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Abstract

Binary descriptors are becoming increasingly popular aseans to compare feature points very fast and
while requiring comparatively small amounts of memory. Tyygical approach to creating them is to first compute
floating-point ones, using an algorithm such as SIFT, and thebinarize them.

In this paper, we show that we can directly compute a binasguigtor we call BRIEF on the basis of simple
intensity difference tests. As a result, BRIEF is very fasth to build and to match. We compare it against SURF
and SIFT on standard benchmarks and show that it yields c@hbjgarecognition accuracy, while running in an

almost vanishing fraction of the time required by either.
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I. INTRODUCTION

Feature point descriptors are at the core of many Compuseorviechnologies, such as object recogni-
tion, 3D reconstruction, image retrieval, and camera Ieatibn. Since applications of these technologies
have to handle ever more data or to run on mobile devices witiheld computational capabilities, there
is a growing need for local descriptors that are fast to campiast to match, memory efficient and yet
exhibiting good accuracy.

One way to speed up matching and reduce memory consumptimnvi®rk with short descriptors.
They can be achieved by applying dimensionality reductsuch as PCA [1] or LDA [2], to an original
descriptor such as SIFT [3] or SURF [4]. For example, it waswshin [5], [6], [7] that floating point
values of the descriptor vector could be quantized using few bits per number without performance
loss. An even more drastic dimensionality reduction candbeezed by using hash functions that reduce
SIFT descriptors to binary strings, as done in [8], [9]. The&ings represent binary descriptors whose
similarity can be measured by the Hamming distance.

While effective, these approaches to dimensionality rednaequire first computing the full descriptor
before further processing can take place. In this paperhew shat this whole computation can be avoided
by directly computing binary strings from image patches. The individiis are obtained by comparing
the intensities of pairs of points along the same lines ad@j but without requiring a training phase.
We refer to this idea as BRIEF and will describe four différeariants {U,O,S,D}-BRIEF. They differ
by whether or not they are designed to be scale or orientatiariant. For simplicity we will also use
BRIEF to refer to any of the four members of this family of aigfons when we can do so unambigously.

Our experiments show that only 256 bits, or even 128 bitgnofiuffice to obtain very good matching
results. BRIEF is therefore very efficient both to computé emstore in memory. Furthermore, comparing
strings can be done by computing the Hamming distance, wéachbe done extremely fast on modern
CPUs that often provide a specific instruction to perform aRX@ bit count operation, as is the case in
the latest SSE [11] and NEON [12] instruction sets.

This means that BRIEF easily outperforms other fast desgspsuch as SURF and U-SURF in terms
of speed, as will be shown in the Results section. Furthemibralso outperforms them in terms of

recognition rate in many cases, as we will demonstrate ohkmelwn benchmark datasets.

I[I. RELATED WORK

The SIFT descriptor [3] is highly discriminant but, being 281vector, relatively slow to compute and
match. This substantially affects real-time applicatisash as SLAM that keep track of many points as
well as algorithms that require to store very large numbéidescriptors, for example for large-scale 3D

reconstruction purposes.



This has been addressed by developing descriptors such RE 1) that are faster to compute and
match while preserving the discriminative power of SIFTkeiSIFT, SURF relies on local gradient
histograms but uses integral images to speed up the conguutBifferent parameter settings are possible
but, since a vector of 64 dimensions already yields goodgmition performance, that version has become
a de factostandard. In the Results section, we will therefore comBR&EF to both SIFT and SURF.

SUREF is faster than SIFT but, since the descriptor is a 64evexf floating points values, its memory
footprint is still 256 bytes. This becomes significant wheifliams of descriptors need to be stored. There
are three main classes of approaches towards reducingutiber.

The first one involves dimensionality reduction technigsiesh as Principal Component Analysis (PCA)
or Linear Discriminant Embedding (LDE). PCA is very easy teeuand can reduce the descriptor
size at no loss in recognition performance [1]. By contra8E requires labeled training data, in the
form of descriptors that should be matched together, whschmaore difficult to obtain. It can improve
performance [2] but can also overfit and degrade performance

Another way to shorten a descriptor is to quantize its fl@gapoint coordinates into integers coded
on fewer bits. In [5], it is shown that the SIFT descriptor kkbbbe quantized using only 4 bits per
coordinate. The same method could most probably be appli8dRF as well, and makes these approaches
competitive with BRIEF in terms of memory need. Quantizaii® a simple operation that not only yields
a memory gain but also faster matching because the distataeén short vectors can then be computed
very efficiently on modern CPUs. In [13], it is shown that f@paopriate parameter settings of the DAISY
descriptor [14], PCA and quantization can be combined tacedts size to 60 bits. Quantization can also
be achieved by matching the descriptors to a small numberest@mputed centroids as done in source
coding to obtain very good results [15]. However, the Hangmilistance cannot be used for matching
after quantization because the bits cannot be processe@endently, which is something that does not
happen with BRIEF.

A third and more radical way to shorten a descriptor is to fizest. For example, [8] drew its inspiration
from Locality Sensitive Hashing (LSH) [16] to turn floatinpgpint vectors into binary strings. This is done
by thresholding the vectors after multiplication by an ajgprate matrix. Similarity between descriptors
is then measured by the Hamming distance between the conaisyg binary strings. This is very fast
because the Hamming distance can be computed very efficieiatla bitwise XOR operation followed
by a bit count. The same algorithm was applied to the GIST rgsc to obtain a binary description of
an entire image [17]. A similar binarization method was alsed in [18] with a random rotation matrix
on quantized SIFT vectors to speed up matching within Voraetdls. We also developed a method to

estimate a matrix and a set of thresholds that optimize thelmg performances when applied to SIFT



vectors [9]. Another way to binarize the GIST descriptorasuse non-linear Neighborhood Component
Analysis [17], [19], which seems more powerful but probablgwer at run-time.

