verify a floating-point matrix product are given
in [14], algorithms that save some floating-point matrix products by bounding the
roundoff errors are given in [16]. We will focus on the latter. BLAS routines for the
product of dense floating-point matrices are detailed in [2]. Optimized versions, such
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as Goto’s BLAS [3] or Intel’s MKL, yield very good performance. Autotuned versions,
such as ATLAS [19], provide good performance on various hardware by automatically
tuning cache usage via block size, etc.: these are good candidates for interval matrix
multiplication algorithms, such as those mentioned above, that resort to calls to BLAS
floating-point matrix multiplication.

We also focus on architectures that become more and more frequent nowadays and
very probably even more in the near future, namely multicore architectures. The ma-
chine we use in our experiments is a multiprocessor where each processor is composed
of several cores. This architecture still relies on a shared memory: going to distributed
architecture is a major step we did not take, since issues become fundamentally dif-
ferent from shared-memory or sequential ones.

We review the algorithms from [16] and the assumption on which they rely in Sec-
tion 2. Since this assumption is no longer assured to be true with the implementation
of the BLAS on the architecture we consider, as explained in Section 3, we give up the
use of the BLAS. The main result of this paper is the implementation of dense
interval matrix multiplication which is fully guaranteed, as the requirement
from [16] is fulfilled, and which gives good performance, as optimization by hand
is done where needed. The details are elaborated in Section 4. In particular, exploit-
ing cache usage through a version by blocks yields performance which is close to the
performance of a (non-guaranteed) implementation based on Intel’s MKL, in terms of
execution time and scalability, as shown in Section 5.

2 Algorithms for Interval Matrix Multiplication

In this paper we use the notation for real interval analysis defined in [7]. A point
matrix has coefficients that are points: real or floating-point numbers, as opposed to
an interval matrix, whose coefficients are intervals. An interval matrix A ∈ IRn×m can
be written as a pair of point matrices [A,A]; this represents the set of all matrices M ∈
Rm×n such that A ≤ M ≤ A, where inequalities hold componentwise. Equivalently,
the matrix A can be represented by the pair of point matrices 〈midA, radA〉 where
the (i, j) component of the midpoint matrix midA (respectively, of the radius matrix
radA) is the midpoint (respectively, the radius) of [Aij , Aij ]:

midAij =
Aij +Aij

2
and radAij =

Aij −Aij

2
.

In [15], Rump showed that the midpoint-radius representation of matrices enables
faster computer implementations of matrix operations than their infimum-supremum
counterparts. In particular, he described an interval matrix product algorithm that
relies on point matrix multiplications for its most expensive computational part. The
gain in execution time with this approach comes from the fact that possibly costly
rounding mode changes are limited and that numerous implementations of the BLAS
provide efficient point matrix products. This midpoint-radius algorithm requires four
point matrix products, and is proven to compute an enclosure of the exact matrix
product with a radius that is overestimated by a factor1 at most 1.5.

1Roundoff errors are neglected in the radius overestimation factors given here. This is
acceptable when the input intervals are large enough, say radx > 10−12 midx for double
precision.
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In [13], Ogita and Oishi proposed faster midpoint-radius algorithms that compute
the interval matrix product in approximately twice the cost of a point matrix prod-
uct. However, the known bound for the radius overestimation is worse than with the
previous algorithm.

In his PhD thesis [12, Chapter 2], Nguyen exhibited another interval matrix prod-
uct algorithm that overestimates the radius by a factor less than 1.18 at a computa-
tional cost less than twice the initial midpoint-radius algorithm from Rump.

In [16], Rump improved the control of rounding errors in the product of midpoint
matrices with the following bound (the inequality applies componentwise):

Theorem 2.1 Let A ∈ Fm×k and B ∈ Fk×n with 2(k + 2)u ≤ 1 be given, and let
C = fl�(A · B) and Γ = fl�(|A| · |B|). Here, C may be computed in any order, and
we assume that Γ is computed in the same order. Then

|fl�(A ·B)−A ·B| ≤ fl�
(
k + 2

2
ulp(Γ) +

1

2
u
−1η

)
.

