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Abstract

Starting from a suitable fixed point relation, we derive higher order
iterative methods for the simultaneous inclusion of polynomial multiple
zeros in circular complex interval arithmetic. Each of the resulting disks
contain one and only one zero in every iteration. This convenient inclu-
sion property, together with very fast convergence, ranks these methods
among the most powerful iterative methods for the inclusion of polynomial
zeros. Using the concept of R-order of convergence of mutually depen-
dent sequences, we present the convergence analysis of the total-step and
the single-step methods with Schröder’s and Halley’s corrections under
computationally verifiable initial conditions. The proposed self-validated
methods possess a great computational efficiency since the acceleration of
the convergence rate from four to five and six is achieved without addi-
tional calculations. To demonstrate convergence behavior of the presented
methods, two numerical examples are given.

Keywords: Zeros of polynomials; multiple zeros; simultaneous methods; inclusion
methods; circular interval arithmetic; convergence.
AMS subject classifications: 65H05, 65G20, 30C15.

1 Introduction

In the application of any iterative root finding method a considerable amount of work
must be engaged in obtaining rigorous error bounds of the improved approximations
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to the roots. Iterative methods for the simultaneous determination of complex zeros
of a given polynomial, realized in complex interval arithmetic, are very efficient device
to error estimates for a given set of approximate zeros. This kind of self-validated
methods possess the important inclusion property, meaning that the obtained interval
approximations enclose the sought zeros in each iteration. The aim of this paper is
continuation of the research concerned with fast iterative methods for the simultaneous
inclusion of polynomial zeros, which can be regarded as interval versions of Halley-like
iterative method presented in [16] and [26] and discussed later in [15], [17] and [21].

Starting from some initial disks that contain multiple complex zeros of a polynomial
and a suitable fixed point relation, we construct interval methods for the refinement
of these disks. The improvement of these inclusion disks, in the sense of their contrac-
tion, is performed by higher order iterative procedures using circular complex interval
arithmetic. The acceleration of convergence is attained by applying the centered inver-
sion of disks and using Schröder’s and Halley’s corrections. Further improvement can
be achieved employing Gauss-Seidel approach dealing with already calculated disks in
the current iteration as soon as they are available.

The presentation of the paper is organized as follows. Some basic definitions and
operations of circular complex interval arithmetic, necessary for the construction and
the convergence analysis of inclusion methods, are given at the end of Introduction.
The modified total-step methods with the increased convergence speed are developed in
Section 2 using Schröder’s and Halley’s corrections. We give the convergence analysis
in Section 3 and discuss the single-step versions of these methods in Section 4. Section
5 contains numerical examples.

The development and convergence analysis of the proposed inclusion methods need
the basic properties of the so-called circular complex arithmetic introduced by Gar-
gantini and Henrici [4]. A circular closed region (disk) Z := {z : |z − c| ≤ r} with
center c := mid Z and radius r := rad Z will be denoted in parametric notation by
Z := {c; r}. If Zk := {ck; rk} (k = 1, 2), then

Z1 ± Z2 = {c1 ± c2; r1 + r2},
w · {c; r} = {wc; |w|r} (w ∈ C),

Z1 · Z2 = {c1c2; |c1|r2 + |c2|r1 + r1r2},

{c; r}−1 =
{c̄; r}

|c|2 − r2
(0 /∈ {c; r}), (exact inversion), (1.1)

{c; r}I =

{
1

c
;

r

|c|(|c| − r)

}
(0 /∈ {c; r}), (centered inversion), (1.2)

Z1 : Z2 = Z1 · Z−1
2 or Z1 : Z2 = Z1 · ZI

2 (0 /∈ Z2).

For the basic interval operations +,−, ·, : there holds the inclusion property, that is,

Zk ⊆ Wk ⇒ Z1 ∗ Z2 ⊆ W1 ∗ W2 (k = 1, 2; ∗ ∈ {+,−, ·, :}).

An interval function F is called complex circular extension of a complex function
f if

F (z) = f(z), (z ∈ Z), F (Z) ⊇ {f(z) : z ∈ Z}.

If f is a rational function and F is its complex circular extension, then

Zk ⊆ Wk (k = 1, . . . , q) ⇒ F (Z1, . . . , Zq) ⊆ F (W1, . . . , Wq).

In particular, we have

wk ∈ Wk (k = 1, . . . , q; wk ∈ C) ⇒ f(w1, . . . , wq) ∈ F (W1, . . . , Wq).
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In this paper we will use the following obvious properties:

z ∈ {c; r} ⇐⇒ |z − c| ≤ r. (1.3)

{c1; r1} ∩ {c2; r2} = ∅ ⇐⇒ |c1 − c2| > r1 + r2. (1.4)

More details about circular arithmetic can be found in the books [1], [15] and [24].
Throughout this paper disks in the complex plane will be denoted by capital letters.

2 Total-step method with corrections

Let f be a monic polynomial of degree n with simple or multiple complex zeros
ζ1, . . . , ζν (2 ≤ ν ≤ n), with respective multiplicities µ1, . . . , µν (µ1 + · · · + µν = n)
and let

∆0,i = 1,

∆k,i(z) =

k∑

ν=1

(−1)k−ν 1

µi

( 1

µi
+ 1
)

. . .
( 1

µi
+ ν − 1

)∑ k∏

λ=1

1

pλ!

( f (λ)(z)

λ!f(z)

)pλ

,

where k = 1, 2, . . . and the second sum on the right-hand side runs over all nonnegative
integers (p1, . . . , pk) which satisfy p1 + 2p2 + · · · + kpk = k, p1 + p2 + · · · + pk = ν ∈
{1, . . . , k}. For example, we have

∆1,i(z) =
1

µi

f ′(z)

f(z)
, ∆2,i(z) =

1

2µi

( 1

µi
+ 1
)( f ′(z)

f(z)

)2

−
1

2µi

f ′′(z)

f(z)
.