While all three classes of shortening techniques providisfaatory results, relying on them remains
inefficient in the sense that first computing a long descrititen shortening it involves a substantial amount
of time-consuming computation. By contrast, the approaehadvocate in this paper directly builds short
descriptors by comparing the intensities of pairs of powithout ever creating a long one. Such intensity
comparisons were used in [10] for classification purposesveare shown to be very powerful in spite of
their extreme simplicity. Nevertheless, the present agghras very different from [10] and [20] because
it doesnot involve any form of online or offline training.

Finally, BRIEF echoes some of the ideas that were proposddianolder methods. The first one is
the Census transforn21] that was designed to produce a descriptor robust tmitiation changes. This
descriptor is non-parametric and local to some neighbatfaound a given pixel and essentially consists
of a pre-defined set of pixel intensity comparisons in a laggighborhood to a central pixel, which
produces a sequence of binary values. The bit string is tivestly used for matching. Based on this
idea, a number of variants have been introduced such as[E3],for example.

The second method, developed by Ojataal. [24] and called Locally Binary Patterns (LBP), builds
a Census-like bit string where the neighborhoods are takdretcircles of fixed radius. Unlike Census,
however, LBPs usually translate the bit strings into itsimet representation and build an histogram of
these decimal values. The concatenation of these histogedmes have been found to result in stable

descriptors. Extensions are numerous and include [25], [28], [28], [29], [30].

Il. METHOD

Our approach is inspired by earlier work [10], [31] that skedvthat image patches could be effectively
classified on the basis of a relatively small number of paeanntensity comparisons. The results of these
tests were used to train either randomized classificateestf31] or a Naive Bayesian classifier [10] to
recognize patches seen from different viewpoints. Heredavaway with both the classifier and the trees,
and simply create a bit string out of the test responses,hwive compute after having smoothed the
image patch.

More specifically, we define teston patchp of size S x S as

1 if I(p,x) <I(p,y)
T(p;X,y) := , (1)
0 otherwise

where I(p, x) is the pixel intensity in a smoothed version pfat x = (u,v)". Choosing a set ofy,

(x,y)-location pairs uniquely defines a set of binary tests. We talsr BRIEF descriptor to be the



Rotational invariance Scale invariance

SURF good (sliding orientation window) good (scale space search)
U-SURF | limited good (scale space search)
SIFT good (orientational HoG) good (scale space search)
U-SIFT limited good (scale space search)
U-BRIEF | limited fairly good

O-BRIEF | good (using external information) fairly good
S-BRIEF | limited good (using external information)
D-BRIEF | very good (template database) | good (template database)

TABLE I: Invariance properties of SURF, SIFT, and the fouifetient BRIEF variants.

ng-dimensional bit string that corresponds to the decimahtenpart of
Z 27 7 (pixi, i) - (2)
1<i<ng
In this paper we considet; = 128, 256, and512 and will show in the Results section that these yield
good compromises between speed, space, and accuracy.

The above procedure corresponds to the first BRIEF variamthwve callupright BRIEF (U-BRIEF).
Naturally and by design, U-BRIEF has limited invariance meplane rotation which we will quantify
later. However, if an orientation estimate for the featuotnpat hand is available, the tests can be pre-
rotated accordingly and hence made rotation invariant. & ito this aorientedBRIEF (O-BRIEF). In
practice, the orientation can be estimated by a featuret pl@tector or, when using a mobile device to
capture the image, by the device’s gravity sensor. Likewisecan use the scale information provided by
the feature detector to grow or shrink the tests accordjnygiyding thescaledBRIEF (S-BRIEF) variant
of BRIEF. In the absence of externally supplied scale andntation data, O-BRIEF and S-BRIEF are
mostly of academic interest since they would have to rely potantially slow feature detector to provide
the necessary information. Such is not the case of the famthfinal BRIEF variant, which we refer to
as database BRIEF (D-BRIEF). The idea behind D-BRIEF is tueae full invariance to rotation and
scaling by building a database of templates, which are tH&RUEF descriptors for rotated versions of
patches to be recognized. This needs to be done only onceaangecdone in real-time. Matching a new
patch against a database then means matching againstaaéid@nd scaled versions. However, because
computing the distance between binary strings is extrefiasly this remains much faster than using either
SIFT or SURF and we demonstrate the viability of this appindacan application in section V-E, running
at 25 Hz or more. We summarize the different BRIEF variant it& competitors in table 1.

In the remainder of the paper, we will add a postfix to BRIEF|BRL, wherek = n,/8 represents

the number obytesrequired to store the descriptor.



When creating such descriptors, the only choices that haeetmade are those of the kernels used
to smooth the patches before intensity differencing andshegial arrangement of thex, y)-pairs. We
discuss these in the remainder of this section.

To this end, we use theé/all dataset that we will describe in more detail in Section V.dbt@ins five
image pairs, with the first image being the same in all paicstha second image shot from a monotonically
growing baseline, which makes matching increasingly maffecdlt. To compare the pertinence of the
various potential choices, we use as a quality measureettugnition ratethat will be precisely defined
at the beginning of section V. In short, for both images of mage pair that is to be matched and for a
given number of corresponding keypoints between them,antjfies how often the correct match can be
established. In the case of BRIEF, the nearest neighboeigifted using the Hamming distance measure.
The recognition rate can be computed reliably because #meesis planar and the homography between

images is known and can therefore be used to check whethetisgaily correspond to each other or not.

