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Abstract

The notion of strong designated verifier signature was put
forth by Jakobsson, Sako and Impagliazzo in 1996, but
the formal definition was defined recently by Saeednia,
Kremer and Markowitch in 2003 and revisited by Laguil-
laumie and Vergnaud in 2004. In this paper, we firstly
propose the notion of short strong designated verifier sig-
nature scheme, and extend it to the short identity-based
strong designated verifier scheme. Then, we propose the
first construction of short strong designated verifier sig-
nature scheme. We also extend our scheme to construct
a short identity-based strong designated verifier signature
scheme. The size of the signature of our schemes is the
shortest compared to any existing schemes reported in
the literature. We provide formal security proofs for our
schemes based on the random oracle model. Finally, we
also discuss an extension of our scheme to construct a
short strong designated verifier signature without random
oracle.

Keywords: Designated verifier signature, identity based,
random oracle model, short signature, strong designated
verifier signature scheme

1 Introduction

The concept of undeniable signature was proposed by
Chaum and van Antwerpen [3] to enable signers to have
complete control over their signatures. In this scheme, the
verification of the signer’s signature requires the partici-
pation of the signer in an interactive protocol. The signer
can reject invalid signatures, but she must not be able to
deny valid signatures. Since the introduction of undeni-
able signature schemes, there have been a wide range of
research covering a variety of different schemes for unde-
niable signatures. For example, the recent work in [13]
studies the security of the FDH variant of undeniable sig-
nature schemes. Undeniable signatures have various ap-

plications in cryptography, such as in licensing softwares,
auctions and electronic voting. However, these types of
signature schemes do not always achieve their goal, be-
cause the signer does not know to whom he is proving the
validity of a signature [4, 5].

To overcome this problem, Jakobsson, Sako and Im-
pagliazzo proposed designated-verifier signature (DVS)
schemes in [8]. This signature scheme is the first non-
interactive undeniable signature scheme that transforms
Chaum’s scheme [2] into a non-interactive verification us-
ing a designated verifier proof. In a DVS scheme, the
signature provides authentication of a message without
providing a non-repudiation property of traditional sig-
natures. A designated verifier scheme can be used to
convince a single third party, i.e. the designated veri-
fier, and only the designated verifier who can be con-
vinced about its validity or invalidity of the signatures,
due to the fact that the designated verifier can always
construct a signature intended for himself that is indis-
tinguishable from an original signature. There is no in-
teraction with the presumed signer required in this type
of signature schemes. More recently, following this idea,
Galbraith and Mao proposed a non-interactive undeni-
able signature scheme based on RSA [6] in the multi-user
setting to have anonymity and invisibility. Libert and
Quisquater [11] proposed an identity-based undeniable
signature scheme that can be regarded as the identity-
based version of Galbraith-Mao’s scheme using pairings.

In [16], Steinfeld et al. extended the notion of
DVS scheme to a Universal Designated Verifier Signa-
ture (UDVS) scheme, that allows any signature holder
to convert it into a DVS specified to any designated ver-
ifier of his choice. They also showed that bilinear maps
allow an elegant construction of a UDVS scheme. Based
on their ideas, Steinfeld et al. [17] proposed how to ex-
tend the classical Schnorr or RSA signature schemes into
UDVS schemes and Laguillaumie and Vergnaud [9] pro-
posed a generic construction of DVS scheme from any
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bilinear maps.

In [8], Jakobsson et al. also briefly discussed a
stronger notion called a strong designated verifier signa-
ture (SDVS) scheme. The strongness property required
in this notion refers to the requirement of the designated
verifier to use his secret key to verify the validity or in-
validity of a signature. Therefore, only given the public
keys of the potential signers and verifier, nobody (except
the designated verifier) can determine who is the actual
signer. This notion was formally defined and strengthened
by Saeednia et al. in [15] and strengthen by Laguillaumie
and Vergnaud [9]. Given an SDVS signature and two po-
tential signing public keys, it is computationally infeasible
for an eavesdropper to determine under which of the two
secret keys the signature was performed. Following Saeed-
nia et al.’s work, Susilo et al. proposed an identity-based
(or ID-based, for short) SDVS scheme based on pairings
in [18].