We observe that the function Ni(z) =
∆0,i(z)

∆1,i(z)
= µi

f(z)

f ′(z)
appears in the Schröder

iterative method ẑ = z − Ni(z) of the second order and

Hi(z) =
∆1,i(z)

∆2,i(z)
=

((1 + 1/µi

2

) f ′(z)

f(z)
−

f ′′(z)

2f ′(z)

)−1

occurs in cubically convergent Halley’s iterative formula ẑ = z − Hi(z).

In our consideration we will use the abbreviations

qλ,i :=
ν∑

j=1

µj

(z − zj)λ
, σλ,i :=

ν∑

j=1

j 6=i

µj

(z − ζj)λ
(λ = 1, 2).

The following fixed point relation was derived in [26]:

ζi = z −
1

Hi(z)−1 −
f(z)

2f ′(z)

( 1

µi
σ2

1,i + σ2,i

) . (2.1)

Let us define the disk

Sλ,i(X , Y ) :=
i−1∑

j=1

µj

(
(z − Xj)

I
)λ

+
ν∑

j=i+1

µj

(
(z − Yj)

I
)λ

(λ = 1, 2),
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where X = (X1, . . . , Xν) and Y = (Y1, . . . , Yν) are vectors whose components are
disks. Taking disks Z1, . . . , Zν containing the zeros ζ1, . . . , ζν instead of these zeros
and taking z = zi := mid Zi in (2.1), we obtain the following inclusion,

ζi ∈ zi − INV

(
Hi(zi)

−1 −
f(zi)

2f ′(zi)

[ 1

µi
S2

1,i(Z, Z) + S2,i(Z, Z)
])

, (2.2)

where Z = (Z1, . . . , Zν) and INV ∈ {()−1, ()I}. To indicate the type of inversion
that we use, denoting some quantities we will add the superscript indices “e” (exact
inversion) and “c” (centered inversion).

The convergence speed of iterative interval methods will be estimated in this paper
by the concept of the R-order of convergence. Consider the sequences of inclusion
disks

{
Z

(m)
i

}
(i = 1, . . . , k) produced by the iterative interval method IM such that

rad Z
(m)
i → ζi (i = 1, . . . , k). Let ζ = {ζ1, . . . , ζk} be the vector of polynomial zeros

and let {r(m)} be the sequence of maximal radii of disks Z
(m)
i . The concept of R-order

of convergence, introduced by Ortega and Rheinboldt [14], is defined using the R factor

Rq

{
r(m)

}
=





lim

m→∞
sup

(
r(m)

)1/q
, q = 1

lim
m→∞

sup
(
r(m)

)1/qm

, q > 1

in the case of interval methods (see [1, Appendix A]). Then the R-order of convergence
of an interval method IM is defined as

OR(IM, ζ) =

{
+∞ if Rq(IM, ζ) = 0 for q ≥ 1
inf {q : q ∈ [1,∞), Rq(IM, ζ) = 1} otherwise.

In particular, if there exists a q ≥ 1 and a constant γ such that the inequalities

r(m+1) ≤ γ
(
r(m)

)q

(m ≥ m0)

hold for all sequences
{
Z

(m)
i

}
, then OR(IM, ζ) ≥ q (see [1, Appendix A]).

Let (Z1, . . . , Zν) := (Z
(0)
1 , . . . , Z

(0)
ν ) be initial disjoint disks containing the zeros

ζ1, . . . , ζν , that is, ζi ∈ Z
(0)
i for all i, and let zi = mid Zi. The relation (2.2) suggests

the following total-step method for the simultaneous inclusion of all zeros of f :

Ẑi = zi − INV

(
Hi(zi)

−1 −
f(zi)

2f ′(zi)

[ 1

µi
S2

1,i(Z , Z) + S2,i(Z , Z)
])

. (2.3)

The iterative method (2.3) has the order of convergence equal to four (see [15]). The
convergence of this method can be accelerated by applying the Gauss-Seidel approach.
In this manner we obtain the single-step method

Ẑi = zi − INV

(
Hi(zi)

−1 −
f(zi)

2f ′(zi)

[ 1

µi
S2

1,i(Ẑ , Z) + S2,i(Ẑ , Z)
])

. (2.4)

The R-order of convergence of the single-step method (2.4) is at least 3 + xn, where
xn > 1 is the unique positive root of the equation xn − x − 3 = 0 (for the proof see
[15]).

Remark 1 Evidently, the main part in the iteration formulas (2.3) and (2.4) is Halley’s
correction H(z). For this reason, these methods as well as their modifications which
will be considered in this paper are referred to as Halley-like methods.
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Remark 2 At first sight, it seems unreasonable to use the centered inversion in the
computation of sums Sλ,i since the exact inversion gives smaller disks. In fact, the
application of the centered inversion produces centers of the resulting disks Ẑi, which
coincide with the very fast iterative methods (in ordinary complex arithmetic). These
fast methods significantly force contraction of the disks which leads to the accelerated
convergence of interval methods. On the other hand, the exact inversion gives “shifted”
centers of the inverted disks. For this reason, the use of exact inversion can accelerate
convergence to a certain extent when the Schröder corrections are used and cannot
increase the convergence rate applying corrections that appear in iterative methods of
the order higher than two (see [17] for a detailed analysis).

Remark 3 The iterative formulas (2.3), (2.4) and those developed later require ini-
tial disks that contain the desired zeros and the knowledge of their multiplicities in
advance. Both tasks are very important in the theory of iterative interval processes.
The problem of obtaining initial disks containing the desired zeros was studied, for
instance, in [2], [7] and [19], while efficient procedures for determination of the order
of multiplicity can be found in [8], [9], [10], [11], [12], [13] and [22].