A. Smoothing Kernels

By construction, the tests of Eq. 1 take only the informatainsingle pixels into account and are
therefore very noise-sensitive. By pre-smoothing thelpatas sensitivity can be reduced, thus increasing
the stability and repeatability of the descriptors. It is flee same reason that images need to be smoothed
before they can be meaningfully differentiated when logkior edges. This analogy applies because our
intensity difference tests can be thought of as evaluatiegsign of the derivatives within a patch.

Fig. 1 illustrates the effect on the recognition rate of @asing amounts of Gaussian smoothing. The
variance of the Gaussian kernel has been variefd.i2.75]. The more difficult the matching, the more
important smoothing becomes to achieving good performafgghermore, the recognition rates remain
relatively constant in the 1 to 3 range and, in practice, weaisalue of 2. For the corresponding discrete
kernel window we found a size af x 7 pixels be necessary and sufficient.

While the Gaussian kernel serves this purpose, its noreumify makes it fairly expensive to evaluate,
compared to the much cheaper binary tests. We thereforaimgrged by a box filter. As can be seen
in Fig. 1, no accuracy is lost when replacing the Gaussiaer fidf a box filter, which confirms a similar
finding of [26]. The latter, however, is much faster to evétusince integral images offer an effective

way to computing box filter responses independently of therfgize using only three additions.

B. Spatial Arrangement of the Binary Tests

Generating a lengthy bit vector leaves many options for selecting the test locatix;, y;) of Eq. 1 in

a patch of sizeS x S. We experimented with the five sampling geometries depibte#lig. 2. Assuming
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Fig. 1: Recognition rates and their variances for differmmiounts of smoothing and different benchmark

image sets. Each group of 10 bars represents the recogratEsin one specific image pair for increasing

levels of smoothing. Especially for the hard-to-match aivhich are those on the right side of the plot,

smoothing is essential in slowing down the rate at which #gedgnition rate decays. Note that the first

9 bars corresponds to the Gaussian kernel where the rightrao®f each group corresponds to using a

box filter. It appears that using a box filter does not harm &ogu

the origin of the patch coordinate system to be located atptiteh center, they can be described as

follows.

) (X,Y) ~ iid. Uniform(—2,2): The (x;,y;) locations are evenly distributed over the patch and

IN)

1D

tests can lie close to the patch border.
(X,Y) ~ i.i.d. Gaussiaf)

This is motivated by the fact that pixels at the patch ceredtto be more stable under perspective

,21552) The tests are sampled from an isotropic Gaussian disiwiut

distortion than those near the edges. Experimentally Wedcgl —o— & o’ = 1552 to give best
results in terms of recognition rate.

X ~ ii.d. GaussiafD, 5%) , Y ~ ii.d. Gaussiafx;, ;;;57) : The sampling involves two steps.
The first locationx; is sampled from a Gaussian centered around the origin, likeptevious,
while the second location is sampled from another Gaussatered onx;. This forces the tests
to be more local. Test locations outside the patch are cldmpedahe edge of the patch. Again,

experimentally we founcg —a &o0? = 10052 for the second Gaussian performing best.

IV) The (x;,y;) are randomly sampled from discrete locations of a coarsarpgid introducing a
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Fig. 2: Different approaches to choosing the test locatidtisexcept the righmost one are selected by

random sampling. Showing 128 tests in every image.

spatial quantization. This geometry is of interest becauseflects the behavior of BRIEF when
the underlying tests are sampled from a more coarse gridttiarof the pixels.
V) Vi :x; = (0,0)" andy; is takes all possible values on a coarse polar grid con@injnpoints.
Note that this geometry corresponds to that of the Censuasftran [21] discussed in section II.
For each of these test geometries we compute the recognéieron several benchmark image sets and
show the results in Fig. 3.
Clearly, the symmetrical and regular G V strategy loses gaiirest all random designs G | to G 1V,
with G Il enjoying a small advantage over the other three irsihtases. For this reason, in all further

experiments presented in this paper, it is the one we will use

C. Distance Distributions

In this section, we take a closer look at the distribution afthining distances between our descriptors.
To this end we extract about 4000 matching points from theifiv@ge pairs of theVall sequence. For
each image pair, Fig. 4 shows the normalized histogramsstitaitions, of Hamming distances between
corresponding points (in blue) and non-correspondingtpdiim red). The maximum possible Hamming
distance bein@g2 - 8 = 256 bits, unsurprisingly, the distribution of distances fomamatching points is
roughly Gaussian and centered around 128. As could alsofee®d, the blue curves are centered around

a smaller value that increases with the baseline of the inpags and, therefore, with the difficulty of
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Fig. 3: Recognition rates and their variances for the fivietkht test geometries introduced in Section 111-B

and different benchmark image sets.

the matching task.

Since establishing a match can be understood as classibging of points as being a match or not, a
classifier that relies on these Hamming distances will wadt vhen their distributions are most separated.
As we will see in section V, this is of course what happens wétognition rates being higher in the

first pairs of theWall sequence than in the subsequent ones.

IV. ANALYSIS

In this section, we use again theall dataset of Fig. 10a to analyze the influence of the variougdes

decisions we make when implementing the four variants ofBRE&EF descriptor.

