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Abstract

Semi-Markov processes (SMPs) are adequate models for correlated
data traffic in service-integrated communication networks. In recent works,
we have developed both modeling techniques and verified factorization
methods for the analysis of queueing systems of GI/G/1 and SMP/G/1
types. These methods allow a quick and validated computation of work-
load distributions at the respective node.

In this paper, we study enhancements and alternatives to these known
methods. Our objective is to yield more accurate results for small SMP
models, such as described previously in literature, as well as to be able
to analyse larger SMP/G/1 models, for instance, resulting from modeling
video traffic.

These enhancements include a modified polynomial factorization tech-
nique as well as an application of the successive over-relaxation (SOR)
technique to the verified Wiener-Hopf factorization.

We give a brief overview of how we combine these methods in an
integrated environment and the benefit for modeling and analysis of traffic
in communication networks. Using this environment, we illustrate the
particular techniques on two examples.
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1 Introduction

Today, a declared goal of the telecommunication industry is the convergence of previ-
ously separate networks, that is, the objective of migrating both circuit-switched voice
and packet-switched data networks to a single packed-switched, service-integrating
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network. The services of the network are not limited to voice and data, video stream-
ing is gaining an increasing share of today’s internet traffic. The integration of all these
services, in order to be useful, requires a proper management of the quality of service
(QoS). The Internet Engineering Task Force (IETF) has proposed two approaches:
Integrated Services [21] and Differentiated Services [3]. The former relies on a reserva-
tion of the required resources, and therefore it is necessary to know the requirements
in advance. The latter describes a classification and prioritization of particular data
packets. The classification has to take place in edge routers, the core routers of a
network can handle the packets according to a given prioritization scheme. In either
case, proper methods for the modeling of data traffic and methods for the analysis of
these models in order to determine the resources required are crucial.

The resource requirements are unpredictable from a number of viewpoints, this
includes the amount of transmission time and volume, the number of network resources
available, randomly changing workloads, routes and system parameters and failure
events. However, the quality of the network services and the experience of the user
strongly depends on those properties.

Stochastic models are a good approach to describe the unpredictable circumstances
in communication networks. We employ random variables to describe both the arrival
process and the available capacity. At least, two ways are feasible: On the one hand,
one may consider the interarrival times between events like arrival of packets, flows,
connections or other relevant units, this is corresponding to the classical approach
regarding queueing and service systems. On the other hand, time-slotted models can
be applied that rely on the counting functions in fixed time intervals. The respective
analysis, when it comes to SMP/G/1 queueing systems, is equivalent [15, 6, 7]. In brief,
a semi-Markov process is a generalization of a Markov process. The holding times for
the particular states are given by arbitrary state- or transistion-specific distributions.
In the context of communication networks, the particular states may be identified with
corresponding data rates on a link.

Since the capacity on each transmission link is limited, discrete time models with
finite distributions are appropriate. This includes deterministic service as the simplest
case, however, various autocorrelation structures of Internet traffic are taken into
account using semi-Markovian modeling.

The question of how to create appropriate models for given data traffic has been
discussed for a long time [17, 14, 8, 19]. The greatest difficulty lies in capturing
the autocorrelation of the original traffic, which is important for accurate workload
predictions. Video traffic, which represents an increasing part of today’s Internet
traffic, shows a bursty behavior, i.e., a high level of autocorrelation.

Methods that attempt to overcome these difficulties when determining the param-
eters of a SMP model of an arrival process are described in [11]. Using these methods,
original video traffic as well as aggregated traffic from different types of sources is
described by SMP models in a small state space, preserving the autocorrelation func-
tion of the original data series. To increase the accuracy of these models, however,
more states may be considered in the underlying Markov chain. Aggregated traffic
from several sources may furthermore be given as a superposition of semi-Markovian
models, thus resulting in a consequently larger state space. Using known techniques
for an interval-based analysis studied in previous work [20], a verification of these large
is not feasible in every case.