The definition of the ring signatures was formalized by
Rivest, Shamir and Tauman in [14]. They also showed
how to achieve a designated verifier signature scheme
where two participants in a ring signature collaborate and
generate a signature. We should note that the construc-
tion does not satisfy the strongness property of SDVS
scheme, since the secret key of the verifier is not required
to verify the authenticity of the signature. Following this
idea, multi-designated verifier signature scheme was pro-
posed in [10].

Throughout this paper, let log2(n) denote the length
of the binary representation of n. p|q means p divides
q. The ring of integers modulo a number p is denoted
by ZZp, and its multiplicative group, which contains only
the integers relatively prime to p, by ZZ∗

p. The notation ||
means concatenation.

In this paper, we propose the first construction of short
strong designated verifier signature scheme. Compared to
the existing schemes [8, 9, 15], our scheme is very efficient
in terms of signature generation and the signature length.
In particular, the signature length of our scheme is only
log2(q), which is the shortest compared to the existing
schemes. At the same time, we do not require any pairing
operation, in contrast to the construction proposed in [9].
We note that it is arguably that shortness of signature
schemes is not a notion rather than a property of signature
schemes.

We also extend our scheme to construct a short
identity-based strong designated verifier signature
scheme. In contrast to the previous construction in [18],
our scheme produces a significantly shorter signature
length, and it requires less computational operations.
Our schemes are simple and efficient, but as we shall
show in this paper, our schemes achieve all the required
properties of (identity based) strong designated verifier
signature schemes. We provide security proofs for our
schemes based on the random oracle model. We also
provide a variant of our scheme that produces signature
length less than log2(q). Finally, we show a modification
of our scheme to construct an SDVS scheme without

random oracle.
The rest of this paper is organized as follows. In the

next section, we will provide some preliminaries and back-
ground required throughout the paper. In Section 3, we
review the definition of SDVS schemes, and their ID-
based variant. In Section 4, we introduce the new notion
of short strong designated verifier signature schemes and
their identity-based variant. In Section 5, we provide our
concrete short SDVS scheme, together with its security
proof. In Section 6, we present our concrete short ID-
based SDVS scheme and its security proof. We compare
the performance of our schemes to other existing schemes
in Section 7. We will also discuss variants of our scheme
that produce shorter signature length and a scheme that
is secure under the standard model. Finally, Section 8
concludes the paper.

2 Preliminaries

2.1 Basic Concepts on Bilinear Pairings

Let G1 be a cyclic additive groups generated by P , whose
order is a prime q. Let GT be a cyclic multiplicative group
with the same order q. Let ê : G1×G1 → GT be a bilinear
mapping with the following properties:

1) Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P, Q ∈
G1, a, b,∈ ZZq.

2) Non-degeneracy: There exists P, Q ∈ G1 such that
ê(P, Q) 6= 1GT

.

3) Computability: There exists an efficient algorithm to
compute ê(P, Q) for all P, Q ∈ G1.

Bilinear pairing instance generator is defined as a proba-
bilistic polynomial time algorithm IG that takes as input
a security parameter ` and returns a uniformly random tu-
ple param = (q, G1, GT , ê, P ) of bilinear parameters, in-
cluding a prime number q of size greater than ` (q ≥ 2`), a
cyclic additive group G1 of order q, a multiplicative group
GT of order q, a bilinear map ê : G1 × G1 → GT and a
generator P of G1. For a group G of prime order, we de-
note the set G∗ = G\{O} where O is the identity element
of the group.

The related complexity assumptions are as follows.

1) Bilinear Diffie-Hellman (BDH) Problem.
Given a randomly chosen P ∈ G1, as well as aP, bP
and cP (for unknown randomly chosen a, b, c ∈ ZZ∗

q),

compute ê(P, P )abc. For the BDH problem to be
hard, G1 and GT must be chosen so that there is
no known algorithm for efficiently solving the Diffie-
Hellman problem in either G1 or GM . We note that
if the BDH problem is hard for a pairing ê, then it
follows that ê is non-degenerate.

2) Decisional Bilinear Diffie-Hellman (DBDH)
Problem. Given a randomly chosen P ∈ G1, as well
as aP, bP, cP (for unknown randomly chosen a, b, c ∈
ZZ∗

q) and h ∈ GM , decide whether h = ê(P, P )abc.
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3) Gap Bilinear Diffie-Hellman (Gap BDH)
Problem. Given a randomly chosen P ∈ G1, as
well as aP, bP and cP (for unknown randomly cho-
sen a, b, c ∈ ZZ∗

q), compute ê(P, P )abc with the help of
the DBDH oracle.