A. Descriptor Length

Since many practical problems involve matching a few hudideature points, we first us¥ = 512 of
them to compare the recognition rate of U-BRIEF using eitt#8, 256, or 512 tests, which we denote as
U-BRIEF-16, U-BRIEF-32, and U-BRIEF-64. The main purposgehis to show the dependence of the
recognition rate on the descriptor length which is why weyontlude the recognition rate of U-SURF-64
in the plots. Recall that U-SURF returns 64 floating point bens requiring 256 bytes of storage—this is
4 to 16 times more than BRIEF.



T T
0.035- Matching pgims ) 0.035- Matching pgims )
—— Non-matching point —— Non-matching point
0.03- b 0.03- b
Iy Iy
c 0.0251 4 ¢ 0.025f : : B
[ [
=] =]
o o
2 002F 1 £ 0.02r b
[ [
= =
< 0.015 1 & 0.015- B
ko) ko)
x x
0.01- b 0.01- b
0.005 Wall 1|2 0.005- Wall 1|3
0 A 1 " L 0 " L " L
0 50 100 150 200 250 0 50 100 150 200 250
Hamming distance Hamming distance
T T T T T
0.035- Matching pgims ) 0.035- Matching pgims )
—— Non-matching point —— Non-matching point
0.03- b 0.03- b
z z
c 0.0251 : : 4 <€ 0.025f B
[ [
=] =]
o o
2 002F : 1 £ 0.02r B
[ [
= =
% 0.015 1 & 0.015- B
ko) ko)
x x
0.01- b 0.01- b
0.005 Wall 1|4 - 0.005- Wall 1|5
0 & | ! A 1 0 " 1 ! " 1
0 50 100 150 200 250 0 50 100 150 200 250
Hamming distance Hamming distance
T T T
0.035- Matching points
—— Non-matching point
0.031 b
Iy
c 0.0251 B
[
=]
o
2 002F : i
[
=
% 0.015 i
ko)
x
0.01- b
0.0051 Wall 1|16
O & L L
0 50 100 150 200 250

Hamming distance

Fig. 4: Distributions of Hamming distances for matchingrpaf points (thin blue lines) and for non-
matching pairs (thick red lines) in each of the five imagegpafrtheWall dataset. They are most separated

for the first image pairs, whose baseline is smaller, ultatyatesulting in higher recognition rates.

In Fig. 5 we usewall to plot the recognition rate as a function of the number dfstéd/e clearly see a
saturation effect beyond 200 tests for the more easy caskaraimprovement up to 512 for the others.
The motivates the choice for the default descriptor BRIRF-3

We would like to convince the reader that this behavionas an artifact arising from the fairly low
number of feature points used for testing and that BRIEFescedasonably with the number of features
to match. To this end we repeat the testing for valued’ ainging from 512 to 4096, adding new feature
points by decreasing the detection threshold. We foundlaimécognition rates, as shown in in Fig. 6.
Note how the rates drop with increasing for all the descriptors, as expected; however, the rankings

remain unchanged. This behavior changes wiNehecomes even larger, as discussed in Section V.C.
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Fig. 5: Varying the number of tests; of U-BRIEF. The plot shows the recognition rate as a function
of ng on wall. The vertical and horizontal lines indicate the number stdeequired to achieve the
same recognition rate as U-SURF on respective image paiisther words, U-BRIEF requires only 58,
118, 184, 214, and 164 bits fovall 1|2, ..., 1|6, respectively, which compares favorably to U-SURF’s
64 - 4 - 8 = 2048 bits (assuming 4 bytes/float).

B. Orientation Sensitivity

U-BRIEF is not designed to be rotationally invariant. Neékeless, as shown by our results on the six
test data sets, it tolerates small amounts of rotation. Tantfly this tolerance, we take the first image
of the Wall sequence wittv = 512 points and match these against points in a rotated versiatsedf,
where the rotation angle is varied between 0 and 180 degrees.

Figure 7 compares the recognition rate of SUR¥, three versions of BRIEF-32x( ¢, ~), and
U-SURF (). Since the latter does not correct for orientation eititerbehavior is very similar or even
slightly worse than that of U-BRIEF: Up to 15 degrees theiétle degradation, however, this is followed
by a precipitous drop. SURF, which attempts to compensaterfentation changes, does better for large
rotations but worse for small ones, highlighting once aghat orientation invariance comes at a cost.
The typical shape of the SURF-64 curve is a known artifadiragi from approximating the Gaussian for
scale-space analysis, degrading the performance und®arie- rotation for odd multiples of /4 [32],
[33].

To complete the experiment, we plot two more curves. The fisstesponds to O-BRIEF which is
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Fig. 6: Scalability. For each of the five image pairsvadll, we plot on the left side four sets of rates
for N being 512, 1024, 2048, and 4096 when using U-SURF-64, anddquivalent sets when using
U-BRIEF-32. Note that the recognition rate consistentlgrdases with increasingy. However, for the
sameN, BRIEF outperforms SURF, except in the last image pair wlieeerecognition rate is equally
low for both.
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Fig. 7: Recognition rate when matching the first image of W dataset against a rotated version of

itself, as a function of the rotation angle.
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identical to U-BRIEF except that the tests are rotated afiogrto the orientation estimation of SURF.
O-BRIEF-32 is not meant to represent a practical approatlolemonstrate that the response to in-plane
rotations is more a function of the quality of the orientatiEstimator rather than of the descriptor itself,
as evidenced by the fact that the O-BRIEF-32 and SURF cumeeslmost perfectly superposed.