In the present work, we propose possible enhancements to these methods, in order
to be able to yield more precise results for the given SMP models, as well as to
make in feasible to analyse larger SMP models in the first place. These approaches
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include a modification of the polynomial factorization method, discussed in Section 2.
As an alternative to finding the roots of the characteristic polynomial using verified
algorithms, we consider this as an instance of the polynomial eigenvalue problem. This
way, we can apply dedicated verified eigenvalue algorithms included, for instance, in
INTLAB [18]. This is discussed in Section 3.

Additionally, we present an application of the successive over-relaxation (SOR)
technique to the verified Wiener-Hopf factorization described in Section 4, which is
determined using a SMP extension of the Grassmann-Jain algorithm [5]. This way,
the speed of convergence may be improved.

As part of an ongoing development effort [10], all these methods and their re-
spective improvements are included in our integrated problem-solving environment,
InterVerdiKom (Section 5), which is used to provide some numerical examples (Sec-
tion 6).

2 Polynomial Factorization

We assume a given discrete-time SMP/G/1 queueing system (see [13]). The arrival
process describing the inter-arrival times of events At is given as a semi-Markovian
process with M states, which we denote as SMP(M). The forwarding capacity of the
router is given as the time needed to process a single event, St. The variables St are
independent and identically distributed. We assume the random variable distributions
to be constant over time and having finite support, hence, the time index t may be
omitted.

Since the analysis relies on the difference process U , it is not relevant whether
we consider a classical queueing system as described or a time-slotted system. In
the latter approach, the arrival process denotes the amout of incoming events at a
particular time slot, the service process describes the amount of events processed in
the time slot. For a classical system, we determine the difference process as U = S−A,
in the second case, it is given as U = A− S.

The support of U is limited, thus −g < U < h. Let σt denote the state of the
difference process at time t. The state-dependent distributions of the difference process
P (U = k, σt = i) and state transition probabilities are then given by the distributions

uij(k) = P (σt+1 = j, U = k|σt = i)

and denoted as a polynomial matrix U(z) of the respective generating functions, U(z) =
(uij(z)) with uij(z) =

∑h
k=−g uij(k) · zk.

The workload Wt of a given queueing system at a point in time t – in accordance
with Lindley’s equation [16] – is determined by a convolution of the workload at the
previous slot and the difference process, that is, Wt = max(Wt−1 + U, 0). The goal of
the polynomial factorization method is to get a solution for this recursive relation. If
E(U) < 0 holds true, the workload converges to a steady-state distribution. We define
this distribution as:

wi(k) := lim
t→∞

P (Wt = k, σt = i), k ∈ N0, i ∈ {1, . . .M}.

The value given by wi(k) may be interpreted as the probability of the arrival process
being in state i and the queue having a discrete workload of k. Let the distributions
be denoted as a vector ~w(k) = (w1(k), . . . , wM (k))T . We describe the basic idea of the
polynomial factorization approach to compute the actual distribution and point the
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curious reader to previous works for more details [12]. To do so, we are looking for a
representation for the workload distribution that fulfills the recursive relation

wi(k) =

M∑
j=1

h∑
l=−g

wj(k + l)uji(−l) for i ∈ {1, . . . ,M} and k ≥ h (1)

and the side constraints

wi(k) =

M∑
j=1

k∑
l=−g

wj(k + l)uji(−l) for i ∈ {1, . . . ,M} and 1 ≤ k ≤ h− 1

wi(0) =

M∑
j=1

g∑
l=0

wj(l)

g∑
n=l

uji(−n) for i ∈ {1, . . . ,M}.

Theorem 2.1 The representation ~w(k) = βkγ~α is a solution for relation 1 if and
only if β ∈ C \ {0} is a solution of the characteristic system equation

det(UT (z−1)− I) = 0 (2)

and for ~α ∈ Cm holds

(UT (β−1)− I)~α = ~0. (3)

To prove the above theorem, we insert into relation 1 and yield for all k ≥ h:

~w(k) =

g∑
n=−h

~uT (−n)~w(k + n)

⇔ βkγ~α =

g∑
n=−h

~uT (−n)(βk+nγ~α)

⇔ ~α =

g∑
n=−h

~uT (−n)(βn~α)

⇔ ~0 =

(
g∑

n=−h

βn~uT (−n)− I

)
~α

⇔ ~0 =
(
UT (β−1)− I

)
~α.