Let us introduce the abbreviations

r(m) = max
1≤i≤ν

r
(m)
i , η(m) = min

i,j
i6=j

{|z
(m)
i − z

(m)
j | − r

(m)
j },

ε
(m)
i = z

(m)
i − ζi, ǫ(m) = max

1≤i≤ν
|ε(m)

i |, µ(m) = min
1≤i≤ν

µ
(m)
i ,

where m = 0, 1, 2, . . . is the iteration index. The increase of convergence speed of
iteration methods (2.3) and (2.4) can be attained with Schröder’s correction Ni(zi)
or Halley’s correction Hi(zi), similarly as in [3] and [18], and later in [20], [21] and

[23]. In this construction we assume the choice of initial inclusion disks Z
(0)
1 , . . . , Z

(0)
ν

containing the zeros ζ1, . . . , ζν in such a way that each disk Z
(0)
i −Ni

(
mid (Z

(0)
i )
)

and

Z
(0)
i −Hi

(
mid (Z

(0)
i )
)

also contains the zero ζi (i = 1, . . . , ν). This issue is considered
in the following assertion where, for simplicity, the iteration indices are omitted.

Lemma 2.1 Let Z1, . . . , Zν be inclusion disks of the zeros ζ1, . . . , ζν , ζi ∈ Zi. If the

inclusion disks Z1, . . . , Zν are chosen so that the inequality

η > 3(n − µ)r (2.5)

is satisfied, then

(i) ζi ∈ Zi ⇒ ζi ∈ ZN,i := Zi − Ni(zi) (i = 1, . . . , ν);

(ii) ζi ∈ Zi ⇒ ζi ∈ ZH,i := Zi − Hi(zi) (i = 1, . . . , ν).

Proof. Of (i): By virtue of (1.3) we have to prove the implication

|zi − ζi| ≤ ri ⇒ |zi − Ni(zi) − ζi| ≤ ri.

Since
|zi − ζj | ≥ |zi − zj | − |zj − ζj | ≥ |zi − zj | − rj ≥ η,

we find

|σ1,i| =

∣∣∣∣∣

ν∑

j=1

j 6=i

µj

(zi − ζj)k

∣∣∣∣∣ ≤
ν∑

j=1

j 6=i

µj

|zi − ζj |k
≤

n − µi

ηk
, k = 1, 2.
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According to this and (2.5) we have

ri <
η

3(n − µ)
<

1

3|σ1,i|
,

wherefrom there follows
ri|σ1,i|

µi − ri|σ1,i|
<

1

2
.

Since q1,i = 1/εi + σ1,i, using the last inequality we get

|zi − N(zi) − ζi| = |εi − N(zi)| = |εi − 1/q1,i| = |εi|
2
∣∣∣

σ1,i

1 + εiσ1,i

∣∣∣

≤
r2

i |σ1,i|

1 − ri|σ1,i|
< ri.

Of (ii) Similarly as in the proof of (i) we should prove the implication

|zi − ζi| ≤ ri ⇒ |zi − Hi(zi) − ζi| ≤ ri.

First, we find

H(zi) =
2δ1,i

1

µi
δ2
1,i + δ2,i

=

2

ν∑

j=1

µj

zi − ζj

1

µi

( ν∑

j=1

µj

zi − ζj

)2

+
ν∑

j=1

µj

(zi − ζj)2

=
2(µi/εi + σ1,i)

(µi/εi + σ1,i)2/µi + µi/ε2
i + σ2,i

=
2εi(µi + εiσ1,i)

2µi + 2εiσ1,i + ε2
i (σ

2
1,i/µi + Σ2,i)

.

Hence

zi − Hi(zi) − ζi = εi −
2εi(µi + εiσ1,i)

2µi + 2εiσ1,i + ε2
i (σ

2
1,i/µi + σ2,i)

=
ε3

i (σ
2
1,i/µi + σ2,i)

2µi + 2εiσ1,i + ε2
i (σ

2
1,i/µi + σ2,i)

,

so that

|zi − Hi(zi) − ζi| =

∣∣∣∣
ε3

i (σ
2
1,i/µi + σ2,i)

2µi + 2εiσ1,i + ε2
i (σ

2
1,i/µi + σ2,i)

∣∣∣∣

<

1

µi

(n − µi

η

)2

+
n − µi

η2

2µi − 2
n − µi

η
ri −

1

µi

(n − µi

η

)2

r2
i −

n − µi

η2
r2

i

· r3
i

=

(n − µi)nr2
i

µiη2

4

3
−

n(n − µi)r
2
i

µiη2

· ri <

n

9µi(n − µi)
4

3
−

n

9µi(n − µi)

· ri < ri. �

Starting from the fixed point relation (2.1) we can construct the total-step Halley-
like inclusion method with Schröder’s and Halley’s corrections. Studying the con-
vergence analysis of these methods, we will consider both methods simultaneously.
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For this purpose we indicate these methods with the additional indices λ = 1 (for
Schröder’s correction) and λ = 2 (for Halley’s correction) and, in the same manner,
we denote the corresponding vectors of approximations as follows:

Z
(1) =

(
Z

(1)
1 , . . . , Z(1)

ν

)
=
(
ZN,1, . . . , ZN,ν

)

Z
(2) =

(
Z

(2)
1 , . . . , Z(2)

ν

)
=
(
ZH,1, . . . , ZH,ν

)
.

Both corrections N(zi) and H(zi) will be also denoted by C(λ)(zi). For simplicity,
we will omit the iteration index for all quantities at the m-th iteration, while the
quantities at the (m + 1)-st iteration will be denoted with the additional symbol ˆ
(“hat”). Such denotation will eliminate possible confusion about the iteration index
and the index of methods with corrections. Now we are able to express both methods
in the unique form as

Ẑi = zi − INV

(
H(zi)

−1 −
f(zi)

2f ′(zi)

[
S2

1,i(Z
(λ), Z (λ)) + S2,i(Z

(λ), Z(λ))
])

(2.6)

for i = 1, . . . , ν and INV ∈ {()−1, ()I}.

