
Checking Monotonicity is NP-Hard Even for

Cubic Polynomials∗

Andrzej Pownuk1, Luc Longpré2, and Vladik Kreinovich2

Departments of 1Mathematical Sciences and
2Computer Science, University of Texas at El Paso,
500 W. University, El Paso, TX 79968, USA

ampownuk@utep.edu,longpre@utep.edu,vladik@utep.edu

Abstract

One of the main problems of interval computations is to compute the
range of a given function over given intervals. In general, this problem is
computationally intractable (NP-hard) – that is why we usually compute
an enclosure and not the exact range. However, there are cases when
it is possible to feasibly compute the exact range; one of these cases is
when the function is monotonic with respect to each of its variables. The
monotonicity assumption holds when the derivatives at a midpoint are
different from 0 and the intervals are sufficiently narrow; because of this,
monotonicity-based estimates are often used as a heuristic method. In
situations when it is important to have an enclosure, it is desirable to
check whether this estimate is justified, i.e., whether the function is indeed
monotonic. It is known that monotonicity can be feasibly checked for
quadratic functions. In this paper, we show that for cubic functions,
checking monotonicity is NP-hard.

Keywords: interval computations, monotonicity, NP-hard

AMS subject classifications: 65G20, 65G40, 03D15, 68Q17

It is desirable to check monotonicity. One of the main problems of inter-
val computations is computing the range y of an (algorithmically) given function
f(x1, . . . , xn) over n given intervals xi = [xi, xi], i = 1, . . . , n:

y = [y, y] = {f(x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn}

of the function f(x1, . . . , xn) under given intervals. It is known (see, e.g., [2]) that
even for quadratic polynomials this problem is, in general, NP-hard.

There are cases when it is possible to feasibly compute the exact range; see, e.g., [3].
One such case is when a function is monotonic (i.e., increasing or decreasing) in each
of its variables. In this case, the range of this function can be easily computed. For
example, if a function is increasing with respect to each of its variables, i.e., if for

∗Submitted: February 25, 2013; Revised: July 4, 2013; Accepted: July 18, 2013.

90



Reliable Computing 18, 2013 91

all i and for all possible values x1 ∈ [x1, x1], . . . , xi−1 ∈ [xi−1, xi−1], xi ∈ [xi, xi],
x′i ∈ [xi, xi], xi+1 ∈ [xi+1, xi+1], . . . , xn ∈ [xn, xn], the inequality xi ≤ x′i implies that

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn),

then its range can be easily computed as [f(x1, . . . , xn), f(x1, . . . , xn)].
One way to check whether a function is monotonic is to find the ranges of each

partial derivatives
∂f

∂xi
; if none of these ranges contains 0, this means that the function

is monotonic [3]. In practice, we can only feasibly compute enclosures for these ranges.
If none of the enclosures contains 0, this means that the actual ranges also do not
contain 0, so the function is monotonic. However, if one of the enclosures does contain
0, the function may still be monotonic – and 0 may be caused by the excess width of
the enclosure.

From the practical viewpoint, the use of monotonicity is a reasonable idea: when all

the partial derivatives
∂f

∂xi
computed at the midpoint with coordinates x̃i =

xi + xi

2
are non-zero, then, when the derivatives are continuous, for sufficiently small radii ∆i,
the derivatives are non-zero for all points x from the box

[x̃1 −∆1, x̃1 + ∆1]× . . .× [x̃n −∆n, x̃n + ∆n].

So, if measurement accuracy is high enough, i.e., if the upper bounds ∆i on the
corresponding uncertainty are small enough, practitioners assume that the function is
monotonic and use the above simple estimate for the range.

In many practical situations, it is important to check whether this estimate is
indeed an enclosure. For example, we are designing an engineering system, and we want
to make sure that the value of some critical quantity y = f(x1, . . . , xn) (temperature,
pollution level, etc.) cannot exceed a given threshold y0 no matter what combination
of parameters xi from the given ranges xi we take. If we make this conclusion based
on an estimate which misses some values of f(x1, . . . , xn), we may design a defective
system.

To justify that the monotonicity-based estimate is an enclosure, it is desirable to
check whether the function is indeed monotonic on a given box.

Checking monotonicity: what is known. For a quadratic function
f(x1, . . . , xn), all partial derivatives are linear. For a linear function, we can feasibly
compute its range, so we can feasibly check whether a given quadratic function is
monotonic.

New result. In this paper, we show that already for cubic polynomials, checking
monotonicity is NP-hard. Specifically, we prove that the problem of checking non-
monotonicity is NP-complete, i.e.:

• we prove that this problem is NP-hard (computationally intractable), and

• we prove that this problem belongs to the class NP – of all problems for which
it is feasible, given a guess, to check whether this guess is a solution.