4) Computational Diffie-Hellman (CDH) Prob-
lem. Given a randomly chosen P ∈ G1, as well as
aP, bP , for unknown a, b ∈ ZZ∗

q , compute abP .

5) Decisional Diffie-Hellman (DDH) Problem.
Given a randomly chosen P ∈ G1, aP, bP and h ∈

G1, decide whether h
?
= abP . It is known that DDH

in G1 is easy and can be solved in polynomial time.

6) Gap Diffie-Hellman (GDH) Problem.
A prime order group G1 is a GDH group if there
exists an efficient polynomial-time algorithm that
solves the DDH problem in G1 and there is no prob-
abilistic polynomial-time algorithm that solves the
CDH problem with non-negligible probability. The
Diffie-Hellman problem on such a group is called
Gap Diffie-Hellman Problem, that states given a ran-
domly chosen generator g, and ga, gb for unknown
a, b ∈ ZZ∗

q , compute gab with the help of the DDH
oracle.

2.2 Collision-resistant Hashing

Let H be a hash function and an algorithm A has advan-
tage ε in finding the collision of H if Pr[A = (m0, m1) :
m0 6= m1, H(m0) = H(m1)] = ε. We say H is a collision-
resistant hashing if the probability ε is negligible for any
polynomially bounded algorithm A.

3 Review of (ID-based) Strong

Designated Verifier Signatures
Schemes

The notion of SDVS schemes was briefly mentioned in [8].
They suggested that “in order to make protocols strong
designated verifier, transcripts can be probabilistically en-
crypted using the public key of the intended verifier”.
This notion has recently relaxed in [9] that proved that us-
ing an additional IND-CCA2 public key encryption layer is
actually sufficient to create any DVS scheme strong. This
“generic” construction implies that the notion of SDVS
schemes relies on the existence of an additional IND-CCA2
public key encryption scheme.

In [15], the notion of SDVS schemes was formalized by
requiring anyone to produce identically distributed tran-
scripts that are indistinguishable from the original tran-
script that was produced by the original signer. For com-
pleteness, we review their definition as follows. We will
provide the formal model of SDVS schemes in Section 4.

Definition 1. Strong Designated Verifier Signa-
tures (SDVS) [15]

Let P (A, B) be a protocol for Alice to prove the correctness
of statement Θ to a designated verifier, Bob. P (A, B) is
called to be a strong designated verifier protocol if anyone
other than Bob can produce identically distributed tran-
scripts that are indistinguishable from those of P (A, B)
for everyone, except for Bob.

To achieve SDVS schemes, the general assumption is
the verifier has constructed his public key and made it
available publicly (with a certificate from the trusted au-
thority to make sure the authenticity of the public key).
That means, before a signature can be designated to the
designated verifier, he has to setup his public key accord-
ingly. Without this setup, a signer cannot designate her
signature to the designated verifier.

Recently, this notion has been extended to an ID-based
SDVS scheme in [18]. The new notion was introduced to
reduce the restriction of having the designated verifier’s
public key setup before the signature can be designated
by the signer. Hence, the signer can always designate her
signature to anyone in the system without the need of
any interaction with the receiver beforehand. The only
requirement is to have the ID of the receiver published.
The notion of ID-based SDVS schemes from [18] is as
follows.

Definition 2. ID-based Strong Designated Verifier
Signatures (ID-based SDVS) [18]
Let P (A, B) be a protocol for Alice to prove the truth of
the statement Θ to Bob. We require that Alice can just
obtain Bob’s ID from the system and use this information
to show the correctness of Θ to Bob. P (A, B) is said to be
an ID-based strong designated verifier protocol if anyone
can produce identically distributed transcripts that are in-
distinguishable from those of P (A, B) for everyone, except
for Bob.

Although they provide a generic construction of ID-
based SDVS schemes in [18], their main scheme is essen-
tially an ID-based version of Saeednia et al.’s scheme [15].

4 Short (ID-based) Strong Des-
ignated Verifier Signatures

Schemes

In this section, we present our new notion of short SDVS
schemes (SSDVS) (as noted earlier, we stress that it is
arguably that shortness of signature schemes is not a no-
tion rather than a property of signature schemes). We
also extend our notion to its ID-based variant to create
the short ID-based SDVS scheme (SIDSDVS).