We can safely assume that γ 6= 0, because w(k) = 0 for all k ∈ N0 concludes otherwise.
The last equation holds for all β ∈ C \ {0} with det(UT (z−1)− I) = 0.

To consider the side constraints, we extend the representation to:

~w(k) =

Mh∑
µ=1

βkµγµ~αµ for k ∈ N0.

Definition 2.1 The characteristic polynomial of a SMP/G/1 system is defined as

p(z) := zMh det(UT (β−1)− I).



Reliable Computing 15, 2011 183

It is easy to see that the Mh roots of the characteristic polynomial fulfill the require-
ments of the theorem above. Given the root βµ, µ = 1, . . .Mh, we are able to compute
the coefficient vector ~αµ and the values γµ, by solving equation systems. Given 3 and∑M
i=1 α

(i)
µ = 1, we solve

U1,1(β−1
µ )− 1 · · · UM−1,1(β−1

µ ) UM,1(β−1
µ )

...
. . .

...
...

U1,M−1(β−1
µ ) · · · UM−1,M−1(β−1

µ )− 1 UM,M−1(β−1
µ )

1 · · · 1 1




α
(1)
µ

...

α
(M−1)
µ

α
(M)
µ



=


0
...
0
1


with Uij(z) denoting the respective elements of the polynomial matrix U(z). The
coefficients γµ are derived from

β−1
1 α

(1)
1 · · · β−1

Mhα
(1)
Mh

...
. . .

...

β−1
1 α

(M)
1 · · · β−1

Mhα
(M)
Mh

β−2
1 α

(1)
1 · · · β−2

Mhα
(1)
Mh

...
. . .

...

β−h+1
1 α

(M)
1 · · · β−h+1

Mh α
(M)
Mh

1
1−β1

α
(1)
1 · · · 1

1−βMh
α

(1)
Mh

...
. . .

...
1

1−β1
α

(M)
1 · · · 1

1−βMh
α

(M)
Mh



 γ1

...
γMh

 =



0
...
0
0
...
0
p1

pM


with pi, i ∈ {1, . . .M} denoting the stationary probabilities of the difference process
being in state i. These can be computed from

M∑
i=1

pi = 1 and pi =

M∑
j=1

pjP (σt+1 = j|σt = i).

From an algorithmic point of view, we have to compute a determinant of a pol-
ynomial matrix, find the roots of the resulting polynomial, and solve two equation
systems to obtain a representation of the workload distribution. Considering the nu-
merical stability of the approach, the most critical step is the correct computation of
the polynomial roots.

When it comes to large models in terms of state space and distribution steps, the
degree of the characteristic polynomial gets high as well. Because only the roots within
the unit circle are relevant, we face the problem of selecting the correct roots amongst
the floating-point approximations. In order to do so, we apply interval arithmetic:
Starting from the approximations, we enclose the parameters of the model in point
intervals and use the root verification algorithm from the C-XSC toolbox [9]. This
way, we yield tight verified enclosures of the polynomial roots and are therefore able
to determine the correct ones within the complex unit circle.
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However, we still encounter problems in larger examples: If the interval enclosures
are not disjunct or if they intersect the unit circle, there is no way of telling which ones
are the correct roots that fulfill the theorem above. Hence, the ability to get tighter
enclosures of the roots of the characteristic polynomial is an important objective for
improvements.

3 Verified Eigenvalue Method

Looking for an improvement to the above polynomial factorization approach, we have
studied eigenvalue methods to determine the parameters of the workload representa-
tion. As mentioned, the values βµ are starting points for the workload analysis. In
the following, we present an alternate approach of determining these values. As an
additional benefit, we are able to compute the parameter vectors ~αµ as well. Com-
pared to the traditional factorization method, the new approach allows to compute
these values directly from the polynomial matrix U(z) instead of first computing the
determinant and the roots and the subsequent verification step.