The second curve is labeled D-BRIEF-32. It is applicablerabfems where full rotational invariance
is required while no other source for orientation corrati®available—a case seen less and less often. As
discussed at the beginning of section Ill, D-BRIEF explBRIEF’s characteristic speed by pre-computing
a database of U-BRIEF descriptors for several orientatioregching incoming frames against the entire
database and picking the set of feature points with the jlgliaghest number of correct matches. Doing
so is practically viable and lets applications processnmaog frames at 30 Hz. As a welcome side-effect,
D-BRIEF also avoids the characteristic accuracy loss eksein scale space-based methods based on
approximations of Gaussians as can be seen in Fig. 7.

C. Sensitivity to Scaling

100 ‘ ‘
—o— U-SURF-64
—— U-BRIEF-32
sol —&— S-BRIEF-32]
4 D-BRIEF-32
g
& 60f -
S
.“::'
2 40f -
i
20 -
0 1
1 12 14 16 24 26 28 3

1.8 2 2.2
Scale factor LO/Li

Fig. 8: Recognition rate under (down)scaling using the fireige fromwall. Ly: original image width,
L;: width of matched image.

By default, U- and O-BRIEF are not taking scale informatiotoiaccount, although the smoothing
provides a fair amount of robustness to scale changes asredfin the experiments below. We assess
the extent of this tolerance in Figure 8 and plot the reciogmitate as a function of the image scaling

factor. The first two curves in the plot, U-SURF-64 and U-BRIE2, show that U-BRIEF is inherently
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robust to small and intermediate scale changes, at leasinte §mited extent. Larger changes result in
a notable loss in accuracy.

Scale information, if available from a detector, can be ilgadtegrated into BRIEF, which we demon-
strate with the third curve in the plot, labeled S-BRIEF-3Be scale of a keypoint is used to adjust both
the area which the tests cover and the smoothing kernel sfrebthe tests are applied. Apparently,
this results in a descriptor that behaves similarly to SURBen scale changes where potentially using
a larger-than-standard kernel size for smoothing comesoatast, thanks to integral images used for
computing the box filter response.

The D-BRIEF curve in Fig. 8 describes the case where no scdtegmation is available. As for
rotational invariance, we can resort to pre-computing alukde of scaled versions of the original image.
The scales are chosen such that they cover the expectedofiofiservable ones, which is in the present
case[1.0,0.60,0.43,0.33]. In a more general setup this interval may be centered arbhtb account for
larger and smaller scales. However, since a scaling fat@B8 is smaller than what practical applications
typically demand, that scale can be removed and anothgerlane added. Therefore, 4 or even 3 scales
might suffice for most applications.

Alternatively, a point detector that also returns a scakamede can be used to achieve such scale-
invariant behavior and in practice, a faster detector sscGenSurkE [34] would be given preference over
the still fairly slow Fast Hessian detector underlying SURSE alone SIFT's DoG detector. In any case,
changing the underlying point detector does not influencéeBR behavior, as we are going to show in

the next section.

D. Robustness to Underlying Feature Detector

To perform the experiments described above, we used SURfokeg so that we could run both SURF
and BRIEF on the same points. This choice was motivated byaittethat SURF requires an orientation
and a scale and U-SURF a scale, which the SURF detector gvid

However, in practice, using the SURF detector in conjumctioth BRIEF would negate part of the
considerable speed advantage that BRIEF enjoys over SWRfuUld make much more sense to use a
fast detector such as CenSurE [34]. To test the validity of #pproach, we therefore re-computed our
recognition rates on thavall sequence using CenSurE featdrasstead of SURF keypoints. As can be

seen in Figure 9, U-BRIEF works even slightly better for QaniSpoints than for SURF points.
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Fig. 9: Using CenSurE feature points instead of SURF oneBRUEF works slightly better with CenSurE
feature points rather than with those from SURF.

{U,0,S}-BRIEF-X (CPU) | U-SURF-64
X=16 X=32 X=64 | CPU GPU
Detection 1.61 1.61 1.61 160 6.93
Gaussian 6.59 6.81 7.40
o Uniform 6.05 6.07 6.30
Description ) 101 3.90
Uniform-Integral 1.74  2.69 4.65
Uniform-Integraf 1.01  1.98 3.91
) n?-Matching w/oPOPCNT || 2.62 5.03 9.56
Matching ) 28.3 6.80
n?-Matching w/ POPCNT 0.433 0.833 1.58

TABLE II: CPU wall clock time in [ms] for {U,O,S}-BRIEF of legth 16, 32, or 64 and U-SURF-
64 on 512 points, median over 10 trials. Values for matchisgmg D-BRIEF could be obtained by
multiplying the given value by the number of orientationsl/@n scales used. The four row of nhumbers
in the Description part of the table correspond to four different methods to @iimahe patches before
performing the binary tests. The two rows of numbers in Meching part of the table correspond to
whether or not the POPCNT instruction is part of the instarcset of the CPU being used. Neither the
kernel choice or the presence of the POPCNT instructiorca®RF. fIntegral image pre-computed.

fIntegral image re-used from a detector such as CenSurE.

E. Speed Estimation

In a practical setting where either speed matters or cortipntd resources are limited, not only
should a descriptor exhibit the highest possible recagmitate but also be as computationally frugal as

1Center Surrounded Extrema [34], or CenSurE for short, has eplemented in OpenCV 2.0 with some improvements and ehenc

received a new nametar detector hinting at the shape of the bi-level filters.
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possible. Table Il gives timing results in milliseconds sw@wad on a 2.66 GHz/Linux x86-64 laptop for

512 keypoints. We give individual times for the three maimeaoitational steps depending on various

implementation choices. We also provide SURF timings o I&RU and GPU for comparison purposes.