4.1 Short Strong Designated Verifier Sig-
natures

There exist two participants in the system, namely Alice
and Bob, who act as the sender and the receiver (or the
designated verifier), respectively. We assume that both
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Alice and Bob have setup their public key setting, and we
denote SKi,PKi as a pair of secret key and public key
for user i, where i ∈ {A, B}. An SSDVS scheme consists
of three essential algorithms as follows.

• Signature Generation: A deterministic algorithm
that uses the signer’s secret key, the designated ver-
ifier’s public key and a message m to generate a sig-
nature σ. That is, σ ← Sign(SKA,PKB, m).

• Signature Verification: A deterministic algo-
rithm that accepts a message m, a signature σ, the
signer’s public key PKA and a secret key SKB and
returns True if the signature is correct, or ⊥ other-
wise. That is, {True,⊥} ← Verify(PKA,SKB, m, σ).

• Transcript Simulation: An algorithm that is run
by the verifier to produce identically distributed tran-
scripts that are indistinguishable from the original
protocol.

In addition to the above main algorithms, we also require
the following.

• Correctness. All signatures that are gener-
ated correctly by Sign algorithm, will always pass
the verification algorithm. That is, Pr(True ←
Verify(PKA,SKB, m, Sign(SKA,PKB, m))) = 1.

• Transcript Simulation Generation. We require
that the verifier, who holds the secret key SKB can
always produce identically distributed transcripts
that are indistinguishable from the original protocol
via the Transcript Simulation algorithm.

Unforgeability of SSDVS:
We provide a formal definition of existential forgeability
of an SSDVS scheme under a chosen message attack (EF-
CMA). It is defined using the following games between an
adversary A and a challenger C.

• Setup: Input the security parameter `, C runs the
algorithm to obtain the secret key and public key pair
(SKA,PKA), (SKB,PKB) to represent the signer,
A, and the receiver, B, respectively.

• Sign Queries: A can request a signature on a message
m for the signer A, and the designated verifier B. In
respond, C outputs a signature σ for a message m.

• Verify Queries: A can request a signature verification
on a pair (m, σ) for signer A, and the designated
verifier B. In respond, C outputs True if it is correct,
or ⊥ otherwise.

• Output: Finally, A outputs a new pair (m∗, σ∗),
where m∗ has never been queried during the Sign

Queries and σ∗ is a valid signature.

The success probability of an adversary to win the game
is defined by

SuccEF−CMA

SSDV S,A(`).

Definition 3. We say that an SSDVS scheme is EF-
CMA secure under a chosen message attack if the prob-
ability of success of any polynomially bounded adversary
in the above game is negligible. In other words,

SuccEF−CMA

SSDV S,A(`) ≤ ε.

Privacy of Signer’s Identity:
We give a formal definition of the privacy of signer’s iden-
tity (or the strongness property of the DVS scheme) under
a chosen message attack (PSI-CMA) defined using the fol-
lowing games between an adversary A and a challenger
C.

• Setup: Input a security parameter `, C runs the al-
gorithm to obtain the secret key and public key pair
(SKA0

,PKA0
), (SKA1

,PKA1
), (SKB ,PKB) to rep-

resent the two signers, A0, A1, and the receiver, B,
respectively.

• Sign Queries: A can request a signature on a message
m for the signer Ar (r ∈ {0, 1}), and the designated
verifier B. In respond, C outputs a signature σ for a
message m.

• Verify Queries: A can request a signature verification
on a pair (m, σ) for signer Ar, r ∈ {0, 1}, and the
designated verifier B. In respond, C outputs True if
it is correct, or ⊥ otherwise.

• Output: Finally, A outputs a target message m∗ ∈
{0, 1}∗ and provides it to C. C performs a coin toss-
ing to select a random r ∈ {0, 1} and computes
σ∗ ← Sign(SKr,PKB, m) and returns it to A. A
must perform an educated guess to obtain the cor-
rect value of r. During this time, A can request Sign

and Verify queries to C, for any m 6= m∗ and σ 6= σ∗.
After all the queries, A outputs a bit r′.

The Advantage of an PSI-CMA adversary A to win the
game is defined by

AdvPSI−CMA
SSDV S,A (`) = |2 Pr[r′ = r]− 1|.