Theorem 2.1 provides the foundation for the polynomial factorization. We are
looking for the values β and ~α that fulfill the relation (UT (β−1) − I)~α = ~0 and, if
~α 6= ~0, consequently det(UT (β−1)− I) = 0. Let λ := β−1 and Ψ(λ) := (UT (β−1)− I),

then finding the solution of the equation is equivalent to the polyomial eigenvalue
problem (cf. [2]), that is, finding the complex eigenvalues λ and eigenvectors α that
fulfill

Ψ(λ)~α = ~0.

The matrix polynomial Ψ(λ) can be denoted in the form

Ψ(λ) = λlCl + λl−1Cl−1 + . . .+ λC1 + C0,

with Ci being the particular coefficient matrices. By introducing block matrices A and
B with

A :=



0 I 0 · · · 0

0 0 I
. . . 0

...
...

. . .
. . .

...
...

...
...

. . . I
−C0 −C1 −C2 · · · −Cl−1


, B :=


I

I

. . .
...

I
Cl


the polynomial eigenvalue problem can be linearized to Az = λBz, so that we can
apply established eigenvalue solvers to compute solutions for λ. The eigenvectors α
are derived from

z = (~αT , λ~αT , . . . λl−1~αT )T .

When performing the actual computation using floating-point arithmetic, we use the
column of the matrix z that results in the smallest numerical error, that is, we evaluate
Ψ(λ)~α for each column and choose the values ~α resulting in the smallest magnitude.

From the algorithmic point of view, we have to perform a linearization of the
polynomial matrix, apply an eigenvalue solver and solve one equation system for the
parameters γ. In our implementation, we apply the eigenvalue solving routines in the
LAPACK package to determine approximate values λ. We have ported the verifyeig()
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routine from S. Rump’s INTLAB package [18] to C++ to get verified enclosures for
the approximations.

However, we may face a slight problem when computing the eigenvalues: If the
characteristic polynomial has roots at zero, these roots correspond to eigenvalues at
zero, meaning that λ = β−1 is a division by zero. To cope with this situation, we
reverse the order of the coefficient matrices of the polynomial matrix U(z) to determine
the values β directly.

4 Wiener-Hopf-Factorization

Another approach to perform a workload analysis of a given SMP/G/1 queueing sys-
tem is by Wiener-Hopf factorization using a modified Grassmann-Jain algorithm. W.
Grassmann and L. Jain first applied this method to perform a workload analysis on
a GI/G/1 queueing system. They described three variants of their algorithm, and
proved the convergence of the slowest variant [5].

It is possible to extend the algorithm to determine the Wiener-Hopf factorization
of SMP/G/1 queues, thereby providing another means for workload analysis [7]. How-
ever, a formal proof of convergence for the algorithm is not given. We apply interval
arithmetic to provide a computer-assisted proof of convergence on a by-case basis in an
additional verification step of the Wiener-Hopf factorization algorithm, the complete
verified method is included in our integrated toolkit. In the following, we explain the
basic idea of the algorithm and the subsequent verification step.

The idea is to divide the development of the workload of a given queueing system
over time in busy phases and idle phases. A busy period is defined as the timespan
between the first arrival, given an empty system with workload 0 until the system
has processed the current request and possible additional arrivals, and runs empty
again. The time spans between the busy periods are defined as idle periods. While a
particular request is being served, additional arrivals may occur. These arrivals start
another busy phase with the niveau of the current workload (a busy phase is said to be
of niveau k if the workload at its beginning is k). A busy phase within a busy period
may be seen as a busy period shifted to a particular niveau. From this point of view,
a busy period is nothing else then a busy phase at niveau 0.

The basic idea for the Wiener-Hopf factorization is to split the given difference
distribution into two distributions depending on each other and the original difference
distribution. As in the previous section, let U = A−S denote the difference of arrival
and service times, σ ∈ {1, . . . ,M} the states of the Markov chain embedded in the
arrival process and

uij(k) := P (Un+1 = k, σn+1 = j|σn = i);

i, j ∈ {1, . . . ,M}; u(k) = (uij(k)),−g ≤ k ≤ h,
then lij(k) = P (I = k, σE = j|σA = i) denotes the probability for an idle period of
duration k, beginning in state σA and ending in state σE . As a second distribution,
we introduce vij(k) which describes the probability of a busy phase with niveau k
and initial state j occurring in a busy period with initial state i. Analogous to the
difference distribution uij(k), they are denoted in matrix form l(k) and v(k). We get
the following relations:

v(i) = u(i) +

h−i∑
j=1

v(i+ j)l(j) if i = h, . . . , 0, v(i) = 0 if i > h
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l(i) = u(−i) +

g−i∑
j=0

v(j)l(i+ j) if i = g, . . . , 1, l(i) = 0 if i > g

To compute the actual distributions, we start with an approximation for l
(0)
ij (k):

lij(k) =
uij(k)∑g
n=1 uij(n)

, k = 1, . . . g.