In this theorem and in what follows, F denotes the set of floating-point numbers, IF
the set of intervals with floating-point (midpoint-radius in our case) representation, u
and η respectively the unit roundoff and the smallest positive normal floating-point
number, ulp(Γ) the unit in the last place2 of the components of Γ, and fl�(E) (resp.
fl∆(E)) indicates that every operation in the arithmetic expression E is evaluated
with rounding-to-nearest (resp. rounding towards +∞) mode. Using this bound,
Rump transformed the above algorithms, eliminating one point matrix product from
his previous interval matrix product and two from Nguyen’s. We reproduce here the
improved algorithms MMMul3 (Algorithm 1) and MMMul5 (Algorithm3 2) without the
additional conversions from and to the usual infimum-supremum representation of
matrices.

Algorithm 1 MMMul3

Input: A = 〈MA, RA〉 ∈ IFm×k,B = 〈MB , RB〉 ∈ IFk×n

Output: C3 ⊇ A ·B
1: MC ← fl�(MA ·MB)
2: R′B ← fl∆((k + 2)u|MB |+RB)

3: RC ← fl∆(|MA| ·R
′
B +RA · (|MB |+RB) + u−1η)

4: return 〈MC , RC 〉

Finally, Ozaki et al. in [14] used coarser but faster estimates for the radius of the
product and proposed several algorithms for interval matrix multiplication at the cost
of one, two and three calls to point matrix multiplication.

By relying on floating-point matrix multiplications, the previous algorithms were
designed to be easy to implement efficiently. However, some care is needed and the
next section discusses some implementation issues that can easily be overlooked.

2see [10, Section 2.6] for a definition.
3Operations .∗ in lines 1 and 2 are componentwise multiplication, as in Matlab notation.
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Algorithm 2 MMMul5

Input: A = 〈MA, RA〉 ∈ IFm×k,B = 〈MB , RB〉 ∈ IFk×n

Output: C5 ⊇ A ·B
1: ρA ← sign(MA). ∗min(|MA|, RA)
2: ρB ← sign(MB). ∗min(|MB |, RB)
3: MC ← fl�

(
MA ·MB + ρA · ρB

)
4: Γ← fl�

(
|MA| · |MB |+ |ρA| · |ρB |

)
5: γ ← fl∆

(
(k + 1)ulp(Γ) + 1

2u
−1η

)
6: RC ← fl∆

(
(|MA|+RA) · (|MB |+RB)− Γ + 2γ

)
7: return 〈MC , RC 〉

3 Implementation Issues

The midpoint-radius representation of matrices allows one to resort to floating-point
matrix products for the implementation of interval matrix products. Many software li-
braries (for example GotoBLAS [3] or ATLAS [19]) offer optimized implementations of
matrix operations following the interface defined by the Basic Linear Algebra Subpro-
grams Technical Forum Standard [2]. Processor vendors also provide BLAS libraries
with state-of-the-art implementation of matrix products for their own architectures,
like, for instance, the Intel Math Kernel Library (MKL) and the AMD Core Math
Library. Thus, BLAS libraries give access to high-performance and portability.

However, MMMul3 (Algorithm 1) and MMMul5 (Algorithm 2) require that two hy-
potheses are satisfied: first, the rounding mode is taken into account by the library
and, second, MA ·MB and |MA| · |MB | are computed in the same order (along with
ρA · ρB and |ρA| · |ρB | in MMMul5).

3.1 Rounding Modes

We mention here some situations where implementations with BLAS fall short of the
first hypothesis when the rounding mode in use is not the default rounding-to-nearest
(see [8] for a thorough discussion). For instance, to calculate an overestimated result, a
matrix product using a Strassen-like recursive algorithm [17] should compute overesti-
mations for terms that are added and underestimations for terms that are subtracted,
but this would ruin its advantage over the classical algorithm. Extended precision
BLAS [2, Chapter 4] are another example. For matrix operations especially, the ref-
erence implementation [9] uses double-double arithmetic which makes intensive use of
error-free transformations [10, Chapter 4] that require rounding-to-nearest mode.

Nonetheless, the radius of the interval product in Algorithms 1 and 2 above must
be computed with rounding towards +∞ to guarantee that the result accounts for all
possible roundoff errors and contains the exact product.

3.2 Computation Order of MA ·MB and |MA| · |MB |
The second hypothesis comes from Theorem 2.1. The BLAS interface does not pro-
vide any function that calculates a matrix product and the product of the absolute
values of the inputs simultaneously and in the same order. Thus, implementations
of midpoint-radius algorithms have to compute the quantities of Theorem 2.1 with
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successive calls to floating-point matrix products, as in lines 3 and 4 of Algorithm 2.
However, no order of operation is specified by the BLAS standard [2], so Theorem 2.1
may not be applicable. The orders of the floating-point operations performed by the
two multiplications are even more likely to differ when the BLAS library is itself mul-
tithreaded.

