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Abstract

In many engineering problems the shape of the structure is not exactly
known. In that situation it is possible to consider a family of shapes which
belong to the interval set Ω ∈ [Ω,Ω]. In order to find upper and lower
bound of the solution, which depend on uncertain (interval) shape, it is
possible to use properties of topological derivative or differentials which
are positive definite (in many cases positive definite differentials are simply
positive). Numerical examples are related to the heat transfer, imprecise
probability, and integration on manifolds.

Keywords: Interval parameters, interval sets, imprecise probability, topological de-
rivative, uncertainty.
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1 Set uncertainty in computational mechanics

Many parameters of engineering structures are not known exactly [15]. Mathematical
models of mechanical systems are usually built using systems of equations (partial
differential equations, algebraic equations, integral equations etc.) with different pa-
rameters. From a mathematical point of view it is necessary to know several numbers,
functions, and sets. If this information is uncertain, it is necessary to apply appropriate
methods for modeling of uncertainty.
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Parameter type Non-probabilistic methods Probabilistic methods
numbers interval numbers random numbers
functions interval functions random fields

sets interval sets random sets, clouds

Table 1: Methods of modeling of uncertainty

Let us consider T = T (x,Ω, k, q(x)), which is a solution of the heat transfer equa-
tion:

k
(

∂2T

∂x2
1

+ ∂2T

∂x2
2

+ ∂2T

∂x2
3

)

+ q = 0, x ∈ Ω,

T (x) = T ∗(x), x ∈ ∂Ω.
(1)

where T = T (x) is temperature in the region Ω ⊂ R3. T = T ∗(x) is known temperature
on the boundary ∂Ω, k is heat conductivity, and q is the heat source. In this example
k is a number and can be described by a real number, interval number [2], random
number, and cloud [1]. Heat source q can be represented by a function, interval function
[4], or random field [8]. The set Ω in the presence of uncertainty can be described by
using interval set Ω̂ = [Ω,Ω] [4]. This interval set is defined with the order relation 6.

Ω̂ = {Ω : Ω 6 Ω 6 Ω}. (2)

A 6 B ⇔ A ⊆ B. (3)

In this paper only the case of set uncertainty will be presented. In that case upper
and lower bound of the solution can be defined in the following way:

{

T (x) = min{T (x,Ω) : Ω ∈ [Ω,Ω]},

T (x) = max{T (x,Ω) : Ω ∈ [Ω,Ω]}
(4)

T (x,Ω) ∈ [T (x), T (x)] (5)

Interval parameters and interval functions are discussed in the papers [4, 9]. A
longer list of references and web applications, which are able to solve computational
mechanics problems with the interval parameters, can be found on the web page
http://andrzej.pownuk.com.

2 Classical definition of topological derivative

Let us consider an open, bounded domain, Ω ⊂ Rn (n=1,2,3) with a smooth boundary
∂Ω. If the domain is perturbed by introducing a small hole Bε of radius ε at the
arbitrary point x ∈ Ω, we have new domain Ωε = Ω− B̄ε, whose boundary is denoted
by ∂Ωε = ∂Ω ∪ ∂Bε. Topological derivative of certain cost function ψ = ψ(Ω) can be
defined as the following limit [11]

DT (x) = lim
ε→0+

ψ(Ωε) − ψ(Ω)

f(ε)
(6)

where f(ε) is a given function, which is positive (f(ε) > 0) and

lim
ε→0+

f(ε) = 0. (7)
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If f(ε) = |Bε| (where |Bε| =
∫

Bε

dΩ ) then we can use the following notation

DT (x) =
dψ

dΩ(x)
(8)

3 Parametric method for calculating topological

derivative
It is also possible to define topological derivative for completely arbitrary perturba-
tions. In this case, Ωε is the arbitrary set (i.e. not necessarily Ωε = Ω− B̄ε). However
Ωθ → Ω, when θ → 0.

DT (x) = lim
θ→0

ψ(Ωθ) − ψ(Ω)

f(θ)
= (9)

= lim
θ→0

ψ(Ωθ)−ψ(Ω)
θ

f(ε)−f(0)
θ

=

(

dψ

dθ
df

dθ

)

θ=0

= D
(θ)
T (x) (10)

In some cases, the formula (10) gives the same results for different parameterizations
(ε).

Let us consider a triangle ABC, where A=(0,0), B=(1,0), C=(1+ε,1). and a
function ψ1(ε) = ψ1(Ωε) = |Ωε|

2, where |Ωε| = (1 + ε)/2 is the area of the triangle,
f(ε) = |Ωε| − 0.5.