3 Convergence analysis

Let IM be an iterative numerical method which generates k sequences {z
(m)
1 }, . . . , {z

(m)
k }

for the approximation of solutions z∗
1 , . . . , z∗

k. In order to estimate the order of conver-
gence of the iterative method IM we introduce the error-sequences

ε
(m)
i = |z(m)

i − z∗
i | (i = 1, . . . , k).

The order of convergence of inclusion methods with corrections can be suitably deter-
mined using the following assertion (see Theorem 3 in [6]:

Theorem 3.1 Given the error-recursion

ε
(m+1)
i ≤ αi

k∏

j=1

(
ε
(m)
j

)pij , (i = 1, . . . , k; m ≥ 0), (3.1)

where pij ≥ 0, αi > 0, 1 ≤ i, j ≤ k. Denote the matrix of exponents appearing in

(3.1) with P , that is P = [pij ]k×k. If the non-negative matrix P has the spectral radius

ρ(P ) > 1 and a corresponding eigenvector xρ > 0, then all sequences {ε(m)
i } (i =

1, . . . , k) have at least the R-order ρ(P ).

The matrix Pk = [pij ], concerned with the R-order of convergence, is usually called

the R-matrix. In the case of interval methods one may take ε
(m)
j = rad Z

(m)
j for some

indices j from the set {1, . . . , k}.

In what follows we will write w1 ∼ w2 or w1 = OM (w2) (the same order of
magnitudes) for two complex numbers w1 and w2 that satisfy |w1| = O(|w2|). Let
OR(IM) denote the R-order of convergence of an iteration method IM. For the total-
step method (2.6) we can state

Theorem 3.2 Assume that initial disks Z
(0)
1 , . . . , Z

(0)
ν are chosen so that ζi ∈ Z

(0)
i (i =

1, . . . , ν) and the inequality

η(0) > 3(n − µ)r(0) (3.2)
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holds. Then the inclusion method (2.6) is convergent and the following is true for each

i = 1, . . . , ν and m = 1, 2, . . . :

1◦ η(m) > 3(n − µ)r(m);

2◦ ζi ∈ Z
(m)
i for each i = 1, . . . , ν and m = 1, 2, . . . ;

3◦ the lower bound of the R-order of convergence of the interval method (2.6) is

OR(2.6) ≥ λ + 4.

Proof. Let us note at the beginning that Theorem 3.2 states that iterative method
(2.6) has the order of convergence 5 (the method with Schröder’s corrections) and 6
(the method with Halley’s corrections). This increase of the convergence rate is forced

by the very fast convergence of the sequences {z(m)
i } of centers of the disks produced

by (2.6). Indeed, taking Z
(m)
i = {z

(m)
i ; 0} in (2.6) we obtain Halley-like fifth and sixth

order method in ordinary complex arithmetic (see [25]).
An interval method will be well defined if the inclusion disks are disjoint in ev-

ery iteration. The condition (3.2) provides that the initial disks Z
(0)
1 , . . . , Z

(0)
ν are

nonintersecting; indeed, for an arbitrary pair i, j ∈ {1, . . . , ν} (i 6= j) we have

|z(0)
i − z

(0)
j | > η(0) > 3(n − µ)r(0) > 2r(0) ≥ r

(0)
i + r

(0)
j ,

which means that Z
(0)
i ∩ Z

(0)
j = ∅ (according to (1.4)).

The assertions of Theorem 3.2 will be derived by induction. In our estimation
procedures we will often use the inequality (3.2) in the form

r

η
<

1

3(n − µ)
≤

1

6
, (3.3)

sometimes without citing.
Setting m = 0 and having in mind the initial condition (3.2), in regard to Lemma

2.1 we immediately obtain the implication

ζi ∈ Zi ⇒ ζi ∈ Z
(λ)
i := Zi − C(λ)(zi) (i = 1, . . . , ν).

We now prove that the new inclusion disks Z
(λ)
1 , . . . , Z

(λ)
ν are also disjoint. Using some

bounds from the proof of Lemma 2.1 we find

|N(zi)| =

∣∣∣∣
εi

µi + εiσ1,i

∣∣∣∣ <
ri

µi − ri|σ1,i|
< 2ri ≤ 2r,

and

|H(zi)| ≤
1∣∣∣∣1 +

ε2
i (σ

2
1,i/µi + σ2,i)

2(µi + εiσ1,i)

∣∣∣∣

· ri <
1

1 −
1

8

· ri =
8

7
ri < 2ri ≤ 2r,

because of

∣∣∣∣
ε2

i (σ
2
1,i/µi + σ2,i)

2(µi + εiσ1,i)

∣∣∣∣ <

r2

((n − µi

η

)2

+
n − µi

η2

)

2
(
µi − r

n − µi

η

) =

(n − µi)nr2

η2

2
(
µi −

(n − µi)r

η

) <
1

8
.

According to the bounds of |N(zi)| and |H(zi)|, we obtain



Reliable Computing 15, 2011 99

∣∣mid Z
(λ)
i − mid Z

(λ)
j

∣∣ =
∣∣zi − C(λ)(zi) − zj + C(λ)(zj)

∣∣

≥ |zi − zj | −
∣∣C(λ)(zi)

∣∣ −
∣∣C(λ)(zj)

∣∣

> η − 4r > 3(n − µ)r − 4r ≥ ri + rj .