Comment. It is widely believed that P 6=NP. In this case, NP-hardness means that it
is not possible to have a feasible (= polynomial time) algorithm that always computes
the desired range; see, e.g., [2, 4].



92 A. Ponwuk, L. Longpré, V. Kreinovich, Checking Monotonicity is NP-Hard

Definition 1.

• We say that a function f(x1, . . . , xn) is non-strictly increasing with respect to
a variable xi if for every set of values x1, . . . , xi−1, xi, x

′
i, xi+1, . . . , xn for which

xi ≤ x′i, we have

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≤ f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

• We say that a function f(x1, . . . , xn) is non-strictly decreasing with respect to
a variable xi if for every set of values x1, . . . , xi−1, xi, x

′
i, xi+1, . . . , xn for which

xi ≤ x′i, we have

f(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

• We say that a function a function f(x1, . . . , xn) is monotonic with respect to a
variable xi if it is either strictly increasing or strictly decreasing with respect to
this variable.

• We say that a function a function f(x1, . . . , xn) is monotonic if it is monotonic
with respect to all its variables x1, . . . , xn.

Proposition. The following problem is NP-complete:

• given: a cubic polynomial P (x1, . . . , xn) with rational coefficients and n intervals
x1, . . . , xn with rational endpoints;

• check: whether the restriction of the polynomial P (x1, . . . , xn) to the box x1 ×
. . .× xn is not monotonic.

Comment. This result is in good accordance with general results showing that for
real-valued functions, most usual numerical problems are NP-hard, such as computing
a root of a given function, computing this function’s maxima and minima, computing
its integral, etc.; see, e.g., [1].

Proof.

1◦. By definition, a problem is NP-complete if it NP-hard and belongs to the class
NP. Let us first prove that our problem is NP-hard.

1.1◦. By definition, a problem is NP-hard if every problem from the class NP can
reduced to this problem (see, e.g., [2, 4]). Thus, to prove that our problem is NP-
hard, it is sufficient to prove that one of the known NP-hard problems can be reduced
to our problem: indeed, in this case, every problem from the class NP can be reduced
to the known NP-hard problem and thus, by transitivity of reduction, to our problem.

In our proof, as such a known NP-hard problem, we take a propositional satisfi-
ability problem for 3-CNF propositional formulas, i.e., for Boolean expressions F of
the type F1 & . . . &Fk, where each Fk has the form a ∨ b or a ∨ b ∨ c, and a, b, and c
are literals, i.e., propositional variables z1, . . . , zv or their negations ¬zi.

An example of such a formula is (z1 ∨ z2 ∨¬z3) & (¬z1 ∨ z2). A formula F is called
satisfiable if there exist truth values of the corresponding variables z1, . . . , zv which
make this Boolean expression true.

1.2◦. Following Theorem 3.1 from [2], for each such propositional formula F , let us
build a quadratic polynomial fF (x1, . . . , xn) of n = v+k variables xi ∈ [0, 1] as follows:



Reliable Computing 18, 2013 93

• To each Boolean variable zi, we put into correspondence a polynomial f [zi] = xi.

• To each literal ¬zi, we put into correspondence an expression f [¬zi] = 1− xi.

• To each expression Fj of the type a∨b we put into correspondence an expression
f [Fj ] = (f [a] + f [b] + xv+j − 2)2.

• To each expression Fj of the type a ∨ b ∨ c we put into correspondence an
expression f [Fj ] = (f [a] + f [b] + f [c] + 2xv+j − 3)2.

Finally, we define a quadratic polynomial of n = v + k variables as

fF (x1, . . . , xn) =

v∑
i=1

xi · (1− xi) +

k∑
j=1

f [Fj ].

1.3◦. In this proof, we will consider the lower bound f
F

of the function fF (x1, . . . , xn)
on the box [0, 1] × . . . × [0, 1]. For xi ∈ [0, 1], we have fF (x1, . . . , xn) ≥ 0 and thus,
this lower bound is non-negative: f

F
≥ 0.

Let us prove that:

• if the formula F is satisfiable, then the lower bound f
F

of the function
fF (x1, . . . , xn) on the box [0, 1]× . . .× [0, 1] is equal to 0;

• if the formula F is not satisfiable, then f
F
≥ 0.09.

1.4◦. Let us first prove that if F is satisfiable, then f
F

= 0. Indeed, let us assume
that the formula F is satisfied by the truth values z1, . . . , zv. For these values zi, all
the expressions Fj are true. Let us show that in this case, we can find values xi for
which fF (x1, . . . , xn) = 0. Indeed:

• For i ≤ v, we take xi = zi, i.e., xi = 1 if zi is true, and xi = 0 if zi is false.