In that respect, it is useful to note that legal obligations and verification constraints
of their users cause some vendors to address the problem of the reproducibility of
numerical results between different processors or from run to run. For these reasons,
version 11.0 of the MKL (see [18] or [6, Chapter 7]) now provides modes of execution
where the user can control, at some loss in efficiency, the task scheduling and the
type of computing kernels in use. In these modes, identical numerical results are
guaranteed on different processors when they share the same architecture and run the
same operating system. Moreover, reproducibility from run to run is ensured under
the condition that, in all executions, the matrices have the same memory alignment
and the number of threads remains constant.

We can use this kind of control to solve the problem of the computation order of
MA ·MB and |MA| · |MB |. Since the processor and the OS remain the same during
the computation of the two products, it suffices, first, to compute MA ·MB , second, to
transform in place matrix components into their absolute values ensuring the identity
of memory alignments, then third, to recompute the product on the new input with
the same number of threads. The drawback of this solution is its specificity to the
Intel MKL, as long as other libraries do not adopt the same control for numerical
reproducibility.

To overcome these uncertainties in the execution of an arbitrary BLAS library, we
present several implementations of Algorithm MMMul5 that verify the two assumptions
while still being efficient on a multicore target in the next section. In the following,
Algorithm MMMul5 has been preferred to Algorithm MMMul3 because it is more compu-
tationally intensive, so the overhead of a correct implementation with respect to one
that is linked against an optimized BLAS library is more apparent in the experimental
measures. Another reason is that the bound of Theorem 2.1 does not appear directly
in Algorithm MMMul3.

4 Expressing Parallelism for a Multicore Target

In this section, we present several implementations of MMMul5 in the C programming
language for a multicore target.

The following few assumptions will be made on the structure of the interval ma-
trices in midpoint-radius representation. First, interval matrices are manipulated as
pairs of arrays in row-major order4, which is usual in C. Second, the array of midpoints
and the array of radii are assumed to share the same alignment and stride. The stride
of the pair may be different from the column dimension, as this allows us to handle
submatrices, but no padding will be made to align rows with a given value.

The C-99 standard defines accesses to the floating-point environment, in particular
to rounding modes, through the fegetround and fesetround functions, which allow
readings and changes of rounding modes in a portable manner. However, even up-
to-date versions of some compilers do not take into account the changes of rounding
modes in their optimization phases, yielding possibly incorrect results when they swap

4Note that, according to our experience, the dgemm function in MKL seems to be more
efficient when using the column-major order.
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a call to fesetround and a floating-point operation (cf. the long-running bug in GCC
[1]). Calling an assembly instruction to change the rounding mode directly solves this
problem, but this workaround is platform-dependent. Nevertheless, in the implemen-
tations of MMMul5 below, we use the portable C-99 functions just before loops, as we
did not observe the bug mentioned above under these conditions.

Beside correctness problems, we aim to provide an implementation that is efficient
on a multicore target. Two main features of the multiplication of dense matrices
make them very well-suited for parallelization. First, they offer a high degree of
data independence, as each component of the product could virtually be computed
regardless of the others. This offers opportunities for calculating sub-matrix blocks in
different threads. Second, density of the matrices permits regularity and contiguity of
memory accesses. This last condition is necessary to benefit from the memory cache
system of processors.

Below, we exploit the coarse-grained parallelism of the block calculation at the
thread level by using OpenMP constructs. Furthermore, we translate the fine-grained
parallelism of contiguous data accesses and similar computations into instruction level
parallelism through vector instructions.

Ideally, this last step should be handled by the compiler auto-vectorization, but,
as discussed below in Section 4.4, that is beyond current compiler capabilities.

4.1 Version with a Parallel BLAS Library

It has been shown in Section 2 that the algorithms for interval matrix products using
the midpoint-radius representation rely on floating-point matrix products. As advo-
cated by these algorithms’ authors, this approach is a straightforward means to benefit
from optimized BLAS libraries for a small development cost. From this point of view,
MMMul5 can be parallelized on a multicore machine by using a multithreaded BLAS
library.