1)

2)

3)

Detecting feature points.For scale-invariant methods such as SURF or SIFT, the fiegt san
involve a costly scale-space search for local extrema. éncise of BRIEF, any fast detector such
as CenSurk [34] or FAST [35], [36] can be used. BRIEF is tlweefit an advantage there.
Computing descriptors. When computing the BRIEF descriptor, the most time-consgnpiart of
the computation is smoothing the image-patches. In TabledIprovide times when using Gaussian
smoothing, simple box filtering, and box filtering using ot&l images. The latter is of course much
faster. Furthermore, as discussed in Section IlI-A and showFig. 1, it does not result in any
matching performance loss.

In the specific case of the BRIEF-32 descriptor, we observeé-fol8l speed-up over U-SURF,
without having to resort to a GPU which may not exist on a lawepr device.

Matching descriptors. This involves performing nearest neighbor search in dpsurispace. For
benchmarking purposes, we used the simplest possible mgtstiategy by computing distances of
every descriptor against every other. Even though the ctatipn time is quadratic in terms of the
number of points being matched, BRIEF is fast enough to sbitlmamains practical for real-time
purposes over a broad range. Furthermore, for larger peist & would be easy to incorporate a
more elaborate matching strategy [37].

More technically, matching BRIEF's bit vectors mainly itwes computing Hamming distances.
The distance between two BRIEF vectdrsandb, is computed as POPCNB; XOR b,) where
POPCNT is returning the number of bits set to 1. Older CPUsgiredOPCNT to be implemented in
native C++ and BRIEF descriptors can be matched about 6 feses than their SURF counterparts,
as shown in Tab. Il. Furthermore, since POPCNT is part of BE42 [11] instruction set that newer
CPUs, such as the Intel Core i7, support, the correspongiagdsup factor of BRIEF over SURF
becomes 34. Note that recent ARM processors, which arealypigsed in low-power devices, also

have such an instruction, called VCNT [12].

In short, for all three steps involved in matching keypoiBRIEF is significantly faster than the already

fast SURF without any performance loss and without reqgianGPU. This is summarized graphically
in Fig. 16.

V. RESULTS

In this section, we compare our method against several comgpapproaches. Chief among them is

the latest OpenCV implementation of the SURF descriptor \¢jich has become de factostandard
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for fast-to-compute descriptors. We use the standard S&Rf¥rersion, which returns a 64-dimensional
floating point vector and requires 256 bytes of storage. BsegU,S}-BRIEF, unlike SURF, do not
correct for orientation, we also compare against U-SUR4where the U also stands fapright and
means that orientation is ignored [4].

As far as D-BRIEF is concerned, because its database oédopattches has to be tailored to a particular

application, we demonstrate it for real-time Augmented|®Reaurposes.

A. Datasets

We compare the methods on real-world data, using the sixigiyldvailable test image sequences
depicted by Fig. 10a. They are designed to test robustneggical image disturbances occurring in
real-world scenarios. They include

« Vviewpoint changeswall?, Graffiti?, Fountain®, Liberty*;

« compression artifactsipg?;

o illumination changestight?;

« image blurTrees?.

For all sequences excepbertywe consider five image pairs by matching the first image toe¢hsaining
five. The five pairs invall andFountain are sorted in order of increasing baseline so that p&irs much
harder to match than paif2, which negatively affects the performancealf the descriptors considered
here. The pairs fronapg, Light, and Treesare similarly sorted in order of increasing difficulty.

Thewall andGraffiti scenes being planar, the images are related by homogrdphtese use to compute
the ground truth. Both sequences involve substantial ptame rotation and scale changes. Although
the Jpg, Light, andTrees scenes are non-planar, the ground truth can also be repedsmrcurately enough
by a homography that is close to identity since there is almoschange in viewpoint.

By contrast, thecountain scene is fully three-dimensional and contains substapeiedpective distortion.
As this precludes using a homography to encode the groutit tme use instead accurate laser scan data,
which is also available, to compute the flow field for each imaair.

These six datasets are representative of the challengearttagorithm designed to match image pairs
might face. However, they only involve relatively small nioens of keypoints to be matched in each
individual image. To test the behavior of our algorithm o tnuch larger libraries of keypoints that
applications such as image retrieval might involve, we ubedpublicly available.iberty dataset depicted

by Fig. 10b. It contains over 400k scale and rotation norredlipatches sampled from a 3D reconstruction

2http://www.robots.ox.ac.uk/~vgg/research/affine [38]
3http://cvlab.epfl.ch/~strecha/multiview [39]
“http://cvlab.epfl.ch/~brown/patchdata/patchdata. Hi8]
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Wall Graffiti Fountain

Fig. 10: (a) Test image sequences. The left column showsrtarfiage, the right column the last image.
Each sequence contains 6 images and hence we consider 5paiagper sequence by matching the first
one against all subsequent images. This way, exceprtditi, the pairs are sorted in ascending difficulty.

More details in the text. (b) Some of the images patches filogn.iberty dataset used in our evaluation.

of the New York Statue of Liberty. The 6464 patches are sampled around interest points detectegl usin
Difference of Gaussians and the correspondences betwdehepaare found using multi-view stereo
algorithm. The dataset created this way represent submtpetspective distortion of the 3D statue seen

under various lighting and viewing conditions.

B. Comparing Performance for Image Matching Purposes

This section finally compares the BRIEF-32 descriptor aga8iFT and SURF. For SIFT we employ
the si ft pp implementation by Vedaldi [40] that computes the stand&8-dector of real numbers,
requiring 512 bytes of memory. For SURF we rely on the latgse@V implementation [41] where we
use the standard SURF-64 version. The default parametargseare used.