Dε
T =

(

dψ1

dε
df

dε

)

ε=0

=

( 1+ε
2
1
2

)

ε=0

= 1.0 (11)

In this case, topological derivative can be calculated for all parameterizations

lim
ε→0+

ψ1(Ωε) − ψ1(Ω)

f(ε)
= lim
ε→0+

|Ωε|
2 − 0.52

|Ωε| − 0.5
= (12)

lim
ε→0+

|Ωε| + 0.5 = |Ω0| + 0.5 = 1 (13)

Let us consider the function ψ2(Ωε) = yC = ε, for the parameterization which was
given above

Dε
T =

(

dψ2

dε
df

dε

)

ε=0

=

(

1
1
2

)

ε=0

= 2 (14)

Let us consider different parameterization of the shape of the triangle C=(1+γ,1).
In this case, ψ2(Ωγ) = yC = 1

Dγ
T =

(

dψ2

dγ

df

dγ

)

γ=0

=

(

0
1
2

)

ε=0

= 0 (15)

Then 2 = Dε
T 6= Dγ

T = 0 i.e. the result depends on the parameterization. In the
literature, usually the concept of parameter independent topological derivative is used
[5, 6, 10].

Example

If f(Ω) =
∫

Ω

f(x)dΩ(x) then

df(Ω,∆Ωx) = f(x)|∆Ωx|, (16)
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df

dΩ(x)
= f(x) (17)

Example

In general if the function f(Ω) = F

(

∫

Ω

L(x)dΩ

)

where F is some function, then

df(Ω,∆Ωx) = F ′





∫

Ω

L(x)dΩ



L(x)|∆Ωx|, (18)

df

dΩ(x)
= F ′





∫

Ω

L(x)dΩ



L(x). (19)

Let f(Ω) is center of gravity of the set Ω i.e.

f(Ω) =

∫

Ω

xdΩ

∫

Ω

dΩ
, (20)

then topological derivative is equal to

df

dΩ(x)
=

x
∫

Ω

dΩ −
∫

Ω

xdΩ

(

∫

Ω

dΩ

)2
=

x|Ω| −
∫

Ω

xdΩ

|Ω|2
. (21)

4 Example - center of gravity of the region with

uncertain shape

Let us consider a region with uncertain shape which is shown in the Fig. 1. It is
possible to calculate upper and lower bounds of center of gravity of the region with
uncertain shape by using topological derivative (21). The method was implemented
in Java and can be applied to the region with arbitrarily uncertainty and uncertain
shape (compare Fig. 1).

Figure 1: Program which calculates upper and lower bounds of the center of
gravity (written in Java)
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5 General approach to monotonicity based on

the sign of differential

Function is monotone if
x 6 y ⇒ f(x) 6 f(y) (22)

or strictly monotone if
x < y ⇒ f(x) < f(y) (23)

where 6 is a partial order relation and < is a strict partial order [7, 12].

Between two A and B it is possible to define the following partial order relation
+.

A 6 B ⇔ A ⊆ B (24)

and addition +.
A+B ⇔ A ∪B (25)

It is clear that Ω + ∆Ωx > Ω.

Differential is possitive definite if exists ε > 0 such that

df(Ω,∆Ωx) > c|∆Ωx| for all ρ(∆Ωx) < ε (26)

Differential is possitive if exists ε > 0 such that

df(Ω,∆Ωx) > 0 for all ρ(∆Ωx) < ε (27)

Theorem If ε > 0 exists such that df(Ω,∆Ωx) > c|∆Ωx| for all ρ(∆Ωx) < ε, then

δ > 0 exists such that f(Ω + ∆Ωx) > f(Ω) for all ρ(∆Ωx) < δ.

Proof Because

lim
ρ(∆Ωx)→0

|R(Ω,∆Ωx)|

|∆Ωx|
= 0 (28)

then for each ε > 0 exists δ > 0 such that

|R(Ω,∆Ωx)| 6 |∆Ωx|ε for ρ(∆Ωx) < δ; (29)

in other words
R(Ω,∆Ωx) > −|∆Ωx|ε for ρ(∆Ωx) < δ (30)

Now it is possible to estimate the sign of the finite difference ∆f(Ω,∆Ωx)

∆f(Ω,∆Ωx) = f(Ω + ∆Ωx) − f(Ω) = df(Ω,∆Ωx) +R(Ω,∆Ωx) (31)

df(Ω,∆Ωx) +R(Ω,∆Ωx) > c|∆Ωx| +R(Ω,∆Ωx) > c|∆Ωx| − ε|∆Ωx| (32)

f(Ω + ∆Ωx) − f(Ω) > (c− ε)|∆Ωx| (33)

Let us assume that ε = c
2

then

f(Ω + ∆Ωx) − f(Ω) >

(

c−
c

2

)

|∆Ωx| =
c

2
|∆Ωx| > 0. (34)

Hence
f(Ω + ∆Ωx) > f(Ω). (35)
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Important remark In many cases positive differential df(Ω,∆Ωx) is also positive
definite and in that case it is enough to study the sign of the differential instead of
positive definiteness.

