
On the Accuracy of the Solution of Linear

Problems on the CELL Processor∗

René Alt and Jean-Luc Lamotte
CNRS, UMR 7606, LIP6
University Pierre et Marie Curie
4 place Jussieu, 75252 Paris cedex 05, France

Rene.Alt@lip6.fr,Jean-Luc.Lamotte@lip6.fr

Svetoslav Markov†

Institute of Mathematics and Informatics, Bulgarian
Academy of Sciences, “G. Bonchev” st., bl. 8, 1113
Sofia, Bulgaria

smarkov@bio.bas.bg

Abstract

Several super computers have been designed as massively parallel com-
puters using the CELL processor as their main component. Such is for
example the IBM Roadrunner which broke the world computing speed
record in June 2008. However, even if machines of this kind are abso-
lutely necessary to solve numerical problems that could not be solved
otherwise, the question of the accuracy of the solution may become criti-
cal when obtained with a monstrous amount of computation. Concerning
the question of accuracy, the arithmetic of the eight on chip parallel pro-
cessors of CELL have two drawbacks: i) rounding is towards zero and not
to nearest, ii) division is very inaccurate. The paper deals with the effect
of these two particularities on the result of scientific computations. First,
it is shown that the classical computation of the inner product of two
n-dimensional vectors has an accuracy which is O(

√
n) for rounding to

nearest and O(n) for all other rounding modes. Thus the fast rounding to
zero mode of the CELL arithmetic is certainly not the best concerning the
accuracy of results when solving linear problems. Second, it is shown that
in algorithms using divisions, it is necessary to be careful in programming
as standard low level functions do not include division but only (multi-
plicative) inverse with a low precision. The consequence is that solving
large linear systems on super computers using the CELL with unsuitable
methods may be prone to significant errors and therefore the results must
be carefully controlled. Numerical examples are given.

∗Submitted: January 10, 2009; Revised: February 8, 2010; Accepted: February 20, 2010.
†S. Markov was partially supported by the Bulgarian NSF Project DO 02-359/2008.

1

2 R. Alt, J.-L. Lamotte, S. Markov, CELL Processor

Keywords: CELL processor, linear algebra, inner product, round-off error, CES-
TAC method, stochastic arithmetic, imprecise data, accuracy of numerical results

AMS subject classifications: 65G20, 65G40, 65G50, 65Fxx

1 Introduction

The CELL parallel processor has been jointly designed by IBM, Sony and Toshiba for
the PLAYSTATION 3 with the purpose of very fast processing in game and video.
Thus it has been mainly designed for high speed rather than accurate computing.
However, the CELL is also used to build super computers such as the IBM Roadrunner.
The latter is made up of a blend of 12,960 modified CELL processors and 6948 AMD
Opterons and has broken the computing speed record in June 2008 with more than
one petaflops. The heart of a CELL is a main processor and eight high speed parallel
synergistic processing engines (SPE), each containing a synergistic processing unit
(SPU) and communication and hardware connections on a single chip. As speed is
the main goal, the floating point arithmetic of the eight parallel processors works with
rounding to zero arithmetic and does not posses the four rounding modes of the IEEE
754 standard in single precision arithmetic. Only the main processor has a floating
point arithmetic according to this standard. The consequence of this choice is that
computing with the eight parallel SPU of the CELL may be much less accurate than
with a processor with a rounding to nearest arithmetic, particularly when dealing with
linear algebra.

In this paper we are interested in the accuracy of the CELL when used with a
programming leading to maximum speed, i.e., using 32 bit single precision and low
level functions. It has been shown in [1], [2] that the computational complexity and
thus the computation time of an inner product of n components is proportional to n
with a rounding to zero arithmetic and to

√
n with a rounding to nearest arithmetic.

Imprecise data with a known Gaussian distribution N(µ, σ) can be modelled by so-
called stochastic numbers; computation on them uses stochastic arithmetic which is
merely defined as operators on Gaussian distributions [4], [11]. The error on the sum
of n stochastic numbers is proportional to

√
n. Stochastic arithmetic is a model for the

random rounding arithmetic implemented in the CESTAC method and the CADNA
Software [14], [15].