Although BRIEF can be computed on arbitrary kinds of feapomts, this comparison is based on SIFT
or SURF points, depending on which of the two we are actualipmgaring BRIEF to. While doing so
removes the direct comparability of SIFT's and SURF’s rettgn rates, it is vital for a fair comparison

to BRIEF. In practical applications, however, we would eatamploy FAST [35] or CenSurE [34] features
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for computational efficiency. While FAST is faster to comptihan CenSurE, the latter provides BRIEF
with integral images that can be exploited for additionadexh see Tab. Il.

We measure the performance of the descriptors using Ndsdeeghbor (NN) correctness. We refer to
this measure agecognition ratep. It simply computes the fraction of descriptors that are MNdature
space while belonging to the same real-world point, and édreing a true match. Given an image pair,
this is done as follows.

« Pick N feature points from the first image, infer thé corresponding points in the second image
using the known geometric relation between them, and coeniing2 V' associated descriptors using
the method under consideration.

« For each point in the first set, find the NN in the second one afidtca match.

« Count the number of correct matchesand compute := n./N.

Note that not detecting feature points in the second imagasing geometry instead prevents repeatability
issues in the detector from influencing our results. Sinceapaly the same procedure to all methods,
none is favored over any other.

The recognition rate is of great importance when the featactors are matched using exhaustive NN
search. This is feasible in real-time when the number olifestis not exceeding a few hundred or maybe
one thousand as typical for SLAM or object detection appilices. Even though approximate NN schemes
exist, exact search is done whenever possible because dhmeg of such schemes quickly deteriorates
in high-dimensional spaces.

In the following we show a large number of graphs to compaee different variants of BRIEF to
SURF and SIFT. More specifically we use 6 image sequencel,aeataining 5 image pairs, to compare

« U-SURF and U-BRIEF that do not correct for orientation, and

« SIFT, SURF, and O-BRIEF that do using the same orientatitimate.

This means that a thorough comparison encompasses x 2 = 24 recognition rate plots. The factor 2
from SIFT and SURF cannot be dropped because—although tharsvconceptually very similar—they
are not working with the same set of feature points and fgraither to use the other’s will distort the
results. In some cases we use points extracted by SIFT anithénsaby SURF.

In the title of each plot we give the name of the test sequemcktlhe number of points that were
matched for each image pair. When the detected points inraypai rise to more than 1000 ground truth-
compatible matches, 1000 of them are selected at randorarvatte the maximum available number of
matches is used. Keeping the number of points constant ff@valuations makes comparisons easier.

Figs. 11 through 14 show the recognition rate of BRIEF togethith those of SURF and SIFT for

comparison. Each of the four figures contains six graphs,foneach image sequence. Based on these
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Fig. 11: Recognition rate vs. image pairs of all sequencesaaring to U-SURF.

plots, we make the following observations:

« On all sequences except anmaffit, U-BRIEF outperforms U-SURF, as can be seen in Fig. 11.

« Using orientation correction, O-BRIEF also outperformsRFUexcept onGraffiti. O-BRIEF does

slightly better than U-BRIEF on Graffiti but not much (Figutg).

« SURF and SIFT are both substantially more sensitive to ingrethan BRIEF is, and slightly more

sensitive to compression and illumination artifacts (Fegull to 14).

« O-BRIEF works better with SURF’s orientation assignmeminthvith that of SIFT features (Figures

12 and 14).

« SIFT is more robust to viewpoint changes than both BRIEF ddRS

In summary, the rough ordering ‘SIFF BRIEF 2> SURF’ applies in terms of robustness to common

image disturbances but, as we will see below, BRIEF is mustefaghan both. Note, however, that these

results were obtained faN = 1000 keypoints per image. This is representative of what has tddre

when matching two images against each other but not of the atiircult problem of retrieving keypoints

within a very large database. We now turn to this problem.
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Fig. 12: Recognition rate vs. image pairs of all sequencesafaring to SURF.

C. Influence of the Number of Keypoints to be Matched

To demonstrate what happens when the number of keypoint® tmdiched increases, we use the
Liberty dataset that contains over 400k patches and the corresgpgdiund-truth. We extracted subsets
of corresponding patches of cardinalities ranging from 7G00. To use the same metric as in Section V-B,
we report recognition rates as proportions of the desaspfiar which the nearest-neighbor in descriptor
space corresponds to the same real-world point.

Since theLibertydataset consists of patches extracted around interestspom feature detection is
needed and descriptors are computed for the central poittheofpatch. Since both SIFT and SURF
perform sampling at a certain scale, we optimized this sggharameter for optimal performance. For a
fair comparison, we did the same for BRIEF by adjusting tlee sif the patch that was used to create
the descriptor.

Fig. 15 and Table Il depict the resulting recognition rat&l descriptors perform less and less well
with increasing dataset size and, even for small cardiesliperformances are consistently worse than
those reported in Section V-B because the data set is mucé amailenging.

On this dataset, SIFT performs best. BRIEF-32 does better thhSURF for cardinalities up t&/ =

1000 and worse for larger ones. To outperform U-SURF it become®ssary to make BRIEF more
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Fig. 13: Recognition rate vs. image pairs of all sequencesagaring to U-SIFT.

discriminative by using more bits and using BRIEF-64 or BRIE28, which are still smaller and, even
more importantly, much faster to compute as will be discddssdow. Furthermore, BRIEF-128 still only
requires 1024 bits, which is half of the 2048 bits requiredtimre the 64 floats of U-SURF.