This theorem can be applied to the optimization of the function, which depends
on the sets. For sufficiently small increments ∆Ωx the value of differential can be
approximated by the difference.

df(Ω,∆Ωx) ≈ f(Ω + ∆Ωx) − f(Ω) = ∆f(Ω,∆Ωx) (36)

It is obvious that if ∆f(Ω,∆Ωx) > 0 for all ρ(∆Ωx) < ε, then the function f(Ω +
∆Ωx) > f(Ω) for all increments ρ(∆Ωx) < ε (i.e. δ = ε).

6 Extreme values of the integrals on manifolds

Let us consider manifold M , differential form ω, and some set Ω ⊂M .

f(Ω) =

∫

Ω

ω. (37)

Differential form the function f(Ω) is equal to

df(Ω,∆Ωx) = ω(x,∆Ωx). (38)

Example - line integral from scalar field

Let f(Ω) =
∫

Ω

L(x)dl then differential is equal to df(x,∆Ωx) = L(x)|∆Ωx|. It is clear

that if L(x) > 0 then df > 0 and f = f(Ωmin), f = f(Ωmax) where Ωmin is the

smallest set, and Ωmax is the biggest set (i.e. Ωmin = Ω,Ωmax = Ω where Ω ∈ [Ω,Ω]).

Example - line integral from vector field

Let f(Ω) =
∫

Ω

P (x, y)dx + Q(x, y)dy then differential is equal to df(x, y,∆Ωx,y) =

P (x, y)|∆x| + Q(x, y)|∆y|. If df(x, y,∆Ωx,y) > 0 for all considered points x, y then
f = f(Ωmin), fu = f(Ωmax) where Ωmin is the smallest set, and Ωmax is the biggest

set (i.e. Ωmin = Ω,Ωmax = Ω where Ω ∈ [Ω,Ω]).

Example - surface integral

Let us consider surface integral f(Ω) =
∫

Ω

L(x, y, z)dS where L(x, y, z) > 0 for all

(x, y, z) ∈ Ω. df(x, y, z,∆Ωx,y,z) = L(x, y, z)|∆Ωx,y,z| > 0 for all considered points
x, y then f = f(Ωmin), f = f(Ωmax) where Ωmin is the smallest set, and Ωmax is the

biggest set (i.e. Ωmin = Ω,Ωmax = Ω where Ω ∈ [Ω,Ω]).

7 Upper and lower bound of the solution of PDE

with uncertain set-valued parameters

Let us consider boundary value problem

{

F (x, T (x)) = 0, x ∈ Ω
B(x, T (x)) = 0, x ∈ ∂Ω

(39)
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Solution of that BVP depends on the set Ω i.e. T = T (x,Ω). In many applications
the shape of the set Ω is uncertain. In order to describe that uncertainty it is possible
to use the interval sets i.e. Ω ∈ [Ω,Ω]. Upper and lower bounds of the solution are
defined in the equation (4). In order to find upper and lower bound of the solution
it is possible to use the concepts of topological derivatives and continuous gradient
methods.

Calculation of the upper bound T (x0)
1) Set initial shape Ω = Ω0 and x = x0.
2) Discretize the uncertain region Ω̃ = Ω ∩ Ω initial shape and replace it by a set of
discrete values Ω̃ = ∆Ωx1

∪ ... ∪ ∆Ωxn
.

3) Find the elements ∆Ωxi
which are next to the boundary ∂Ω. Let’s denote all the

boundary elements which belong the uncertain region by ∂Ω̃ = ∆Ωxi1
∪ ... ∪ ∆Ωxim

.
4) For all elements which belong to the boundary ∂Ω̃ calculate the differential dT (x,Ω,∆Ωxi

) ≈
T (x,Ω) − T (x,Ω − ∆Ωxi

).
5) Remove all elements from the list ∂Ω̃ for which dT < 0. Let us denote the new list
as ∂Ω̃max.
6) Create new shape Ωnew which has the boundary ∂Ω̃max.
7) If all sets in the list ∂Ω̃ are smaller than given ε, then stop the calculations.
8) If new shape Ωnew is the same like as the old shape Ω then T u(x) = T (x,Ω) and
stop the calculation other vice Ω = Ωnew and go to step 3.