Thus, due to (1.4) we have ZN,i ∩ ZN,j = ∅ and ZH,i ∩ ZH,j = ∅ (i 6= j).
It is not difficult to show that

zi − Zj + C(λ)(zj) =
{
zi − ζj + ξ

(λ)
j ελ+1

j ; rj

}
,

where

ξ
(1)
j = −

σ1,j

µj + εjσ1,j
= InOM (1),

ξ
(2)
j = −

σ2
1,j/µj + σ2,j

2µj + 2εjσ1,j + ε2
j(σ

2
1,j/µj + σ2,j)

= OM (1).

Let hij := mid
(
zi − Zj + C(λ)(zj)

)
= zi − ζj + ξ

(λ)
j ελ+1

j . In the proof of Lemma
2.1 we have already estimated

|zi − ζj | > η and |σ1,j | <
n − µ

η
,

so that

∣∣ξ(1)
j

∣∣ <
|σ1,j |

µj − |εj ||σ1,j |
<

n − µj

η

µj −
(n − µj)r

η

<
3(n − µj)

2η

and

∣∣ξ(2)
j

∣∣ ≤

|σ1,j |
2

µj
+ |σ2,j |

2µj − 2|εj ||σ1,j | − |εj |2
( |σ1,j |

2

µj
+ |σ2,j |

)

≤

(n − µj)n

µjη2

2µj − 2r
n − µj

η
− r2 (n − µj)n

µjη2

<
6

7

(n − µj)n

µjη2
,

for all j = 1, . . . , ν.
According to this we bound

∣∣h(1)
ij

∣∣ =
∣∣zi − ζj + ξ

(1)
j ε2

j

∣∣ > |zi − ζj | −
∣∣ξ(1)

j

∣∣|εj |
2 > η −

3(n − µj)r
2

2η
> η −

r

2
(3.4)

and

∣∣h(2)
ij

∣∣ =
∣∣zi − ζj + ξ

(2)
j ε3

j

∣∣ > |zi − ζj | −
∣∣ξ(2)

j

∣∣|εj |
3 > η −

6(n − µj)r
3

7µjη2
> η −

r

2
. (3.5)

Hence

∣∣h(λ)
ij

∣∣(∣∣h(λ)
ij

∣∣ − rj

)
>
(
η −

r

2

)(
η −

3r

2

)
= η2

(
1 −

r

2η

)(
1 −

3r

2η

)
>

11

16
η2 >

3

5
η2,
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which yields
rj∣∣h(λ)

ij

∣∣(∣∣h(λ)
ij

∣∣− rj

) <
5r

3η2
. (3.6)

Using (3.6) we estimate

ν∑

j=1

j 6=i

µjrj∣∣h(λ)
ij

∣∣(∣∣h(λ)
ij

∣∣ − rj

) <
5(n − µi)r

3η2
. (3.7)

Let us introduce u
(λ)
ij =

1

h
(λ)
ij

, b
(λ)
i =

ν∑

j=1

j 6=i

µju
(λ)
ij . By (3.2), (3.4) and (3.5) we get

∣∣u(λ)
ij

∣∣ =
1

∣∣h(λ)
ij

∣∣ <
1

η −
r

2

<
12

11η
(3.8)

and
∣∣b(λ)

i

∣∣ ≤
ν∑

j=1

j 6=i

µj

∣∣u(λ)
ij

∣∣ <
12(n − µi)

11η
. (3.9)

Then, by (3.7), we obtain the inclusion

S1,i =

ν∑

j=1

j 6=i

µj

zi − Zj + C(λ)(zj)
=

ν∑

j=1

j 6=i

µj{
h

(λ)
ij ; rj

}

=
ν∑

j=1

j 6=i

µj

{
u

(λ)
ij ;

rj∣∣h(λ)
ij

∣∣(∣∣h(λ)
ij

∣∣ − rj

)
}

⊂
{

b
(λ)
i ;

5(n − µi)r

3η2

}
.

Now, using circular interval operations, we find

S2
1,i ⊂

{
(
b
(λ)
i

)2
; 2
∣∣b(λ)

i

∣∣5(n − µ)r

3η2
+
(5(n − µ)r

3η2

)2
}

⊂
{(

b
(λ)
i

)2
; γ1r

}
, γ1 =

41(n − µ)2

10η3
.

Applying (3.7) and (3.8), we get

S2,i =
ν∑

j=1

j 6=i

µj

( 1

zi − Zj + C(λ)(zj)

)2

=
ν∑

j=1

j 6=i

µj

{
u

(λ)
ij ;

rj∣∣h(λ)
ij

∣∣(∣∣h(λ)
ij

∣∣ − rj

)
}2

⊂

{ ν∑

j=1

j 6=i

µj

(
u

(λ)
ij

)2
; γ2r

}
, γ2 =

41(n − µ)

10η3
.

Using the introduced abbreviations, the iterative method (2.6) can be written as

Ẑi = zi − 2q1,iINV
(
q2
1,i − S2

1,i + q2,i − S2,i

)
(i = 1, . . . , ν). (3.10)

Now, we find some necessary enclosures. Since q1,i = µi/εi+σ1,i and q2,i = µ2
i /ε2

i +σ2,i,
we have

q2
1,i − S2

1,i ⊂
{µ2

i

ε2
i

+
2µi

εi
σ1,i + σ2

1,i −
(
b
(λ)
i

)2
; γ1r

}
=: A

(λ)
1,i
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and

q2,i − S2,i ⊂
{µ2

i

ε2
i

+ σ2,i −
ν∑

j=1

j 6=i

µj

(
u

(λ)
ij

)2
; γ2r

}
=: A

(λ)
2,i .

Then, for INV = ()I we obtain from (3.10)

Zi ⊂ D̂
(c)
i = zi −

2(σ1,i + µi/εi)

A
(λ)
1,i + A

(λ)
2,i

.