Since SIFT performs better than BRIEF, whatever its size alse investigated what part of the loss
of discriminative power simply comes from the fact that we asing a binary descriptor, as opposed to
a floating point one. To this end, we used a method we recemtlgduced to binarize SIFT descriptors
and showed to be state-of-the-art [9] and as short as qedntiescriptors like DAISY [13]. It involves
first computing a projection matrix that is designed to jlginninimize the in-class covariance of the
descriptors and maximize the covariance across classés) wdin be achieved in closed-form. This being
done, optimal thresholds that turn the projections intcabjinvectors are computed so as to maximize
recognition rates. This amounts to performing Linear Dimgrant Analysis on the descriptors before
binarization. Because it is coded on 16 bytes, it is denogeldz?-16 in the graph of Fig. 15. It performs
better than BRIEF, but at the cost of computing much moreesore has to first compute the full SIFT
descriptor and then binarize it. In applications where tim®f the essence and memory requirements
are less critical, such as establishing correspondencesufgmented reality purposes, it therefore makes
sense to use BRIEF-32, -64, or -128 as required by the diffiaflthe scenes to be matched.
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Fig. 14: Recognition rate vs. image pairs of all sequencesafaring to SIFT.

TABLE Ill: Recognition rates of descriptors for increasingmbersN of corresponding pairs from the

Liberty dataset.

N 500 1000 2000 3000 5000 7000
SIFT 59.8% | 51.33%| 46.87%| 40.7% | 40.26% | 33.26%
SURF 41.47%)| 35.03%| 31.23%| 26.9% | 25.88%| 21.16%

BRIEF-32 | 43.93% | 35.33%| 29.97%| 26.08% | 23.96%| 19.29%
BRIEF-64 | 45.8% | 38.17%| 33.37%| 28.98% | 27.46%| 22.33%
BRIEF-128 | 48% | 40.43%| 35.37%| 30.53% | 29.16%| 23.49%

LDA-16 53.27%| 45.57% | 40.28% | 35.13% | 34.56% | 28.19%

D. Comparing Computation Times

In this section we compare the timings of the different mdthd-ig. 16 shows the total time required for
detecting, describing and matching 512 feature points. HBRk almost two orders of magnitude faster
than its fastest competitor, U-SURF. In particular, thendtad version of BRIEF, BRIEF-32, appears
particularly efficient as it exploits integral images for@othing and théOPCNT instruction for computing

the Hamming distance.
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Descriptor performance for Liberty dataset (average over three subsets)
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Fig. 15: Descriptors performance as the function of the nema of corresponding pairs on thebverty

dataset.
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Fig. 16: Timings for a detection—describe—match cycle.g0ed by decreasing total time. The methods
shown include three versions of BRIEF and U-SURF-64 implele on both the CPU and the GPU.
The P suffix for BRIEF indicates that in the matching step, @°CNT instruction has been employed.

All timings are the medians over 10 instances of the task ath#/e measure the CPU wall clock

time programatically, that is using the system’s tick coualiue rather than counting cycles. When the
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Fig. 17: Screenshots from the object detection applicaflop image: Initialization by drawing a square
around the detection target. Remaining 4 images: The syateon-time. Note that it tolerates substantial
scale changes and is fully invariant to in-plane rotationleviunning at 27 FPS on the CPU of a simple

laptop.

system load is low, the two values should be close, thougi figpractical point of view, the wall clock

time is the one that truly counts.

E. On-the-Fly Object Detection

To demonstrate the value of D-BRIEF, we present a systenguedifor real-time object detection
where the object to be detected can be leannsthntaneouslyln other words, unlike earlier systems,
such as our own real-time mouse pad detection applicatiesepted in [42], this one does not require

a training phase, which may take several minutes. Using dh@esmplementation using SURF features,
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for example, is impossible unless resorting to the GPU. Bytrest, the current application builds on
D-BRIEF-32P and runs on a single CPU while maintaining fraate performance. We show results in
a few frames in Fig. 17.

In such an application, unlike those presented earliel,rédétional invariance is clearly a desirable
feature. This can be achieved thanks to BRIEF's extremdlgierfit processing pipeline, even without
resorting to any trick for speeding things up. To this endewlthe target image is acquired, we build
a template database that contains 18 rotated views at 3ssohlthe target, totaling up to 54 views.
The additional descriptors are computed on synthetic imadpained by warping the target image. Then
each incoming frame is matched against the database anchéhwiith the highest number of matches
to features-in-template score is selected. These matchestith noisy and hence fed to RANSAC, which
robustly estimates a homography between the views thakeis tasre-project the template target’s corners
into the image frame.

While this basic system works at 25-30 Hz, its computatioretand memory requirements increase
linearly with the number of templates. Its performance widu further enhanced by i) enabling tracking
and/or ii) using a more efficient feature point search as veee dn [37] to achieve real-time performance
using SIFT and Ferns. Furthermore, to achieve a more effiégature point search, a tree resembling

much that of a Vocabulary Tree [43] could be used.

VI. CONCLUSION

We have introduced the BRIEF descriptor that relies on divelst small number of intensity difference
tests to represent an image patch as a binary striNgt only is construction and matching for this
descriptor much faster than for other state-of-the-arispitealso tends to yield higher recognition rates,
as long as invariance to large in-plane rotations is not airement.

It is an important result from a practical point of view besaut means that real-time matching
performance can be achieved even on devices with very lihtibenputational power. It is also important
from a more theoretical viewpoint because it confirms theditsl of the recent trend [44], [17] that
involves moving from the Euclidean to the Hamming distarmenhatching purposes.

Future work will aim at developing data structures thatwallior sub-linear time look-up of BRIEF
descriptors.
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