We present below a possible implementation of the first part in rounding-to-nearest
mode (lines 1 to 4) of Algorithm 2. In the BLAS implementation of Algorithm 3, lines
1, 4, 7, and 10 translate directly to calls to the gemm function, which takes two scalars α
and β and three matrices A, B, and C as parameters and computes C ← αA ·B+βC.

Algorithm 3 Rounding-to-nearest part of MMMul5-BLAS

Input: 〈MA, RA〉 and 〈MB , RB〉
Output: MC and Γ

1: MC ← 1MA ·MB + 0MC
2: T1 ← |MA|
3: T2 ← |MB |
4: Γ← 1T1 · T2 + 0Γ
5: T3 ← min(T1, RA)
6: T4 ← min(T2, RB)
7: Γ← 1T3 · T4 + 1Γ
8: T5 ← sign(MA). ∗ T3

9: T6 ← sign(MB). ∗ T4

10: MC ← 1T5 · T6 + 1MC

Alas, as discussed in Section 3.2, lines 1 and 4 compute MA ·MB and |MA| · |MB |
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with arithmetic operations in arbitrary orders. Therefore, we cannot guarantee that
this implementation always satisfies the Theorem 2.1 hypothesis of identical orders.

4.2 Version with a Parallel Loop for the Rounding-to-
Nearest Part

The simplest means of preserving the order of operations between products and prod-
ucts of absolute value is to combine their computations in the same loop. We refer to
Algorithm 4 below as MMMul5frn (for fused loops in rounding-to-nearest); it simulta-
neously computes MC and Γ in the classical three nested loops of a matrix product.
At lines 8 and 10, note that ef is of the same sign as ab, so |ab|+ |ef | = |ab+ef | = |p|.

Algorithm 4 Rounding-to-nearest part of MMMul5frn

Input: 〈MA, RA〉 and 〈MB , RB〉
Output: MC and Γ accumulated in the same order

1: for i← 1,m do {OpenMP parallel for}
2: for l← 1, k do
3: for j ← 1, n do
4: a←MAil, c← RAil
5: b←MBlj , d← RBlj

6: e← sign(a) min(|a|, c)
7: f ← sign(b) min(|b|, d)
8: p← ab+ ef
9: MCij ←MCij + p

10: Γij ← Γij + |p|
11: end for
12: end for
13: end for

The choice of the order of the three loops is important with respect to the locality
of the memory accesses. In MMMul5frn, the inner loop spans the columns of MC
and Γ, so that memory is written contiguously. This facilitates hardware prefetching
as well as vectorization. The external loop traverses the rows of MC and Γ and is
annotated with an OpenMP parallel for directive to distribute blocks of rows to
multiple threads. This choice of indices for the external and inner loops also avoids
false sharing5 between cache lines of different cores when the matrices are stored in
row-major order.

Algorithm MMMul5frn uses less memory than the BLAS implementation described
in Section 4.1, each component of ρ values (lines 1 and 2 of Algorithm 2) and of
absolute values of MA and MB being computed on-the-fly.

5The first levels of memory caches are usually private to the core. When two private caches
try to maintain a coherent vision of the same memory region, they use a system of monitoring
and copy. Modifying a datum in some memory block that is duplicated in another cache
triggers this costly mechanism, even if the other core does not use the modified data but a
nearby one contained in the same cache line. This phenomenon is called false sharing (cf. [5,
Section 4.3]).
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4.3 Version with a Blocked Parallel Loop
for the Rounding-to-Nearest Part

When the matrix C is large enough, a row vector of MC and a row vector of Γ
cannot be kept entirely and simultaneously in the first level cache. As the inner loop
accumulates partial products in MC and Γ, the first components are evicted from the
cache when the last ones are computed. At the next iteration, the first ones are needed
again and in turn evict the last ones. With the previous choice of loop nesting, this
leads to one cache miss per component at each iteration over the common dimension
of MA and MB .

To avoid the cache misses of MMMul5frn, we propose a blocked implementation
MMMul5bfrn, where the matrices MC and Γ are split into blocks of rows that can be
stored simultaneously in the same cache. If the capacity of the cache is too small
to contain two complete rows, then the rows of MC and Γ to be computed are also
divided into pieces that are small enough to simultaneously fit into the cache.