The CELL is a hybrid processor with nine cores and two architecture types. It
is designed with a PPU processor (A powerPC based processor) and eight SPU pro-
cessors. On the PPU the division respects the IEEE norm and the performance is
equivalent to other processors. The eight SPU provide all the computation power of
the CELL processor. They are based on a FMA operator that is executed in six cycles.
For division, only a (multiplicative) inverse function is implemented in hardware (six
cycles). It only provides twelve exact bits on the result and can be fully pipelined in
single precision. A software implementation of an exact division in the 754 IEEE sense
is usable but the performances are weaker in comparison with the inverse function.

The paper is devoted to the effect of rounding to zero arithmetic and imprecise
division of the CELL processor on computation of inner products and solution of linear
systems. The case of imprecise data in inner products is also considered. Numerical
experiments are given to compare results provided by rounding to zero arithmetic
of the CELL processor and rounding to nearest of a processor with the IEEE 754
norm. Conclusion is, when computing with the CELL processor, one must be careful
concerning the accuracy of the results.

Reliable Computing 15, 2011 3

2 Round-off error on a standard inner product

2.1 Statistical estimation of the round-off error

The theory exposed here is a generalization of the one developed in [10] for the esti-
mation of the residuals of linear systems. The main idea is that since the rounding is
one-sided it has a bias, so when having n roundings, the errors add up and the average
result of round-off error is proportional to n. Usually, with rounding to nearest, the
mean is 0, so only variance counts, and for n roundings, the variance grows as n, which
leads to

√
n error.

Let us consider a real inner product of n components

p =

n
∑

i=1

xi yi, xi, yi, p ∈ R. (1)

Suppose now that the inner product (1) is computed on a computer with a classical
accumulation algorithm such as:

P = 0.
F or i = 1 to n do P = P ⊕ X(i) ∗ Y (i).

(2)

In algorithm (2) the computer data X(i) and Y (i) are provided from the exact
data xi and yi by the assignment operator; ⊕ and ∗ are the addition and multiplication
of the computer. The final result P is the computed approximation of the exact result
p. Let F be the set of floating point numbers in use of the computer in consideration,
then X(i), Y (i), P ∈ F. Our aim is now to evaluate the error ρ = P − p.

Let E be the population of all relative errors of the assignment operator of the
computer. We shall see in the following that the mean value α and standard deviation
σ of E can be easily computed under some simple assumptions. X(i) and Y (i) being
the floating point approximations of xi and yi, then:

X(i) = xi(1 + λi), i = 1, ..., n,

Y (i) = yi(1 + µi), i = 1, ..., n,
(3)

with λi, µi ∈ E. Let ⊕ and ∗ be the (signed) floating point addition, resp. floating
point multiplication of the computer; ⊕ and ∗ are accomplished by a rounding when
the results are transferred from the register to the memory, thus:

Z(i) = X(i) ∗ Y (i) = (xi(1 + λi)yi(1 + µi))(1 + βi), i = 1, ..., n,
P (i) ⊕ Z(i) = (P (i) + Z(i))(1 + αi), i = 1, ..., n,

(4)

with λi, µi, αi, βi ∈ E. In (4) P (i) is the partial sum up to index i, therefore P =
P (n); λi, µi denote the relative round-off errors caused by the assignment operator
on xi and yi and αi, βi are respectively the relative round-off errors on the results of
addition and multiplication. All computer operations are performed in registers and
followed by a transfer into memory, so the operations can be considered as followed
by an assignment and thus λi, µi, αi, βi have same mean values and same standard
deviations. Keeping only the first order terms we have:

X(i) ∗ Y (i) = xiyi(1 + λi + µi + βi), i = 1, ..., n, (5)

with λi, µi, αi, βi ∈ E. Introducing equalities (4) and (5) in algorithm (2) we obtain:

4 R. Alt, J.-L. Lamotte, S. Markov, CELL Processor

P =
n
∑

i=1

xi yi +
n
∑

i=1

xi yi(λi + µi + βi)

+ α1(x1y1 + x2y2)
+ α2(x1y1 + x2y2 + x3y3) + ...
+ αn−1(x1y1 + x2y2 + ... + xn yn).