Furthermore, we have to handle the implicity of the above relation system with:

l(i) = (I − v(0))−1

u(−i) +

min(g−i,h)∑
j=1

v(j)l(i+ j)

 , i = g, . . . 1.

Starting with the initial approximation l
(0)
ij (k), we apply the relations above to

calculate

l
(0)
ij (k)→ . . .→ l

(n)
ij (k)→ v

(n)
ij (k)→ l

(n+1)
ij (k)→ v

(n+1)
ij (k)→ . . .

until maxi,j,k(|l(n+1)
ij (k) − l(n)

ij (k)|) < ε for a given threshold ε. Please note that the
convergence of this algorithm is not formally proven, instead, we perform an additional
verification step using interval arithmetic.

To do so, we start with the approximations determined by the outcome of the
algorithm above, denoted as ṽ(k) and l̃(k). We choose a parameter δ > ε and set the
intervals

[l
(0)
ij (k)] = [̃lij(k)− δ, l̃ij(k) + δ] and [v

(0)
ij (k)] = [ṽij(k)− δ, ṽij(k) + δ].

Using these enclosures, we apply the interval variants of the usual relations and perform
a single step of the iteration above. If

[l
(n+1)
ij (k)] ⊆ [l

(n)
ij (k)]

holds true for all i, j, k, Brouwer’s fixed point theorem guarantees a fixed point within
the newly computed intervals, that is, the correct Wiener-Hopf factorization distribu-
tions are guaranteed to be included in the respective intervals. The interval diameter
gives a measure on the accuracy of the actual interval-valued approximation. To in-
crease the accuracy, further iteration steps may be performed as needed.

Next, we show how these distributions can be used to compute a workload distri-
bution for the given queueing system. We denote the distribution vij(k) using a gen-
erating function as Vij(z) =

∑h
k=0 vij(k)zk and a polynomial matrix V(z) = (Vij(z)).

The expectation value of arrivals during a busy period with initial state i, E(Ni), is
recursively given as

E(Ni) = 1 +

M∑
j=1

h∑
k=0

vij(k)E(Nj)⇔ (E(N1), . . . , E(NM ))T = (I − V(1))−1

The workload distribution in state i, denoted as a generating function Wi(z), adheres
to a similar relation

Wi(z)E(Ni) = 1 +

M∑
j=1

Vij(z)Wj(z)E(Nj)
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⇔ (I − V(z)) (E(N1)W1(z), . . . , E(NM )WM (z)) T = ~1

By evaluating the relation above at z = 0, we yield the values w1(0), . . . , wM (0).
To determine the higher workload probabilities, we derive the relation, leading to

E(Ni)wi(n) =

M∑
j=1

n∑
k=0

vij(k)E(Nj)wj(n− k).

Starting with the probabilities for workload 0, we are able to compute all workload
probabilities, depending on the state of the system. The overall workload probabili-
ties - independent of the state of the semi-Markov process - are given by taking the
probability of the initial state of a busy period li and the expectation value of arrivals
into account:

w(n) =

∑M
i=1 liE(Ni)wi(n)∑M

i=1 liE(Ni)

li is derived from lij :=
∑g
k=1 lij(k), with lj :=

∑M
i=1 lilij ,

∑M
j=1 lj = 1.