Similar methods can be applied for calculation of lower bound T (x) of the solution.
That procedure has to be repeated for each point x. In general this is a very high
dimensional and time consuming problem. Fortunately it is possible to apply the
concept of sign vectors [3, 4], which reduce the time of calculations significantly.

8 Numerical example: heat transfer with

uncertain geometry

Let us consider 2D stationary heat transfer problem with Dirichlet boundary conditions

∂
∂x

(

kx
∂T
∂x

)

+ ∂
∂y

(

ky
∂T
∂y

)

+ q = 0, (x, y) ∈ Ω

T (x, y) = T ∗(x, y), (x, y) ∈ ∂Ω
(40)

In numerical example (40) Ω is a rectangular region with the dimension 2× 2. Uncer-
tainty is shown in the Fig. 2 and represent rectangular region with dimension 0.5×0.5.
Temperature is the same on the whole boundary and it is equal to 10. Heat source
is in the middle of the region and it is equal to 10. Boundary value problem (40)
was solved by using FDM method. The method was implemented in C++ language.
This program is using special scripting language. Presented examples can be described
using a set of commands.

CreateRegion 0,0 2,2 9,9

SetBoudaryCondition 0 0 0 2 10 10

SetBoudaryCondition 0 2 2 2 10 10

SetBoudaryCondition 2 2 2 0 10 10

SetBoudaryCondition 2 0 0 0 10 10
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Figure 2: Uncertainty

SetKx 1.0

SetKy 1.0

SetQ 1 1 10.0

Solve

SaveIndex index.txt

SaveRegionValues solution0.txt

SetUncertainty 0 0 0.5 0.5

SaveUncertainty uncertainty.txt

CalculateSensitivity

SaveMinSolution MinSolution.txt

SaveMinSolutionIndex MinIndexSolution.txt

SaveMaxSolution MaxSolution.txt

SaveMaxSolutionIndex MaxIndexSolution.txt

Interval solution is shown on the Fig. 3, maximal solution on the Fig. 4.

Internal representation of perturbed region is given on the Fig. 5.

Numerical experiments showed that the solution is very monotone with respect to
changes of the shape. Upper and lower bounds are given by two shapes for all points
in the region Ω − Ω̃. In order to find the solution it is necessary to solve only two
problems:

T (x) = T (x,Ωmin), T (x) = T (x,Ωmax). (41)
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Figure 3: Interval solution

Figure 4: Upper bound on the solution
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Figure 5: Internal representation of perturbed region

9 Reliability of structures with uncertain shape

Reliability of engineering structures can be calculated as

Pf = P{g(x) 6 0} (42)

If the structure has interval parameters p̂i then probability belongs to the interval [14]

P̂f = [P f , P f ] = {Pf (p1, ..., pm) : p1 ∈ p̂1, ..., pm ∈ p̂m} (43)

of failure with interval parameters is presented in the paper. Similarly if the shape of
the structure Ω is uncertain (i.e. Ω ∈ [Ω,Ω]) then probability of failure also belongs to
the interval Pf ∈ [P f , P f ] = {Pf (Ω) : Ω ∈ [Ω,Ω]}. Extreme values of the probability
of failure can be calculated by using topological derivative or differential and sensitivity
analysis or continuous version of gradient method [3, 4].

dPf (Ω,∆Ωx) ≈ Pf (Ω + ∆Ωx) − Pf (Ω) = ∆Pf (Ω,∆Ωx) (44)

Example

Let us consider some abstract problem in which the probability of failure can be
calculated by using the following criteria:

Pf (Ω) =





∫

Ω

L(x)dΩ





2

(45)

where L(x) > 0 (0 6 Pf (Ω) 6 1 for all Ω ∈ [Ω,Ω]) and Ω ∈ [Ω,Ω] = Ω̂. Differential
can be calculated in the following way:

dPf (Ω,∆Ωx) = 2





∫

Ω

L(x)dΩ



 · |∆Ωx| > 0 (46)
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Because the differential is always positive then Ωmin = Ω,Ωmax = Ω and

P f = Pf (Ω
min) = Pf (Ω), P f = Pf (Ω

max) = Pf (Ω) (47)

Then probability of failure belongs to the following interval Pf ∈ [P f , P f ].

10 Conclusions

Using the sign of differential and topological derivative it is possible to efficiently solve
many problems of computational mechanics with uncertain shapes. Techniques which
are based on sign vectors significantly reduce the time of calculations. According to
numerical results the relation between the solution of heat transfer problem and the
shape is monotone. In the case of the center of gravity the relation between the shape
of the region and the center of gravity is more complicated and it is necessary to apply
continuous version of gradient method. More complicated examples can be found in
the paper [13].
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