• For each j for which the expression Fj has the form a ∨ b, the fact that Fj is
true fo the truth values z1, . . . , zv means that at least one of the literals a and
b is true. We then take xv+j = 0 if both a and b are true and xv+j = 1 if only
one of these literals is true.

• For each j for which the expression Fj has the form a ∨ b ∨ c, the fact that Fj

is true for the truth values z1, . . . , zv means that at least one of the literals a, b,
and c is true. We then take xv+j = 0 if all three literals are true, xv+j = 0.5 if
two of the literals is true, and xv+j = 1 if only one of these literals is true.

One can check that in all cases, we get xi · (1− xi) = 0 for all i and f [Fj ] = 0 for all
j. Hence indeed we get fF (x1, . . . , xn) = 0, and thus, f

F
= 0.

1.5◦. Let us now show that if f
F

< 0.09, then the formula F is satisfiable. Indeed,
since fF (x1, . . . , xn) is a continuous function on a compact domain, its smallest value
is attained, so there exist values x1, . . . , xn for which fF (x1, . . . , xn) < 0.09. For these
values, each non-negative term xi · (1− xi) and f [Fj ] from the sum fF (x1, . . . , xn) is
smaller than 0.09.

From xi · (1− xi) < 0.09, we conclude that xi < 0.1 or xi > 0.9. In this case, for
all literals a, we have f [a] > 0.9 or f [a] < 0.1. Let us take zi to be true if xi > 0.9
and false if xi < 0.1.

Let us show that for these truth values zi, all expressions Fj are true.
Indeed, for an expression Fj of the type a∨b, from (f [a]+f [a]+xv+j−2)2 < 0.09,

it follows that f [a] + f [b] + xv+j − 2 > −0.3, i.e., that f [a] + f [b] > 1.7− xv+j . Since



94 A. Ponwuk, L. Longpré, V. Kreinovich, Checking Monotonicity is NP-Hard

xv+j ≤ 1, this implies f [a] + f [b] > 0.7. We know that each of the values f [a] and
f [b] is either < 0.1 or > 0.9. Since f [a] + f [b] > 0.7, these two values cannot be both
smaller than 0.1; thus, at least one of them is > 0.9. The corresponding literal a or b
is therefore true, hence the expression Fj is also true.

Similarly, one can prove that all expressions Fj of the type a ∨ b ∨ c are true, and
thus, the original propositional formula F is true.

1.6◦. In this proof, we will need the following auxiliary result.
Each quadratic polynomial fF is the sum of an expression x1 · (1−x1) and several

non-negative terms, So, for x1 = 0.5, the value f(x1, . . . , xn) is greater than or equal
to 0.5 · (1− 0.5) = 0.25.

1.7◦. Now, we are ready to reduce 3-CNF satisfiability to monotonicity. For each
3-CNF propositional formula F , we feasibly construct a cubic polynomial
PF (x1, . . . , xn, xn+1) which is monotonic on the box [0, 1] × . . . × [0, 1] × [0, 1] if and
only if the formula F is not satisfiable.

This construction is as follows. For a quadratic polynomial fF (x1, . . . , xn), each
partial derivative is a linear function

yi,F (x1, . . . , xn)
def
=

∂fF
∂xi

= ai +

n∑
j=1

aij · xj .

For such a linear function, we can feasibly compute its range
[
y
i,F

, yi,F

]
for xi ∈ [0, 1].

Then, we can define the following cubic polynomial:

PF (x1, . . . , xn, xn+1) = (fF (x1, . . . , xn)− 0.04) · xn+1 −
n∑

i=1

min
(

0, y
i,F

)
· xi.

Let us prove that the monotonicity of this polynomial is equivalent to f
F
≥ 0.09 and

thus, to the fact that the formula F is not satisfiable.

1.7.1◦. If the formula F is satisfiable, i.e., if f
F

= 0, this means that fF (x1, . . . , xn) = 0
for some values xi ∈ [0, 1]. For these values x1, . . . , xn, we have

∂PF

∂xn+1
= fF (x1, . . . , xn)− 0.04 = −0.04 < 0,

and thus, the cubic function PF is not increasing with respect to xn+1. On the other
hand, when x1 = 0.5 and f(x1, . . . , xn) ≥ 0.25, we get

∂PF

∂xn+1
= fF (x1, . . . , xn)− 0.04 ≥ 0.25− 0.04 = 0.21 > 0,

so the function PF is not decreasing with respect to xn+1 either. Thus, the function
PF is not monotonic with respect to xn+1 and hence, not monotonic.