The MMMul5frn and MMMul5bfrn versions differ only in the blocking of m and n
dimensions, the outer loop is distributed to threads with the OpenMP parallel for

construct in both implementations and the inner loop (lines 4 to 10 in Algorithm 4)
remains unchanged.

4.4 Version with an Explicitly Vectorized Kernel

The inner loop of Algorithm 4 can be very easily and efficiently translated into a
sequence of vector instructions without any conditional branch. In fact, signs of
floating-point numbers can be extracted and copied with bit-masks and logical op-
erations, while the minimum of two floating-point values is usually provided either as
a vector instruction (e.g. FMIN on Sparc), or it can be implemented as a combination
of the comparison instruction that issues bit masks of all ones or all zeros and logical
operations between these bit masks and the floating-point data (e.g. with AltiVec,
SSE, and AVX instruction sets).

Unfortunately, the transformations that convert the inner loop into vectorized code
are still too complicated to be handled by current compilers. Thus, for the purpose
of comparing execution time of the optimized computation kernel in Section 5, we
manually translated the inner loop block Algorithm MMMul5bfrn into AVX code; we
call the new implementation MMMul5bfrn-avx. As expected, the gain in execution time
is significant (see Section 5.3), but the code is no longer portable.

4.5 Rounding-Upwards Part

The computation of RC uses the rounding to +∞ mode, as shown in lines 5 and 6
of Algorithm 2. It involves one matrix product, and we cannot ensure that a gemm

function of a given BLAS library always yields the expected overestimation (see Sec-
tion 3.1). Therefore, if we want to guarantee inclusion of the exact product in the com-
puted product, an implementation of Algorithm 2 has to be statically linked against a
trusted BLAS library if it uses the BLAS gemm function. Another solution is to write
the rounding-upward part with the classical three loops algorithm.

In the latter case, the implementation can use strategies similar to the ones used
above for the rounding-to-nearest part. The computation of lines 5 and 6 of Algo-
rithm 2 can be mixed into the same inner loop, saving some accesses to temporary
memory buffers; remaining memory operations can be organized so that memory is
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written in a contiguous manner; the external loop can be easily parallelized by dis-
tributing iterations to OpenMP threads.

5 Performance Results

We now present experimental measures and comparisons of execution times for the
implementations presented in the previous section, namely: the non-guaranteed
MMMul5-BLAS (4.1) and the guaranteed versions MMMul5frn (4.2), MMMul5bfrn (4.3),
and MMMul5bfrn-avx (4.4). To evaluate the costs of the different implementations
of the rounding-to-nearest part, all the tested computation kernels share the same
rounding-upwards part. This part is not implemented as described in Section 4.5, but
simply with a BLAS matrix product (i.e. one call to the dgemm function).

5.1 Experimental Setup

We experiment with a shared memory system of 4 eight-core Xeon E5-4620 proces-
sors. To assure stable and reproducible measurement, the Hyper-Threading and Turbo
Boost capabilities are disabled and the clock frequency is statically set to its highest
possible value. The processor characteristics, operating system, and software being
used are described in Table 1.

4 processors
Intel Xeon E5-4620
(Sandy Bridge)

clock speed 2.20GHz
SIMD instruction set SSE2, AVX
level 1 data caches 32KB per core
level 2 caches 256KB per core
level 3 cache 16MB, shared

number of cores 32 (4 processors × 8 cores)
operating system Linux version 3.2.0 (Debian Wheezy)
compiler suite GCC 4.7.2
BLAS library Intel MKL version 11.0.2
OpenMP library Gnu OpenMP library

Table 1: Description of the system used for performance results.

We compile with GCC version 4.7.2 and the following compiler options: -O2

sets the level of optimization, -m64 is required when linking with the 64-bit ver-
sion of the MKL, -frounding-math disables floating-point optimizations that are
valid only with the default rounding-to-nearest mode, -mfpmath=sse imposes the use
of SSE/AVX floating-point unit, -mavx enables the AVX-vector instruction set, and
-ftree-vectorize unconditionally triggers the loop vectorization phase. Results do
not differ noticeably with the -O3 level of optimization, except for very small matrices.