(6)

Thus the error ρ = P − p can be written as:

ρ =
n
∑

i=1

xi yi(λi + µi + βi) +
∑n

k=2
αk−1 rk, rk =

k
∑

j=1

xj yj . (7)

Let us call α and σ the mean-value and the standard deviation of the assignment
operator and suppose that all relative errors in formula (7) are independent. Then we
have for their mean-values: ᾱi = λ̄i = β̄i = µ̄i = α, for their squared mean-values:
α2

i = λ2
i = β2

i = µ2
i = α2 +σ2, and for the mean-values of the terms of the form αi λi:

αi λi = α2.
Under the hypothesis of independence of errors it is now possible to estimate

the mean value of ρ and ρ2 by replacing each error and each preceding term in the
expression of ρ and ρ2 by their mean-value. A simple computation leads to:

ρ̄ = α

(

3p +

n
∑

k=2

rk

)

(8)

ρ2 = α2 (9p2 + 3pu + u2) + σ2(3s2 + v2) (9)

with s2 =
n
∑

i=1

(xiyi)
2, u =

n
∑

k=2

rk and v2 =
n
∑

k=2

rk; p is the exact real result of the

inner product defined in (1).
Formulas (8) and (9) are not symmetric because they take into account the order

of computations in algorithm (2). They can be easily simplified by considering that
all inner products obtained with all possible permutations of terms in the expression
of p are computed and that the mean-values of ρ and ρ2 are now extended to all these
results. A rather simple calculation leads then to the following formulas:

ρ = α p (n2 + 7n − 2)/(2n), (10)

ρ2 = α2

(

3n3 + 41n2 + 134n − 72

12n
p2 +

(n − 2)(n2 + 3n − 6)

12n
s2

)

+σ2

(

n + 1

3
p2 +

n2 + 19n − 6

6n
s2

)

.
(11)

We shall estimate next the mean value and the standard deviation of the assign-
ment operator.

2.2 Mean-value and standard deviation of the assignment

operator

2.2.1 Error caused by the assignment operator

Let x ∈ R be a real number and X ∈ F its floating point approximation provided by
the assignment operator. Then we can write using the IEEE 754 radix 2 representation
of numbers:

X = ± M 2E , 1/2 ≤ M ≤ 1 − 2−t, (12)

Reliable Computing 15, 2011 5

x = ± m 2E , 1/2 ≤ m < 1, (13)

where t is the number of bits of the mantissa in the floating point numbers, M is the
limited mantissa of X, m is the mantissa of x and may be unlimited. The exponent E
is supposed here to be identical in both expressions (12), (13). The relative assignment
error is then α = (X − x)/x.

Setting r = m − M , then α = −r/m. The bounds for r depend on the rounding
mode. The mean value α and variance σ2 for α are resp.: α =

∫ ∫

D
q(r, m)α(r,m)drdm

and σ2 =
∫ ∫

D
q(r, m)(α(r,m) − α)2drdm, where D is the domain of variation of r

and m and q(r, m) is the density of probability of α(r, m) in this domain. The domain
of variation of m is defined in formula (13). The domain of variation of r depends on
the rounding mode, i. e. [−1/2t+1, 1/2t+1[for rounding to nearest and [0, 1/2t[for
rounding to zero.

2.2.2 Hypotheses on the distribution of mantissas

The density of probability q(r, m) requires some hypotheses about the distribution of
the error r and of the mantissa m. Here and in the following it is supposed that r
is uniformly distributed in its definition domain. This hypothesis on the repartition
of lost digits is the simplest and does not appear determinant in what follows in the
sense that different but reasonable hypotheses produce very close numerical values for
α and σ.