1.7.2◦. To complete the proof of NP-hardness, it is therefore sufficient to show that if
the formula F is not satisfiable, i.e., if f

F
≥ 0.09, then the cubic function PF is indeed

monotonic. Specifically, we prove that the function PF is increasing with respect to
all its variables, i.e., that all its derivatives are non-negative. Indeed, in this case,
fF (x1, . . . , xn) ≥ 0.09 for all xi and thus,

∂PF

∂xn+1
= fF (x1, . . . , xn)− 0.04 ≥ 0.09− 0.04 = 0.05 > 0.



Reliable Computing 18, 2013 95

For each i from 1 to n, we have

∂PF

∂xi
= xn+1 ·

∂fF
∂xi
−min

(
0, y

i,F

)
. (1)

To prove that this expression is always non-negative, let us consider two possible cases:
y
i,F
≥ 0 and y

i,F
< 0.

In the first case, when y
i,F
≥ 0, we have min

(
0, y

i,F

)
= 0, so we need to prove

that xn+1 ·
∂fF
∂xi

≥ 0. By definition, y
i,F

is the minimum of the derivative
∂fF
∂xi

; since

this minimum is non-negative, the derivative
∂fF
∂xi

is non-negative as well. Thus, the

product of two non-negative numbers xn+1 and
∂fF
∂xi

is non-negative.

In the second case, when y
i,F

< 0, we have min
(

0, y
i,F

)
= y

i,F
. So, to prove that

the expression (1) is non-negative, we need to prove that

xn+1 ·
∂fF
∂xi

≥ y
i,F

.

Indeed, by definition of y
i,F

, we have
∂fF
∂xi

≥ y
i,F

. Multiplying both sides of this

inequality by a non-negative number xn+1, we conclude that

xn+1 ·
∂fF
∂xi

≥ xn+1 · y
i,F

.

On the other hand, since xn+1 ∈ [0, 1], we know that xn+1 ≤ 1. Multiplying both
sides of this inequality by a negative number y

i,F
, we conclude that xn+1 ·y

i,F
≥ y

i,F
.

Thus, by transitivity, we conclude that indeed xn+1 ·
∂fF
∂xi

≥ y
i,F

.

The reduction is proven.

2◦. Let us now prove that the problem of checking non-monotonicity of a cubic
polynomial P (x1, . . . , xn) belongs to the class NP. Indeed, for a smooth function
P (x1, . . . , xn), non-monotonicity means that for some i, the i-th partial derivative

P,i
def
=

∂P

∂xi
can be both positive and negative. This, in its turn, is equivalent to saying

that the largest possible value of the partial derivative P,i is positive and the smallest
possible value of P,i is negative.

For each j, the maximum of a smooth function g(x1, . . . , xn) on the interval [xj , xj ]
is attained either at one of the endpoints xj and xj , or at an intermediate point – in

which case
∂g

∂xj
= 0. For a quadratic function g = P,i, the derivatives are linear.

Thus, for each j, we get one of following three linear equations: xj = xj , xj = xj , or
∂g

∂xj
= 0.

If we know, for each j, which of the three alternatives occur, then we get an
easy-to-solve system of linear equations; after solving this system, we can feasibly
compute the corresponding value of the function P,i. Thus, non-monotonicity means
that there exists an integer i ≤ v and two combinations of one-of-three selections for
which the first combination leads to P,i > 0 and the second combination leads to



96 A. Ponwuk, L. Longpré, V. Kreinovich, Checking Monotonicity is NP-Hard

P,i < 0. Once the combinations are fixed, checking is feasible; so, the problem of
checking non-monotonicity is indeed in the class NP.

The proposition is proven.

Acknowledgments. This work was supported in part by the National Science
Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excel-
lence) and DUE-0926721, by Grants 1 T36 GM078000-01 and 1R43TR000173-01 from
the National Institutes of Health, and by a grant on F-transforms from the Office of
Naval Research.

The authors are grateful to anonymous referees for valuable suggestions.

References

[1] Ko. K.-I: Complexity Theory of Real Functions, Birkhäuser, Boston, Mas-
sachusetts, 1991.

[2] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and
Feasibility of Data Processing and Interval Computations, Kluwer, Dordrecht,
1997.

[3] Moore, R. E., Kearfott, R. B., Cloud, M. J.: Introduction to Interval Analysis,
SIAM Press, Philadelphia, Pennsylvania, 2009.

[4] Papadimitriou, C. H.: Computational Complexity, Addison Wesley, San Diego,
1994.