Definition 4. We say that an SSDVS scheme is a strong
DVS scheme under a chosen message attack if the advan-
tage of any polynomially bounded adversary in the above
game is negligible. In other words,

AdvPSI−CMA

SSDV S,A (`) ≤ ε.

4.2 Short ID-based Strong Designated
Verifier Schemes

The notion of short ID-based SDVS scheme is similar to
the definition of the short SDVS scheme defined in section
4.1. There exist two participants in the system, namely
Alice and Bob, who act as the sender and the receiver
(or the designated verifier), respectively. All participants
have their identity, IDi, i ∈ {A, B}, published. There ex-
ists a Private Key Generator (PKG) in the system that
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will provide a secret key to a participant during an Extract

algorithm. Each participant’s secret key is denoted by
SKIDi

, which is derived from the Extract algorithm. With-
out losing generality, we assume that A is the signer and
B is the designated verifier. A short SIDSDVS scheme
(SIDSDVS) consists of the following algorithms.

• Signature Generation. A deterministic algorithm
that uses the signer’s secret key, the ID of the desig-
nated verifier and a message m to generate a signa-
ture σ. That is, σ ← IDSign(IDB,SKIDA

, m).

• Signature Verification. A deterministic algo-
rithm that receives a message m, a signature σ,
a verifier’s secret key SKIDB

and a sender’s iden-
tity IDA, that returns True if the signature is
correct, or ⊥ otherwise. That is, {True,⊥} ←
IDVerify(IDA,SKIDB

, m, σ).

• Transcript Simulation. An algorithm that is run
by the verifier to produce identically distributed tran-
scripts that are indistinguishable from the original
protocol.

In addition to the above main algorithms, we also require
the following.

• Correctness. All signatures that are generated
correctly by IDSign algorithm, will always pass
the verification algorithm. That is, Pr(True ←
IDVerify(IDA,SKIDB

, m, IDSign(IDB ,SKIDA
, m))) =

1.

• Transcript Simulation Generation. We require
that the verifier, who holds the secret key SKIDB

can
always produce identically distributed transcripts
that are indistinguishable from the original protocol
via the Transcript Simulation algorithm.

Unforgeability of SIDSDVS:
We provide a formal definition of existential unforgeabil-
ity of a short SIDSDVS scheme (SIDSDVS) under a cho-
sen message attack. It is defined using the following game
between an adversary A and a challenger C.

• Setup: C runs this algorithm to generate system’s
parameter.

• Key Extraction Queries: A can request the secret key
of the user with the identity IDi. C will return SKIDi

as the answer.

• IDSign Queries: A can request a signature on a mes-
sage m for a signer IDi, and the designated verifier
IDj . In respond, C outputs a signature σ for a mes-
sage m.

• IDVerify Queries: A can request a signature verifica-
tion on a pair (m, σ) for signer IDi, and the desig-
nated verifier IDj . In respond, C outputs True if it is
correct, or ⊥ otherwise.

• Output: Finally, A outputs a new pair (m∗, σ∗) with
the signer IDi∗ and the designated verifier IDj∗ such
that:

1) A didn’t submit IDi∗ or IDj∗ during the Key

Extraction Queries.

2) m∗ has never been queried during the IDSign

Queries with the signer IDi∗ and the designated
verifier IDj∗

3) σ∗ is a valid signature of the message m∗ with
the signer IDi∗ and the designated verifier IDj∗ .

The success probability of an adversary to win the game
is defined by

SuccEF−CMA
SIDSDV S,A(`).

Definition 5. We say that a short SIDSDVS scheme
(SIDSDVS) is existentially unforgeable under a chosen
message attack if the probability of success of any polyno-
mially bounded adversary in the above game is negligible.
In other words,

SuccEF−CMA

SIDSDV S,A(`) ≤ ε.

Privacy of Signer’s Identity

We give a formal definition of the privacy of signer’s iden-
tity (or the strongness property of the Identity-based DVS
scheme) under a chosen message attack (PSI-CMA) de-
fined using the following games between an adversary A
and a challenger C.

• Setup: C runs this algorithm to generate system’s
parameter.

• Key Extraction Queries: A can request the secret key
of the user with the identity IDi. C will return SKIDi

as the answer.

• IDSign Queries: A can request a signature on a mes-
sage m for a signer IDi, and the designated verifier
IDj . In respond, C outputs a signature σ for a mes-
sage m.