Concerning the distribution of mantissas there are two classical hypotheses:

Hypothesis 1 [9]: The mantissas are equally distributed in their definition do-
main. With this hypotheses the values of α and σ2 can be found [10]:

α = − ln(2) 2−t, σ2 = (2/3 − (ln(2))2 2−2t for rounding to zero;

α = 0, σ2 = 2−2t/6 for rounding to nearest.
(14)

Hypothesis 2 [8] and [13]: The distribution of the mantissas tends towards the
density function q(m) = 1/(m log b), 0 ≤ m < 1, b being the base of the number
system, here b = 2. In this case a simple calculation leads to:

α = − 1

2 ln(2)
2−t, σ2 =

(

2

3 ln(2)
− 1

(2 ln(2))2

)

2−2t for rounding
to zero;

α = 0, σ2 =
1

8 ln(2)
2−2t for rounding

to nearest.

(15)

The important result is that in the case of a rounding to nearest arithmetic α = 0
because of the symmetry of the domain of round-off errors. This is not true for other
roundings. The numerical values of α and σ for the two hypotheses and rounding to
nearest and rounding to zero are summed up in Table 1.

Table 1 shows clearly that both hypotheses lead to very close numerical values. As
mentioned above if some different but reasonable hypothesis is done for the repartition
of the error r (for example also chose Hamming’s hypothesis for r) the numerical values
are not much changed.

6 R. Alt, J.-L. Lamotte, S. Markov, CELL Processor

rounding to nearest rounding to zero
α σ α σ

Constant distribution 0 0.408 2−t −0.693 2−t 0.431 2−t

Hamming′s distribution 0 0.425 2−t −0.718 2−t 0.454 2−t

Table 1: Mean value and standard deviation of the relative assignment error

3 Numerical experiments for inner products

3.1 Case of exact data, IEEE arithmetic

It follows from the values of Table 1 and keeping the highest order terms in formulas
(10), (11) in the previous subsection, that when the computer uses a rounding to
nearest arithmetic then α = 0 and thus the mean error on a computed inner product
is 0 and the square root of its quadratic mean error is O(

√
n). On the contrary

when the arithmetic has a rounding to zero or to +∞ or to −∞ then α 6= 0 and
consequently the mean error ρ̄ is O(n). This theoretical result is summed up in Table 2.
Numerical experiments have been performed as follows. On a standard PC with IEEE

rounding to zero rounding to nearest
ρ ≃ α p n/2 ρ = 0

ρ2 ≃ α2 n2(3p2 + s2)/12 ρ2 ≃ σ s2n/6

Table 2: The mean error and quadratic mean error in an inner product

754 arithmetic n pairs (Xi, Yi) have been randomly generated between two arbitrary
bounds a and b in double precision for various size n. The inner products P =
∑n

i=1
XiYi have been computed in single and in double precision with rounding to zero

and with rounding to nearest arithmetic. The double precision result is supposed to
be exact compared to the one with single precision. In the case of rounding to zero the
relative error being theoretically proportional to n with a coefficient α = 2−24 log(2)
the experimental value β = 224|relat.error|/n is reported in Fig 1. In the case of
a rounding to nearest arithmetic it is the value of β = 224|relat.error|/√n which is
reported in Fig 2. In both cases the exact result, the relative error, the number of
exact significant digits on the inner product and the coefficient β are given.

Results are reported in Table 3 for rounding to nearest and in Table 4 for rounding
to zero, for a = −100, b = 100.

It can be seen that there is some dispersion in the values of β. In particular, from
the formulas in Table 2 this value should be close to 0.7/2 = 0.35 in the case of a
rounding to zero arithmetic. Table 5 shows the results obtained for the error in inner
products when the Xi and Yi are generated in [0, 100] instead of [−100, 100]. In this
case all numbers are positive and there is no error compensation. The experimental
values of β are very close to theoretical ones.