Hence

Zi = zi − diεi

{
1

di + w
(λ)
i

;
|εi|

2γr
∣∣di + w

(λ)
i

∣∣(∣∣di + w
(λ)
i

∣∣ − γ|εi|2r
)
}

}

, (3.11)

where

di = 2(σ1,iεi + µi), γ = γ1 + γ2 =
41n(n − µ)

10η3

and

w
(λ)
i = ε2

i (σ
2
1,i −

(
b
(λ)
i

)2
) + ε2

i

(
σ2,i −

ν∑

j=1

j 6=i

µj

(
u

(λ)
ij

)2)
. (3.12)

The superscript index “c” points to the application of the centered inversion, INV =
()I .

Using the estimates (3.8), (3.9) and the bound |σk,i| ≤ (n − µ)/ηk (k = 1, 2), we
find

∣∣di + w
(λ)
i

∣∣ > 2µi − 2|σ1,i||εi| − |εi|
2
(
|σ1,i|

2 +
∣∣b(λ)

i

∣∣2 + |σ2,i| +
ν∑

j=1

j 6=i

µj

∣∣u(λ)
ij

∣∣2
)

> 2 −
2

3
−

265(n − µ + 1)(n − µ)

121

r2

η2
,

wherefrom, in view of (3.2),
∣∣di + w

(λ)
i

∣∣ >
9

10
. (3.13)

Besides, by (3.2) we get

γ|εi|
2r ≤ γr3 =

41n(n − µ)r3

10η3
<

3

25
. (3.14)

In regard to (3.13) and (3.14) there follows

∣∣di + w
(λ)
i

∣∣(∣∣di + w
(λ)
i

∣∣− γ|εi|
2r
)

>
7

10
. (3.15)

This means that disk D̂
(c)
i given by (3.11) and, consequently, disk Ẑi, are closed circular

regions so that the sums S1,i and S2,i are closed disks.

The following upper bound is valid for |di| :

|di| = 2|σ1,iεi + µi| < 2
( (n − µ)r

η
+ 1
)

<
8

3
.
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Using this bound and (3.15), we find from (3.11)

r̂i = rad Ẑi ≤ rad D̂i ≤
10γ|εi|

3r|di|

7
<

328n(n − µ)

21η3
|εi|

3r. (3.16)

From (3.16) we conclude that

r̂ = O(|ε|3r) (3.17)

and also, by (3.2),

r̂ <
r

2
. (3.18)

¿From (11) we find

ẑi = mid Ẑi = zi −
εidi

di + w
(λ)
i

, (3.19)

whence

ε̂i = ẑi − ζi = εi

(
1 −

di

di + w
(λ)
i

)
=

εiw
(λ)
i

di + w
(λ)
i

,

that is

ε̂i = OM

(
εiw

(λ)
i

)
, (3.20)

since
∣∣di + w

(λ)
i

∣∣ is bounded.

Evidently, from (3.2) there follows w
(λ)
i = OM (ε2

i ). Furthermore, we have

σ1,i − b
(λ)
i =

ν∑

j=1

j 6=i

µj

( 1

zi − ζj
− u

(λ)
ij

)
=

ν∑

j=1

j 6=i

µjξ
(λ)
j ελ+1

j

(zi − ζj)h
(λ)
ij

= OM (αελ+1
i ),

where α is a constant. According to this we get

σ2
1,i −

(
b
(λ)
i

)2
=
(
σ1,i − b

(λ)
i

)(
σ1,i + b

(λ)
i

)
= OM

(
α′ελ+1

)

and

σ2,i −
ν∑

j=1

j 6=i

µj

(
u

(λ)
ij

)2
=

ν∑

j=1

j 6=i

µj

(
1

(zi − ζj)2
−
(
u

(λ)
ij

)2
)

=
ν∑

j=1

j 6=i

µj

( 1

zi − ζj
− u

(λ)
ij

)( 1

zi − ζj
+ u

(λ)
ij

)

= OM

(
α′′ǫλ+1).

Returning to (3.20) we conclude that

ε̂ = ε3OM

(
α∗ελ+1), (3.21)

where α′, α′′ and α∗ are constants.

Starting from the expressions for di and w
(λ)
i and using the already derived bounds,

we estimate

|di| > 2µi − 2|σ1,i||εi| > 2 −
2(n − µ)r

η
>

4

3
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and

∣∣w(λ)
i

∣∣ < |εi|
2
(
|σ1,i|

2 +
∣∣b(λ)

i

∣∣2 + |σ2,i| +
ν∑

j=1

j 6=i

µj

∣∣u(λ)
ij

∣∣2
)

<
265(n − µ + 1)(n − µ)

121

r2

η2
<

2

5
.

According to the last two inequalities, we obtain from (3.19)

|ẑi − zi| =
|εidi|∣∣di + w

(λ)
i

∣∣ <
ri

1 −
∣∣w(λ)

i

∣∣/|di|
<

3ri

2
. (3.22)

Using the inequalities (3.2), (3.18) and (3.22) we obtain

|ẑi − ẑj | ≥ |zi − zj | − |ẑi − zi| − |ẑj − zj | > η + rj −
3

2
ri −

3

2
rj

> 3(n − µ)r − 2r > 2r̂
[
3(n − µ) − 2

]
.

In regard to the last inequality we obtain for any pair i, j (i 6= j)

|ẑi − ẑj | > 2r̂ ≥ r̂i + r̂j (i 6= j),

which implies that the disks Ẑ1, . . . , Ẑν are mutually disjoint. Besides, for arbitrary
pair i, j (i 6= j) we have

|ẑi − ẑj | − r̂j > 2r̂
[
3(n − µ) − 2

]
− r̂ > 3(n − µ)r̂.

Hence
η̂ > 3(n − µ)r̂.

