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Abstract

In Newtonian physics, each physical variable has some well-defined
value. We may not know this value exactly due to measurement un-
certainty, but such a value is assumed to exist. In this case, the more
accurate our measurements, the closer we get to this actual (unknown)
value. In quantum physics, when we have a sequence of objects in the
same state, and we measure the value of the same physical quantity for
all these objects, we may get different result; the only thing that the quan-
tum physics predicts is the probability of different outcomes. In quantum
physics, these probabilities have well-defined values. Physicists have con-
sidered a natural next step: when even probability distributions are not
uniquely determined, e.g., when only bounds on frequencies are known. In
principle, under this assumption, one could expect situations when for the
actual sequence of observations, frequencies fluctuate between the given
bounds and do not converge to any probabilities at all. In this paper,
under some simplifying assumptions, we prove that such fluctuations are
not possible: each sequence of observations has a limit.
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Predictions in Newtonian physics: ideal case. In Newtonian physics, once
we know the current state of the system, we can predict (at least in principle) all the
future states of this system.
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Predictions in Newtonian physics: practical situations. In real life, mea-
surements are never absolutely accurate, so we do not have the exact knowledge of the
current state.

Here, the more accurate our measurements of the current state, the more accurate
predictions we can make.

Interval uncertainty. The inaccuracy of the existing knowledge and of the re-
sulting predictions can often be described in terms of interval uncertainty.

Predictions in quantum physics. In quantum physics, we cannot predict the
eract future state of a system; we can only predict the probabilities of different future
states.

According to the modern quantum physics, if we know the ezact initial state of the
world we can uniquely predict these probabilities. This means that the more accurate
our measurements of the current state, the more accurate predictions of probabilities
we can make.

Comment. In practice, we can often predict the intervals of possible values of the
probability.

Possibility of objective interval-valued probabilities. It is reasonable to
conjecture that: for some real-life processes, there is no objective probability.

In other words, for different subsequences, the corresponding frequencies can in-
deed take different values from a given interval.

Comment. The analysis of such processes is given by Gorban; see, e.g., [1, 2] and
references therein.

How to formalize this: a natural idea. A natural common sense idea is that
if an event has probability 0, then it cannot happen.

Limitations of a natural idea. The above statements cannot be literally true
since every number has probability 0, and thus, no number is random.

Kolmorogov’s definition of randomness. The idea of Kolmorogov and Martin-
Lof is that we only require that definable events of probability 0 do not happen. As a
result, we get a consistent definition of randomness; see, e.g. [3].

The reason why this definition is consistent is that:

e there are only countably many defining texts;
e thus countably many definable events;
e the union of countably many events of probability 0 has probability 0;

e thus, we indeed have a consistent definition of a random object.
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How can we define when an object is random: case of exact probabili-
ties. As we have just mentioned, randomness under a known probability distribution
P can be defined as follows:

An object x is random if its does not belong to any definable event E
for which P(E) = 0.

The meaning of this definition is straightforward: if a (definable) event E has proba-
bility 0, then this event cannot happen.

How can we define when an object is random: case of imprecise
probabilities. As we have argued earlier, now we encounter a new situation: we
do not know the probability distribution; we only know a class P of possible probability
distributions.

A natural idea is as follows: if a definable event E is guaranteed to have probability
0 (i.e., P(FE) = 0 for all possible P), then this event cannot happen. This idea leads
to the following definition:

An object x is random if it does not belong to any definable event E
for which P(E) =0 for all P € P.

Observation. Let us start with the following observation: if an object x is random
w.r.t. some Py € P, then it is also random w.r.t. P.

Proof. The proof of this statement is straightforward:
e let F be a definable event for which P(E) =0 for all P € P;
e we want to prove that x € F;
e since P(E) =0 for all P € P and P, € P, in particular, Py(E) = 0;
e since z is Py-random, we have = ¢ E;

e the observation is proven.

Our main result. Let us consider the simplest case when the class P is finite, i.e.,
when P = {Py,..., P,}. In this case, according to the above observation, for every 4,
every Pj-random object is P-random.
A natural expectation is that there are P-random objects which are not P;-random.
However, a surprising result is that every P-random object is random with respect
to one of the probability measures P;.

Proof of the main result. The proof is by contradiction:

e let x be P-random and not random with respect to all P;;
e by definition, P;-random means that z ¢ E for all definable F with P;(E) = 0;

e thus, the fact that x is not P;-random means that there exists an event E; with
P;(E;) = 0 for which z € Ej;

n
e since z € F; for all 4, the object x belongs to the intersection F def E;, ie.,
=1

7

r € FE;
e since P;(F;) =0 and E C F;, we have P;(E) = 0;
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e thus, z belongs to the event E for which P;(E) = 0 for all i;
e this contradicts to our assumption that x is P-random;

e the statement is proven.

Comments.
e The main idea of the proof comes from [3].

e We hope that this problem does not appear in the more physical interval-valued
class P.
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