Reliable Computing 15, 2011 7

Figure 1: CELL: Inner products of dimension n, Nb exact signif. digits

Figure 2: CELL: Inner products of dimension n, coeff β = 224|relat.error|/n

8 R. Alt, J.-L. Lamotte, S. Markov, CELL Processor

n result relative error nb sign. dig. β
10 0.50807393E + 04 0.53093494E − 07 7.00 0.282
100 0.21252789E + 05 0.33788535E − 07 7.00 0.057
1000 0.11471347E + 06 0.19676749E − 06 6.71 0.104
10000 −0.12076502E + 06 0.10804285E − 05 5.97 0.181
100000 −0.61547312E + 06 0.59440595E − 05 5.23 0.315

Table 3: Rounding to nearest, −100 ≤ Xi, Yi ≤ 100, relative error is O(
√

n)

n result relative error nb sign. dig. β
10 0.50807378E + 04 0.23521963E − 06 6.63 0.395
100 0.21252777E + 05 0.58518668E − 06 6.23 0.098
1000 0.11471073E + 06 0.23639801E − 04 4.63 0.397
10000 −0.12072600E + 06 0.32415066E − 03 3.49 0.544
100000 −0.61404406E + 06 0.23159622E − 02 2.64 0.389

Table 4: Rounding to zero, −100 ≤ Xi, Yi ≤ 100, relative error is O(n)

3.2 Case of exact data, CELL processor

The same inner product has been computed in single precision on the parallel (SPU)
processors of the CELL with three different methods: i) the standard accumulation
algorithm (2); ii) the special function provided by the IBM BLAS library routines; and
iii) the special operation fused multiply and add (FMA). The FMA function requires
six cycles but pipelining provides one result every cycle. The results for the standard
algorithm are reported in Table 6 showing clearly an error in order of O(n).

Concerning the special function sdot spu and the FMA the experiments prove
that in both cases the error is still in O(n) and that only the coefficient β differs.
Figures (1) and (2) reporting the number of exact significant digits on the result and
the coefficient β for the three methods illustrate this assertion.

3.3 Case of uncertain data

It is supposed here that the data are uncertain but are distributed with a Gaussian
law with known mean value and a known standard deviation in some interval. These
data can then be modelled by so-called stochastic numbers working with stochastic
arithmetic [3], [4], [5], [11], [12]. In particular it has been shown that the sum of
n stochastic numbers has a standard deviation in O(

√
n). This phenomenon has an

explanation which is close to the one of the computation of inner products with a
rounding to nearest arithmetic. In both cases the errors have a symmetric repartition
around their mean value. This is also an illustration of Wilkinson’s theory in which
approximate computation on exact data can be viewed as exact computation on some
perturbed data and vice-versa [17]. The following experiment illustrates the theory.
In this experiment the Xi are n uniform random numbers generated in [0, 100] with
a relative error ε = 0.001. Then for each Xi, 30 samples have been generated in its
range of uncertainty with a Gaussian distribution such that their mean-value is Xi

Reliable Computing 15, 2011 9

n result relative error nb sign. dig. β
10 0.26858420E + 05 0.36228360E − 06 6.44 0.608
100 0.27473297E + 06 0.20813466E − 05 5.68 0.349
1000 0.24908610E + 07 0.23635033E − 04 4.63 0.397
10000 0.24885198E + 08 0.22302596E − 03 3.65 0.374
100000 0.24798467E + 09 0.20583759E − 02 2.69 0.345

Table 5: Rounding to zero, 0 ≤ Xi, Yi ≤ 100, relative error in O(n)

n result relative error nb sign. dig. β
4 +5.835503e + 01 +1.29e − 07 6.89 0.539
16 +3.127193e + 02 +3.62e − 07 6.44 0.379
64 +1.624892e + 03 +1.34e − 06 5.87 0.352
256 +5.865698e + 03 +5.70e − 06 5.24 0.373
1024 +2.485485e + 04 +2.28e − 05 4.64 0.374
4096 +9.967466e + 04 +8.91e − 05 4.05 0.365
8192 +1.994063e + 05 +1.82e − 04 3.74 0.372

Table 6: Inner products on the CELL, 0 ≤ Xi, Yi ≤ 10, relative error in O(n)

and their standard deviation is δ = ε/2. Then the 30 sums have been computed from
these samples leading to the mean value and standard deviation of the results. These
are reported in Table 7. The exact digits in the results are in bold characters. This
table shows a non evident property which is: if all terms are known with the same
precision, the longest the sum, the more accurate the result.