• IDVerify Queries: A can request a signature verifica-
tion on a pair (m, σ) for signer IDi, and the desig-
nated verifier IDj . In respond, C outputs True if it is
correct, or ⊥ otherwise.

• Output: Finally, A outputs a target message m∗ ∈
{0, 1}∗ with the possible signer IDA0

, IDA1
and desig-

nated verifier IDB to C. The requirements are that

1) A didn’t submit IDA0
, IDA1

or IDB during the
Key Extraction Queries.

2) m∗ has never been queried during the IDSign

Queries with the signer IDAr
, r ∈ {0, 1} and the

designated verifier IDB.

C performs a coin tossing to select a random r and
computes σ∗ ← IDSign(IDB,SKIDAr

, m∗) and returns
it to A. A must perform an educated guess to the



International Journal of Network Security, Vol.6, No.1, PP.82–93, Jan. 2008 87

correct value of r. During this time, A can request
IDSign and IDVerify queries to C with the require-
ments that

1) m∗ can’t be queried during the IDSign Queries

with the signer IDAr
, r ∈ {0, 1} and the desig-

nated verifier IDB.

2) (m∗, σ∗) can’t be queried during the IDVerify

Queries with the signer IDAr
, r ∈ {0, 1} and the

designated verifier IDB.

The Advantage of an PSI-CMA adversary A to win the
game in SIDSDVS is defined by

AdvPSI−CMA
SIDSDV S,A(`) = |2 Pr[r′ = r]− 1|.

Definition 6. We say that a short SIDSDVS scheme
(SIDSDVS) is a strong IDDVS scheme under a cho-
sen message attack if the advantage of any polynomially
bounded adversary in the above game is negligible. In
other words,

AdvPSI−CMA

SIDSDV S,A(`) ≤ ε.

5 A Concrete Short SDVS
Scheme

In this section, we present our concrete construction of a
short SDVS scheme. The description of our scheme is as
follows.

• Setup: Let p be a large prime and q a prime divi-
sor of p − 1. Let g be an element in ZZ∗

p of order

q. Let p, q ≥ 2`, where ` is the security parameter.
Let H : {0, 1}∞ → ZZ∗

q be a cryptographic collision-
resistant hash function. The signer, Alice, randomly
selects her secret key xA ∈ ZZ∗

q and computes her
public key as yA = gxA (mod p). Here, PKA := yA.
The designated verifier, Bob, also selects his secret
key xB ∈ ZZ∗

q and sets his public key as yB = gxB

(mod p). Here PKB := yB. Let SKA := xA and
SKB := xB.

• Sign: To sign a message m ∈ {0, 1}∞ for Bob, Alice
performs the following.

– Compute k = yxA

B (mod p).

– Compute σ = H(m||k).

The signature on a message m is σ.

• Verify: To verify the validity of a signature σ on a
message m, Bob computes k = yxB

A (mod p) and
tests whether

H(m||k)
?
= σ

holds with equality. If it holds, then output True.
Otherwise, output ⊥.

• Transcript Simulation: Bob can produce the signature
σ̂ intended for himself, by performing the following.

– Compute k = yxB

A (mod p).

– Compute σ̂ = H(m||k).

Note that the signature is indistinguishable from the
original signature created by Alice.

Correctness:
The correctness of the verification algorithm is due to the
following.

σ = H(m||yxB

A ) = H(m||gab) = H(m||yxA

B ).

We omit the modulus operation when it is clear from the
context.
Remarks:
We note that at a glance, the proposed scheme is similar
to the notion of keying hash function as introduced in [1].
In a keying hash function, the key is a random and se-
cure value known only to the parties. In our scheme, each
party can use her/his secret key to obtain the value of k.
One can also find that if the value k is published by the
signer A, anyone can obtain a valid signature and B will
not believe that the signature is sent by A. However, as
explained earlier, the purpose of our scheme is that the
signer A uses the designated verifier signature to convince
B, and only B will believe with the validity of the signa-
ture. In this sense, A will not publish the value k and the
attack model proposed in [12] (which is related to the del-
egation of the signature) is not applicable to this model.
We also need to point out that the scheme proposed in [12]
is not a strong DVS scheme rather than a DVS scheme,
since it does not provide the signer’s privacy.

5.1 Security Analysis

Theorem 1. Our SSDVS scheme is a designated verifier
signature scheme.