As it has been discussed in Section 4, the three kernels MMMul5frn, MMMul5bfrn, and
MMMul5bfrn-avx are multithreaded using OpenMP. OpenMP libraries are controlled by
environment variables that are also taken into account by the MKL library for its own
multithreading management. In our experiments, we set the following environment
variables: OMP PROC BIND is set to true to avoid thread migration from one core to
another and the associated time overhead, and OMP DYNAMIC is set to false to benefit
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from all the available cores when wanted without being under the control of dynamic
adjustment of the number of threads. Finally, we choose double precision (i.e. the
IEEE-754 Binary64 type) as the working precision in all of the following results.

5.2 Sequential Execution Time

We first evaluate and compare the sequential execution time of the computation kernels
presented in Section 4. The measured timings are displayed on Figure 1.
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Figure 1: Execution time – Sequential.

The graph at the top of Figure 1 represents the execution time of the interval
matrix products along with the floating-point matrix product (dgemm). The input is
a pair of square matrices from dimension 200 to 5,350. To exhibit the slowdown of
interval compared to floating-point matrix products, the ratios of execution time of
the different implementations to the time of a dgemm execution are displayed at the
bottom of Figure 1.

The following remarks can be made about these results. As the authors of Algo-
rithm 2 expected, the cost of MMMul5-BLAS is very close to 5 times the cost of a call
to dgemm. Other implementations do not benefit from optimization of the MKL and
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the MMMul5frn is about 35 times slower than dgemm algorithm. The blocked version
MMMul5bfrn is slightly faster than MMMul5frn because of a better locality of memory
accesses as explained in Section 4.3. The explicit AVX version MMMul5bfrn-avx is
about four times as fast as MMMul5bfrn, demonstrating that the compiler is unable to
efficiently vectorize the code by itself. Indeed, on the MMMul5bfrn code, we observed
little gain provided by the -mavx compiler option, because GCC is unable to vectorize
the inner loop. For small matrices (up to 3, 500× 3, 500), MMMul5bfrn-avx is less than
2 times slower than the non-guaranteed MMMul5-BLAS.

5.3 Execution Time with 32 Threads

We now measure the execution time of the computation kernels when using one thread
per core. The measured timings are displayed on Figure 2 in the placement described
in the previous section.
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Figure 2: Execution time – 32 threads.

It can be noticed in the graph at the top of Figure 2 that dgemm and MMMul5-BLAS

are subject to a sudden increase in execution time around matrix dimension 1,000.
We ascribe this phenomenon to the capacity of the level 3 cache that can contain
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simultaneously no more than two square matrices of dimension 1,024. With matrices
of dimension larger than 1,000, the slope of the MKL timings tends to be more and
more gentle, demonstrating the optimization of the library for large matrices. Kernels
MMMul5frn and MMMul5bfrn present comparable timings until dimension 2,500. From
dimension 500 to dimension 2,000, MMMul5bfrn undergoes less cache misses when ac-
cessing the first level of memory cache and is slightly more efficient than MMMul5frn.
For larger matrices, the blocked version MMMul5bfrn appears to be the slowest one.
This may be due to the greater management overhead of a higher number of OpenMP
threads. Finally, this set of measures demonstrates that a blocked implementation
correctly translated in vector instructions like MMMul5bfrn-avx can compete with the
BLAS implementation for matrices of dimension less than 2,500.

Compared to the sequential execution, the relative behaviors of the kernels are
markedly different, as it can be noticed from the graph at the bottom of Figure 2.
For small input, the overhead of non-BLAS operations (absolute values, minimum
selections, and sign copies, see Algorithm 3 p.97) slows down MMMul5-BLAS. This fact
is more evident in a heavily parallel execution because the execution time of dgemm

is one order of magnitude smaller. Then, as the matrix dimension grows, the ratio
perceptibly tends to 5. Kernels MMMul5frn and MMMul5bfrn are still much less efficient
than the BLAS implementation, but to a lesser extend than in the sequential case.
The sudden decrease of the ratio around dimension 1,000 is related to the time increase
of the reference dgemm already discussed.

To compare the best implementations, MMMul5bfrn-avx is faster than the non-
guaranteed MMMul5-BLAS kernel for matrices up to dimension 2,500. After this value,
MMMul5bfrn-avx gets slower and slower: this is due to the fact that the blocking
strategy is limited to the first level of cache. An improved version with several levels
of blocking and with thresholds tuned to the underlying cache hierarchy should remain
competitive with the BLAS implementation for larger matrices.