n result relative error nb sign. dig. Std. dev/
√

n
10 0.56497847D + 03 0.186E − 04 4.21 0.581E − 01
100 0.49114757D + 04 0.184E − 04 4.71 0.540E − 01
1000 0.51429722D + 05 0.687E − 05 5.55 0.528E − 01
10000 0.49883679D + 06 0.147E − 05 5.57 0.525E − 01
100000 0.49863330D + 07 0.437E − 06 6.05 0.491E − 01

Table 7: Sum of n imprecise numbers. Relative error in O(
√

n)

4 Solving linear systems with the CELL

As said in the introduction the CELL processor has on chip parallel processors with a
very inaccurate division. Namely the only low level function is not a division but an
inversion called spu re and this inversion provides only twelve exact bits on the result.
Thus y = a/b must be computed as y = a ∗ (1/b) and is generally very inaccurate.
This is illustrated by the following example.

10 R. Alt, J.-L. Lamotte, S. Markov, CELL Processor

Solve Wilson’s system AX = B, see [16] using a classical Gaussian elimination
method with standard IEEE754 rounding to nearest and rounding to zero arithmetic
and with the CELL parallel SPU using standard division or SIMD instructions. The
system is:









5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

















x1

x2

x3

x4









=









23
32
33
31









The exact result is xi = 1, i = 1, ..., 4. The computed solutions are given in Table 8.

IEEE 754 CELL Processor
rounding to nearest rounding to zero standard div. SIMD instr.
0.99999970E + 00 0.10000181E + 01 1.0000135E + 00 1.0407186E + 00
0.10000004E + 01 0.99998879E + 00 9.9999154E − 01 9.7517973E − 01
0.99999982E + 00 0.99999547E + 00 9.9999678E − 01 9.9008989E − 01
0.10000001E + 01 0.10000027E + 01 1.0000020E + 00 1.0059216E + 00

Table 8: Solution of Wilson’s system with IEEE754 and CELL arithmetic

It is clear that the standard division provides results close to the IEEE 754 rounding
to zero arithmetic whereas the fast SIMD instructions give much poorer results.

5 Is CELL optimal for scientific computation?

The CELL is a very fast and very powerful processor for single precision numbers, thus
allowing the design of extremely powerful super computers. Anyhow as mentioned in
the beginning of this study it has been designed for multimedia applications which
generally do not require very high precision. In fact the first version has not been
designed for accurate floating point computation.

First, the rounding to zero mode implemented in the parallel SPU is clearly faster
than any other rounding mode, but as seen here it is statistically much less accurate
than rounding to nearest. In particular, in the case of inner products rounding to zero
leads to an error in O(n) whereas rounding to nearest produces an error in O(

√
n).

This is certainly why the default IEEE 754 rounding mode is actually rounding to
nearest. It is true that multimedia applications do not generally require the use of very
long inner products, but what about large linear problems coming from optimization,
meteorology, fluid and solid mechanics etc.? It must also be noted that BLAS are more
efficient than the standard computation algorithm but still are with an error in O(n).

Second, the division implemented on the SPU as a very imprecise multiplication
by inverse may also lead to very inaccurate or even totally erroneous results. These
two features encourage the scientific programmer to make an extensive use of double
precision but this has produced on our tests an enormous decrease of performance. In
the tested version double precision arithmetic was a 15 Gigaflops one. But it must be
noted that the last version of the CELL which is used in the Roadrunner has a 100
Gflops double precision. Anyhow, a mix of fast single precision and few well chosen
double precision operations can provide very fast and still accurate results, see for

Reliable Computing 15, 2011 11

example [6], but this supposes as a preamble a keen analysis of the problem. Therefore,
the conclusion is that when using the CELL for solving large (or unstable) scientific
problems, it is necessary to be aware that this processor is fast and powerful but has
an inaccurate single precision arithmetic. Then inaccurate computations may produce
false results. Consequently it is necessary to chose adapted algorithms, to make an
extensive use of the special functions of the CELL (Blas, FMA), or of interval methods
adapted to the CELL, see [7], and above all to control the solution.