In this way we have proved that the initial condition (3.2) implies the inequality
of the same form but for the index m = 1. It is worth noting that the inequality (3.18)

points to the contraction of the new disks Z
(1)
1 , . . . , Z

(1)
ν .

Repeating the above procedure and the argumentation for arbitrary index m ≥ 0
we can derive all above relations for the index m + 1. Since these relations have been
already proved for m = 0, according to induction it follows that, under the condition
(3.2), they are valid for all m ≥ 1. In particular, we have

η(m) > 3(n − µ)r(m) (3.23)

(the assertion 1◦) and

r(m+1) <
r(m)

2
. (3.24)

According to the inequality (3.24) we conclude that the sequence {r(m)} tends to
0; therefore, the inclusion method (2.6) is convergent. Since (3.23) holds, the assertion
of Lemma 2.1 is valid for arbitrary m, which means that the Halley-like methods (2.6)
with Schröder’s and Halley’s correction are well defined at each iterative step.

Suppose that ζi ∈ Z
(m)
i for each i = 1, . . . , ν and µ ≤ 1. With regard to (2.1) and

(2.6) we obtain that ζi ∈ Z
(m+1)
i (due to the inclusion isotonicity). Since ζi ∈ Z

(0)
i (the

assumption of the theorem) it follows by induction that ζi ∈ Z
(m)
i for each i = 1, . . . , ν

and m = 0, 1, . . . (the assertion 2◦).
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To determine the lower bound of the R-order of convergence of the method (2.6)

(the assertion 3◦) we use Theorem 3.1 working with sequences {z
(m)
i } and {r

(m)
i } of

the centers and the radii of disks Z
(m)
i produced by the algorithm (2.6). For simplicity,

as usual in this type of analysis, we adopt 1 > |ε(0)| = r(0) > 0 dealing with the ”worst
case” model. Such a model does not influence the lower bound of the R-order of
convergence since it is obtained in the limit process. By virtue of (3.17) and (3.21) we
have

ε(m+1) ∼
(
ε(m))λ+4

, r(m+1) ∼
(
ε(m))3r(m).

These relations yield the R-matrix P2 =

[
λ + 4 0

3 1

]
with the spectral radius ρ(P2) =

λ + 4 and the corresponding eigenvector xρ = ((λ + 3)/3, 1) > 0. Hence, according to
Theorem 3.1, we obtain

OR((2.6)) ≥ ρ (P2) = λ + 4 (λ = 1, 2).

Now we will consider the case INV = ()−1, that is, when the exact inversion (1.1)
is applied in the final step. Then, from (3.10) we obtain

Ẑi ⊂ D̂
(e)
i := zi − diεi

{
di + w

(λ)
i ; γ|εi|

2r
}

∣∣di + w
(λ)
i

∣∣2 −
(
γ|εi|2r

)2 (3.25)

and

r̂i = rad Ẑi <
diγ|εi|

3r
∣∣di + w

(λ)
i

∣∣2 −
(
γ|εi|2r

)2 <
14n(n − µ)|εi|

3r

η3
. (3.26)

The center ẑi = mid Ẑi is slightly shifted in reference to the center mid D̂
(e)
i so

that from (3.25) we get

ẑi
∼= mid D̂

(e)
i = zi −

diεi

(
di + w

(λ)
i

)
(

1 −

(
γ|εi|

2r
∣∣di + w

(λ)
i

∣∣

)2
) .

Using previously derived estimations we obtain di + w
(λ)
i = OM (1), di = OM (1),

γ = O(1) and γ|εi|
2r/
∣∣di + w

(λ)
i

∣∣ = O(rǫ2). Applying the development into geometric
series, from the last relation we find

ẑi
∼= zi −

diεi

di + w
(λ)
i

(
1 +

(
γ|εi|

2r
∣∣di + w

(λ)
i

∣∣

)2

+ . . .

)
= zi −

diεi

di + w
(λ)
i

+ OM

(
r2ǫ5

)
.

Hence

ε̂i = εi −
diεi

di + w
(λ)
i

+ OM

(
r2ǫ5

)
= ε3

iOM

(
α1ǫ

λ+1 + α2r
2ǫ2
)
, (3.27)

where α1 and α2 are some complex quantities such that |α1| = O(1) and |α2| = O(1).
¿From the last relation we conclude that

ε̂i = ε3
iOM

(
ǫλ+1) (λ = 1, 2), (3.28)

in other words, the relations (3.26) and (3.28) coincide with (3.16) and (3.21). There-
fore, the lower bound of the R-order of convergence of the inclusion methods (2.6)
when INV = ()−1 is the same as in the case when INV = ()I . �

In practice, the application of the centered inversion (INV = ()I) in the final step
produces smaller resulting inclusion disks. This is a consequence of shifting the centers
which influences the radii of disks, see (3.21) and (3.27).
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4 Single-step methods with corrections

Further acceleration of the convergence of the method (2.6) can be attained using
the Gauss-Seidel procedure which uses already calculated disks in the current itera-
tion. Starting from (2.4) we can state the following single-step inclusion method with
Schröder’s or Halley’s corrections:

Ẑi = zi − INV
(
Hi(zi)

−1 −
f(zi)

2f ′(zi)

[ 1

µi
S2

1,i(Ẑ , Z(λ)) + S2,i(Ẑ , Z(λ))
])

(4.1)

for i = 1, . . . , ν and INV ∈ {()−1, ()I}.
It is very difficult to find the R-order of convergence of this method since 2ν

sequences of centers and radii and the number of zeros ν are involved in the convergence
analysis. However, we can estimate easily the bounds of the R-order taking the limit
cases ν = 2 and very large ν.

First, since the convergence rate of a single-step method becomes almost the same
as the one of the corresponding total-step method when the polynomial degree is very
large, according to Theorem 3.2 we have OR((4.1), ν) ≥ λ + 4 for very large ν.