This method, compared to the polynomial factorization approach, shows some
favorable properties. In particular, we are able to analyse models that are larger in
terms of number of states and discretization steps of the state-specific dsitribution.
However, a high level of autocorrelation in the SMP arrival process model, as it is
found, for instance, in video traffic, may significantly slow down the convergence.
Therefore, we investigated techniques to speed up the initial approximation step by
a modification of the iteration very similar to successive overrelaxation (SOR). To do
so, we introduce a coefficient ω into the iteration equations:

v(n+1)(i) = v(n)(i) + ω

[
u(i) +

h−i∑
j=1

v(n)(i+ j)l(n)(j)− v(n)(i)

]

l(n+1)(i) = l(n)(i) + ω

[(
I − v(n)(0)

)
−1

(
u(−i) +

g−i∑
j=0

v(n)(j)l(n)(i+ j)

)
− l(n)(i)

]
Choosing ω := 1 results in the known relations. However, choosing ω > 1 may

speed up the iteration in some cases. We apply an adaptive algorithm to determine
values for ω (see also [4]):

1. All j iteration steps, compute

q := max
i,j,k

|X(n+1)
ij (k)−X(n)

ij (k)|
|X(n)

ij (k)−X(n−1)
ij (k)|

2. If q < 1, set

q := max(q, ω − 1)

and compute a new ω:

ω :=
1

1 +
√

1− 1
q

(
q+ω−1
ω

)2
However, the convergence of the iteration is not proven. During our experiments, we
saw that a large value for ω may result in a divergent iteration.
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5 Integrated Problem-Solving Environment

Our research has shown a clear interdependence between modeling and verified analysis
of data traffic. On the one hand, the larger the semi-Markov models to be analyzed
are in terms of state space and distribution steps, the more difficult it gets to provide a
verification of the Wiener-Hopf or polynomial factorization. On the other hand, larger
models provide a more accurate representation of the autocorrelation of an original
data source, which is very important for an accurate analysis of the resulting queueing
system [11]. Furthermore, the analysis methods presented in this work have different
characteristics. While one method may be successful in providing a verified analysis
of the workload, the other approaches may fail (see Section 6).

Therefore, our intention is to provide the interested user with a comprehensive
toolkit that takes both modeling and analysis aspects into account. The methods de-
scribed have been implemented as parts of our ongoing effort to create an integrated
environment for modeling and verified analysis of correlated data traffic in communi-
cation networks, InterVerdiKom. In the following, we will explain some of the design
principles of the toolkit. Some numerical examples in Section 6 will illustrate the
advantages of the integrated approach for traffic analysis.

The analysis techniques included in the toolkit have been discussed earlier, the
modeling methods are subject of a separate publication [11]. Our integrated approach
includes two important aspects: On the one hand, this refers to a single data model
used throughout the modeling and analysis process. This way, no conversions between
different interval representations potentially introducing additional round-off errors
are needed. Furthermore, the results from different analysis or modeling techniques
are directly comparable.

On the other hand, we combine the modeling and subsequent analsis into a single
workflow. This enables the user to modify the modeling/analysis process at different
stages from within a consistent user interface to get the best results possible. Since
there are several techniques applicable at certain points in the workflow, we chose
to represent the process as a tree: At each node, the user can branch off, apply
different techniques and compare the results. For instance, if a proof of convergence is
not possible using different parameters of the Wiener-Hopf factorization, he may try
polynomial factorization or the eigenvalue approach as well as change parameters of
the modeling process to produce smaller semi-Markov models. Since the workflow is
organized as a tree, the complete process and all results from the different parameter
alternatives and algorithms remain traceable within the same environment.

To further support this approach, we provide the user with a consistent and con-
vienient graphical user interface (Figure 1 displays a screenshot of the integrated envi-
ronment). The tree representation of the workflow is shown at the left, details about
the current step are given in the main view to the right. A console providing de-
tailed information about the algorithms and possible difficulties is also included in the
application, but not shown in the screenshot.

InterVerdiKom takes a number of other important aspects of modern software
development into account: The toolkit shows a modular composition, making it easy
to add additional views or numerical methods. The different algorithms may be run
at the same time on multiprocessor machines. We have included a number of export
options, for instance, to MATLAB and CSV files.