5.4 Scalability

Finally, we analyze the strong scalability of the computation kernels, that is, their be-
havior when the number of threads rises while the matrix dimension remains constant.
One important metric in this context is the measure of efficiency. By definition, the
efficiency of a parallel implementation executed with p threads is the ratio T1/(p×Tp),
where T1 is the sequential execution time, and Tp is the execution time using p execu-
tion threads. It equals one when the parallelism is perfect.

Figure 3 presents the measures of execution time (left) and scalability (right) of
the MMMul5-BLAS and MMMul5bfrn-avx kernels, along with the corresponding values
for dgemm implementation of the MKL. The input factors of the products are square
matrices of dimension 1024, and the number of threads varies from 1 to 32.

The analysis of these measures explains why the MMMul5bfrn-avx implementation,
which is slower than MMMul5-BLAS in sequential execution, becomes superior at high
level of parallelism. In fact, the former implementation is about 1.4 times slower than
the BLAS implementation with one thread, its execution time is comparable with 8
threads, and 1.5 times less with 32 threads. This phenomenon is more explicit in the
left part of Figure 3: up to one thread per processor (4 threads), the efficiency of MKL
dgemm is higher than 90%, then it falls to low levels, near 30%, with 32 threads. This
is due to the fact that the memory bandwidth is shared among cores in a processor,
and this resource rapidly becomes a limiting factor as the number of threads increases.
The MMMul5-BLAS kernel, which is depends on the MKL dgemm for its more intensive
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Figure 3: Scalability – 1024-by-1024 matrices.

computational part, exhibits the same significant decrease in efficiency. However, the
behavior of MMMul5bfrn-avx demonstrates the possibility of improvement. In contrast
to the BLAS implementation, the efficiency of MMMul5bfrn-avx decreases slowly and
never drops below value of about 70% with 32 threads. The efficiencies of MMMul5frn

and MMMul5bfrn, not shown here, follow the same scheme. This can be explained by
the merging of the computations of MA ·MB , ρA · ρB , |MA| · |MB |, and |ρA| · |ρB |
in the fused loop versions. It saves 3 successive calls to dgemm, which are as many
global synchronization points in a parallel execution. On the contrary, the threads
in the BLAS implementation have to wait for the latest ones among them, that are
slowed down by concurrency to memory resource or system interruptions for instance,
before entering the remaining computation.

6 Conclusion

The new results presented in Section 4 are algorithms for interval matrix multiplication
that are actually guaranteed to contain the exact result and that are efficient on a
multicore architecture, as seen in Section 5.

We have seen that implementing interval algorithms on high-performance architec-
tures amplifies the recurring question of the efficiency of these algorithms, since poor
performance compared to the performance of (non-guaranteed but fast) floating-point
algorithms reduces their value. Indeed, getting reliability and performance is even
more difficult than on sequential architectures, as many issues are obscured by lack of
specifications (for instance, what happens to the rounding mode in a multithreaded
environment) or by specific issues, such as the lack of reproducibility of the numerical
result from run to run.

From the implementation developed in this paper, we may draw the following
methodological conclusions.

First, develop interval algorithms based on well-established numerical bricks (such
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as the gemm of BLAS in this work), to benefit from their optimized implementation.
A second step could be to convince developers and vendors of these bricks to clearly
specify their behavior, especially with regards to rounding mode. However, we have
observed that the above may not suffice, as this was the case with the issue of the
order in which floating-point operations should be performed at each call.

The approach adopted in our paper has been to replicate the work done for the
optimization of the considered numerical bricks, and to adapt it to the specificities
and requirements of the interval algorithm, as it has been done here to compute
“simultaneously” A ·B and |A| · |B|. As can be observed from the experimental results,
this approach pays off, as it makes it possible to guarantee the inclusion property —
which is the fundamental property and strength of interval algorithms — and to get
performance. To obtain even better performance, for the interval matrix multiplication
in particular, it would be worth developing an ATLAS-like autotuning of the blocked
version in order to optimize the usage of all cache levels and not only of the cache of
level 1, as it has been done here. This would prevent the loss of performance when the
matrix size increases too much. However, following such a methodology requires the
programmer to have skills both in interval analysis and in HPC programming, which
is rare.

The above methodology could lead to the development of a kind of Interval-BLAS,
offering various algorithms with different accuracies (at least theoretically established)
and good efficiency. The existence of such a library would be valuable to promote the
wide use of interval algorithms, while alleviating the burden on the user of these
algorithms to get performance.
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