References

[1] R. Alt, Etude statistique de l’erreur numérique d’affectation sur un ordinateur

d’arithmétique en base quelconque. Application à l’erreur commise dans le calcul

d’une somme de produits de nombres, Techn. Rep. IP 76.5., Inst. de Programma-
tion, Univ. Pierre et Marie Curie, Paris, 1976 (in French).

[2] R. Alt, “Error propagation in Fourier Transforms”, Math. Comp. in Sim., vol. 20,
pp. 37–43, 1978.

[3] R. Alt, J.-L. Lamotte, and S. Markov, “On the numerical solution to linear prob-
lems using stochastic arithmetic”, In: H. M. Haddad et al. (eds.), Applied Com-

puting 2006 (Proc. 2006 ACM Symposium on Applied Computing, SAC’06, Dijon,
France, April, 23–27, 2006), ACM, pp. 1635–1639, 2006.

[4] R. Alt, J.-L. Lamotte, and S. Markov, “Abstract structures in stochastic arith-
metic”, In: B. Bouchon-Meunier and R. R. Yager (Eds.), Proc. 11-th Conference

on Information Processing and Management of Uncertainties in Knowledge-based

Systems IPMU’2006, Editions EDK, Paris, pp. 794–801, 2006.

[5] R. Alt, J.-L. Lamotte, and S. Markov, “Numerical study of algebraic problems
using stochastic arithmetic”, In: I. Lirkov, S. Margenov, and J. Wasniewski (Eds.),
Large-Scale Scientific Computing, Springer Lecture Notes in Computer Science,
vol. 4818, pp. 123–130, 2008.

[6] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P.
Luszczek, and S. Tomov, “Accelerating scientific computations with mixed pre-
cision algorithms”, Computer Physics Commun., vol. 180, no. 12, pp. 2526–2533,
2009.

[7] S. Graillat, J.-L. Lamotte, and Diep Nguyen Hong, “Extended precision with a
rounding mode toward zero environment. Application on the Cell processor”, Int.

J. Reliability and Safety, vol. 3, no. 1/2/3, pp. 153–173, 2009.

[8] R. W. Hamming, “On the distribution of numbers”, The Bell Syst. Tech. J., vol.
40, pp. 1609–1625, 1970.

[9] M. La Porte and J. Vignes, “Evaluation statistique des erreurs dans les calculs sur
ordinateur”, Proc. Canadian Comp. Conf., pp. 414201–414213, 1972.

[10] M. La Porte, and J. Vignes, Algorithmes numériques, analyse et mise en oeuvre,
vol. 1, Technip Eds., Paris, 1974.

[11] S. Markov, R. Alt, and J.-L. Lamotte, “Stochastic arithmetic: S-spaces and some
applications”, Numer. Algo., vol. 37, no. 1–4, pp. 275–284, 2004.

[12] S. Markov and R. Alt, “Stochastic arithmetic, addition and multiplication by
scalars”, Appl. Numer. Math, vol. 50, pp. 475–488, 2004.

12 R. Alt, J.-L. Lamotte, S. Markov, CELL Processor

[13] N. Tsao, “On the distribution of significant digits and round-off errors”, Commu-

nications of the ACM, vol. 17, no. 5, pp. 269–271, 1974.

[14] J. Vignes, “A stochastic arithmetic for reliable scientific computation”, Math. and

Comp. in Sim., vol. 35, pp. 233–261, 1993.

[15] J. Vignes, “Discrete stochastic arithmetic for validating results of numerical soft-
ware”, Numer. Algo., vol. 37, pp. 377–390, 2004.

[16] J. R. Westlake, A handbook of numerical matrix inversion and solution of linear

equations, Wiley, 1968, pp. 136–157.

[17] J. H. Wilkinson, Rounding errors in algebraic processes, Prentice Hall, Englewood
Cliffs, N. J., 1963.