The application makes use of a number of external libraries, namely the C-XSC
toolbox [9] and LAPACK [1] for the numerical computations and Qt for the graphical
interface.
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Figure 1: Screenshot of the InterVerdiKom application

6 Examples

We illustrate the capabilities and limits of the presented techniques and their imple-
mentation in InterVerdiKom by two examples. The first one is given by a semi-Markov
arrival process with three states. The transition probabilities are given by

P =

 0.2 0.6 0.2
0.6 0.3 0.1
0.4 0.3 0.3

 ,

the state-specific distributions by

P (A1 = 0) = 0.01, P (A1 = k) = 0.02 for k = 1, . . . , 49,

P (A1 = 50) = 0.01,

P (A2 = 0) = 0.02, P (A2 = k) = 0.04 for k = 1, . . . , 24,

P (A2 = 25) = 0.02, P (A2 = k) = 0 for k = 26, . . . , 50,

P (A3 = 0) = 0.02, P (A3 = k) = 0 for k = 1, . . . , 25,

P (A3 = 50) = 0.02, P (A3 = k) = 0.04 for k = 26, . . . , 49.

A selection of the resulting interval enclosures for different workload probabilities
and the particular methods presented in this work are given in Table 1. Please note
that our implementation of the verified eigenvalue method currently does not employ
circular complex interval arithmetic, hence, the accuracy of the interval enclosures is
significantly less than when applied with Rump’s original implementation in INTLAB
due to the wrapping effect. As part of our current work, we intend to make use of
circular arithmetic as well.
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w Polynomial Factorization Verified Eigenvalues
w(0) 9.3420008080603523

73357808 · 10−1 9.3420008196924254
7957037043 · 10−1

w(10) 7.8832706719369095
0112136 · 10−5 7.8832706868932508

560549170 · 10−5

w(50) 1.1468194371166538
0399568 · 10−17 1.1468194384919901

56646422 · 10−17

w Wiener-Hopf Factorization
w(0) 9.3420008076984362

76924 · 10−1

w(10) 7.8832706714743644
37587 · 10−5

w(50) 1.1468194370783589
2563 · 10−17

Table 1: Interval enclosures for workload probabilities, SMP(3) example

w Wiener-Hopf Factorization
w(0) 9.8736210107377165

68472 · 10−1

w(10) 5.6404955482034587
23029 · 10−4

w(50) 3.7430480782296515
88697 · 10−6

Table 2: Interval enclosures for workload probabilities, video traffic model

For the second example, we have generated a SMP arrival model with 7 states
for a given video trace with high autocorrelation, the state-specific distributions are
modeled in 70 steps. The service process is given as a discrete renewal model with a
constant capacity E(S) = E(A) + 4σ(A). We apply the same discretization technique
like for the arrival process (see [11]).

In this more complex example, an analysis using the polynomial factorization
method and the verified eigenvalue technique is not feasible due to numerical errors. In
particular, a selection of the correct roots or eigenvalues, respectively, is not possible
because of inaccuracies. Hence, we give the results for the Wiener-Hopf factorization
only.

7 Conclusion and further work

In this work, we have presented three different methods for the verified interval-based
analysis of semi-Markovian queueing systems. All of these techniques are included in
our toolkit InterVerdiKom which provides an integrated approach to modeling and
verified analysis of correlated traffic in service-integrated communication networks.

We have seen that the particular algorithms have different capabilities. The choice
of which algorithm to apply depends on the problem at hand, however, the Wiener-
Hopf approach, in general, provides the most accurate results and is therefore appro-
priate for the analysis of larger SMP models resulting, for instance, from modeling of
video traffic.

Our integrated environment allows the user to branch off at each stage of the
modeling and analysis workflow and apply alternative techniques, while remaining
in the same environment. A conversion of the interval-valued intermediate results
is avoided, thus increasing the accuracy of the overall result and making the results
directly comparable.
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We intend to change our implementation of the verifyeig algorithm to make use of
circular interval arithmetic to reduce inaccuraries introduced by the wrapping effect.
This way, we expect the accuracy of the proposed verified eigenvalue technique to
increase. Furthermore, we want to enhance InterVerdiKom by adding techniques for
describing correlated output processes and superposition of arrival processes of the
queueing systems under consideration. This will enable an integrated interval-valued
analysis of open queueing networks.
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