Proof. We note that the verification algorithm requires
yxB

A , where xB is the secret key of the designated veri-
fier B. Hence, B can always “simulate” a valid signature
by producing a valid signature himself. This is achieved
by constructing a signature σ, where σ = H(m, yxB

A ).
Note that the signature produced by B is indistinguish-
able from the one that was produced by A. Hence, no
third party can be convinced with the validity or inva-
lidity of this signature other than the designated verifier
himself. If the designated verifier has not generated such
a signature, then he will believe that the signature was
indeed generated by the signer A.

Theorem 2. (Unforgeability) Let A be an EF-CMA-
adversary against our SSDVS scheme with success proba-
bility SuccEF−CMA

SSDV S, A. In time t he can make qH queries to

the H : {0, 1}∗ → ZZ∗

q (q ≥ 2`, ` is the system’s security
parameter), qS queries to the signing algorithm and qV to
the verifying algorithm, then there exists an algorithm B
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who can use A to solve an instance of the GDH problem
with the probability:

SuccGDH
B ≥ SuccEF−CMA

SSDV S, A −
qV

2` − qH − qS

.

Proof. See Appendix.

Theorem 3. (Privacy of Signer’s Identity) Let A
be an PSI-CMA-adversary against our SSDVS scheme
with advantage AdvPSI−CMA

SSDV S, A . In time t he can make qH

queries to the H : {0, 1}∗ → ZZ∗

q (q ≥ 2`, ` is the system’s
security number) , qS queries to the signing algorithm and
qV to the verifying algorithm, then there exists an algo-
rithm B who can use A to solve an instance of the GDH
problem with the probability:

SuccGDH
B ≥

1

2
AdvPSI−CMA

SSDV S, A −
qV

2` − qH − qS

.

Proof. See Appendix.

6 A Concrete Short SIDSDVS

Scheme

In this section, we present our concrete construc-
tion of short SIDSDVS scheme (SIDSDVS). The SIDS-
DVS scheme consists of the following algorithms.

• Setup: PKG generates two groups (G1, +) and (GT , ·)
of prime order q (q ≥ 2`, ` is the system’s security
number) and a bilinear pairing ê : G1 × G1 → GT ,
together with an arbitrary generator P ∈ G1. He
also selects his secret key ( or master key) s ∈ Z∗

q

and set Ppub = sP . Finally, two cryptographi-
cally collision-resistant hash functions are selected,
H0 : {0, 1}∞ → G1 and H1 : {0, 1}∞ → Z

∗
q .

The system parameters and their descriptions are
(G1, GT , q, ê, P, Ppub, H0, H1). Each user has his/her
identity, IDi, published. In this scenario, Alice has
published her identity, IDA, and Bob has published
his identity, IDB. Let QID = H0(ID) and the user’s
secret key is computed as SID = sQID.

• IDSign: To sign a message m ∈ {0, 1}∞ for Bob, Alice
performs the following.

– Compute k = ê(QIDB
,SIDA

).

– Compute σ = H1(m||k).

The signature on a message m is σ.

• IDVerify: To verify the validity of a signature σ on a
message m, Bob tests whether

H1(m||ê(QIDA
,SIDB

))
?
= σ

holds with equality. If it does, then output True.
Otherwise, output ⊥.

• Transcript Simulation: Bob can produce the signature
σ̂ intended for himself for a message of his choice.
This is done as follows.

– Compute k = ê(QIDA
,SIDB

).

– Compute σ = H1(m||k).

We note that the resulting signature is indistinguish-
able from the original one that was produced by Al-
ice.

Correctness:
The correctness of the verification algorithm is due to the
following.

σ = H1(m||ê(QIDB
,SIDA

))

= H1(m||ê(QIDB
, sQIDA

))

= H1(m||ê(sQIDB
, QIDA

))

= H1(m||ê(SIDB
, QIDA

))

= H1(m||ê(QIDA
,SIDB

)).

We note that ê(QIDB
,SIDA

) = ê(SIDB
, QIDA

) because of
the properties of bilinear pairings.

6.1 Security Analysis

Using the same technique as we used in Section 5.1, we
obtain the following theorems.

Theorem 4. Our SIDSDVS is a designated verifier sig-
nature scheme.