Consider now the single-step method (4.1) for ν = 2 and assume that |ε
(0)
1 | =

|ε(0)
2 | = r

(0)
1 = r

(0)
2 (the ”worst case” model). After an extensive calculation we derive

the following estimates

ε̂1 ∼ ε3
1ε

λ+1
2 , ε̂2 ∼ ε3

1ε
λ+4
2 (λ = 1, 2), r̂1 ∼ |ε1|

3r2, r̂2 ∼ |ε1|
3|ε2|

3r2.

The corresponding R-matrix and their spectral radii and eigenvectors are:

P4 =





3 λ + 1 0 0
3 λ + 4 0 0
3 0 0 1
3 3 0 1



 , ρ(P4) =

{
6.64575, λ = 1,
7.8541, λ = 2,

xρ =

{
(1, 1.8229, 0.6771, 1.5) > 0, λ = 1,
(1, 1.6180, 0.5279, 1.1459) > 0, λ = 2.

Let Ω(λ) (λ = 1, 2) be the ranges of the lower bounds of the R-order of convergence
concerning the single-step methods (4.1). Taking into account the previous results, we
obtain

Ω(1) = (5, 6.646), Ω(2) = (6, 7.855).

Since the increased convergence is attained without any additional calculations we
conclude that the inclusion methods (4.1) possess a great computational efficiency.

5 Numerical examples

The presented algorithms (2.3), (2.4), (2.6) and (4.1) have been tested in solving
many polynomial equations. To provide the enclosure of the zeros in the second and
third iteration that produce very small disks, we have used the programming package
Mathematica with multiple precision arithmetic. All methods are realized using only
centered inversion, that is INV = ()I .

Example 1 Circular inclusion approximations to the multiple zeros of the polynomial

f(z) = z9 − 8z8 + 25z7 − 34z6 + 64z4 − 76z3 + 8z2 + 48z − 32
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are estimated by implementing interval methods (2.3), (2.6) (for λ = 1, 2) and (4.1)
(for λ = 1, 2). The exact zeros of f are ζ1 = −1, ζ2 = 2, ζ3 = 1 + i, ζ4 = 1 − i, of the
respective multiplicities µ1 = 2, µ2 = 3, µ3 = µ4 = 2. The initial disks were selected
to be Z

(0)
i = {z(0)

i ; 0.5}, with the centers

z
(0)
1 = −1.1 + 0.2i, z

(0)
2 = 2.1 − 0.2i, z

(0)
3 = 0.8 + 1.2i, z

(0)
4 = 0.9 − 1.2i.

The maximal radii of the inclusion disks produced in the first three iterative steps are
given in Table 5.2, where the denotation A(−q) means A × 10−q .

Methods r(1) r(2) r(3)

(2.3) 1.89(−2) 2.48(−9) 9.34(−39)

(2.4) 6.03(−3) 3.38(−12) 7.57(−50)

(2.6), λ = 1 2.69(−2) 3.18(−11) 1.81(−60)

(4.1), λ = 1 8.43(−3) 3.27(−14) 1.34(−69)

(2.6), λ = 2 2.77(−2) 3.41(−14) 1.05(−86)

(4.1), λ = 2 9.55(−3) 3.48(−16) 4.64(−96)

Table 1: The maximal radii of inclusion disks

Example 2 We implemented the same interval methods as in Example 1 to find
inclusion disks of multiple zeros of the polynomial

f(z) = z16 − 2z15 − 9z14 + 24z13 + 11z12 − 90z11 + 89z10 + 60z9 − 200z8

+240z7 − 124z6 − 192z5 + 336z4 − 256z3 − 64z2 − 256.

The exact zeros of f are ζ1 = −1, ζ2 = −2, ζ3 = 1 + i, ζ4 = 1 − i, ζ5 = i, ζ6 = −i,
ζ7 = 2 of the multiplicity µ1 = 2, µ2 = 3, µ3 = µ4 = µ5 = µ6 = 2, µ7 = 3, respectively.
We have taken the following initial disks Z

(0)
i = {z(0)

i ; 0.5}, with the centers

z
(0)
1 = −1.1 + 0.1i, z

(0)
2 = −2.2 − 0.1i, z

(0)
3 = 1.1 + 1.2i, z

(0)
4 = 0.9 − 1.1i,

z
(0)
5 = −0.1 + 0.9i, z

(0)
6 = 0.1 − 1.1i, z

(0)
7 = 2.2 − 0.1i.

The maximal radii of the inclusion disks are given in Table 2.

Methods r(1) r(2) r(3)

(2.3) 5.83(−2) 6.15(−9) 1.09(−38)

(2.4) 5.08(−2) 2.50(−10) 4.41(−44)

(2.6), λ = 1 6.74(−2) 3.11(−10) 1.89(−55)

(4.1), λ = 1 5.80(−2) 9.01(−11) 5.58(−60)

(2.6), λ = 2 6.43(−2) 1.02(−12) 3.70(−80)

(4.1), λ = 2 5.50(−2) 2.95(−13) 1.20(−86)

Table 2: The maximal radii of inclusion disks

From Tables 1 and 2 and a lot of numerical experiments we can conclude that the con-
vergence rate of the considered methods, given in Theorem 3.2, mainly well coincides
to the convergence speed of these methods in practice, especially in latter iterations.
The convergence behavior of the methods tested in Example 2 is considerably good
although the initial disks Z

(0)
4 = {0.9 − 1.1i; 0.5} and Z

(0)
6 = {0.1 − 1.1i; 0.5} are even

overlapping. Enormously small disks obtained in the third iteration are unnecessary in
practice, but we have presented them in both tables to stress the property of inclusion
methods with corrections occurring in the growing accuracy as the number of iteration
steps increases.
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