Theorem 5. (Unforgeability) Let A be an EF-CMA-
adversary against our SIDSDVS scheme with success
probability SuccEF−CMA

SIDSDV S, A. In time t he can make qH

queries to the H1 : {0, 1}∗ → ZZ∗

q (q ≥ 2`, ` is the system’s
security parameter), qS queries to the signing algorithm
and qV to the verifying algorithm, then there exists B who
can use A to solve an instance of the Gap BDH problem
with probability:

SuccGap BDH
B

≥ SuccEF−CMA
SIDSDV S, A −

qV

2` − qH − qS

.

Theorem 6. (Privacy of Signer’s Identity) Let A
be an PSI-CMA-adversary against our SIDSDVS scheme
with advantage AdvPSI−CMA

SIDSDV S, A. In time t he can make

qH queries to the H1 : {0, 1}∗ → ZZ∗

q (q ≥ 2`, ` is the sys-
tem’s security number) , qS queries to the signing algo-
rithm and qV to the verifying algorithm, then there exists
B who can use A to solve an instance of the Gap BDH
problem with probability:

SuccGap BDH
B

≥
1

2
AdvPSI−CMA

SIDSDV S, A −
qV

2` − qH − qS

.
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7 Efficiency Comparison

In this section, we compare efficiency of the proposed
schemes with the existing schemes. We will compare the
efficiency of the schemes based on the length of the sig-
nature and the number of operations required.

In Table 1, we compare our scheme against the most
efficient strong DVS scheme proposed in [9] and [15]. In
this comparison, we set q = 160 bits for Saeednia et al.’s
scheme [15], Laguillaumie and Vergnaud’s scheme [9] and
our SSDVS scheme.

As shown in Table 1, our signature length is the short-
est (only 160 bits). In terms of the number of operations
required, our scheme only requires 2 exponentiations in
ZZ∗

q and 2 hash operations, and there is no pairing op-
eration required. It is clear that our scheme outperforms
Saeednia et al.’s and Laguillaumie and Vergnaud’s scheme
[9]. In particular, Laguillaumie and Vergnaud’s scheme
requires bilinear pairings operations which are computa-
tionally costly.

In Table 2, we compare our SIDSDVS scheme against
the ID-based DVS scheme proposed in [18], which is an
ID-based version of [15]. We assume that the bit length
of the element in G1 is 1024 bits, and q = 160 bits.

It is clear from Table 2 that our scheme outperforms
Susilo et al.’s scheme [18]. Our scheme only requires
2 pairing operations and 2 hash operations, while the
scheme in [18] requires 3 pairings, 1 addition, 2 multi-
plication in G1, 3 exponentiation in G2 and 2 hash oper-
ations.

7.1 Further Discussions

More Efficient Schemes:
It is easy to see that the signature length of our scheme
is based on the hash function employed, H1. Hence, if
we replace the hash function definition of H1 with the
following

H1 : {0, 1}∞→ ZZ∗

2`

where ` is the security parameter, then our signature
length will be 2`. Assuming such a hash function ex-
ists and secure, then our signature scheme becomes more
efficient.

A Scheme without Random Oracle:
We shall point out that a variant of our scheme can be
used to construct an SSDVS (SIDSDVS) scheme without
random oracle. Without losing generality, we illustrate
the modification in a non-ID-based setting. The signature
and verification algorithm are modified as follows.

1) Sign: To sign a message m ∈ {0, 1}∞ for Bob, Alice
performs the following.

• Compute k = yxA

B (mod p).

• Compute σ = Ek(m), where E denotes a sym-
metric key encryption, such as AES.

The signature on a message m is σ.

2) Verify: To verify the validity of a signature σ on a
message m, Bob computes k = yxB

A and tests whether

σ
?
= Ek(m)

holds with equality. If it holds, then output True.
Otherwise, output ⊥.

One can view this scheme as a standard MAC scheme
that uses a shared key k. The security of this scheme
is based on the CDH assumption and the security of the
underlying symmetric key encryption scheme Ek.

8 Conclusion

In this paper, we presented the first short strong desig-
nated verifier signature scheme and its ID-based variant.
Our schemes outperform the existing schemes known in
the literature. Our construction has opened a new area
of research, namely short strong designated verifier signa-
ture schemes, which have never been investigated before.
Unlike the previous constructions, our schemes only pro-
duce 160 bits (if q = 160) signature which is very short
compared to the existing schemes. We provided security
proofs for our schemes based on the random oracle model.
We also discussed variants of our scheme which is more
efficient and provably secure under the standard assump-
tion.
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Appendix

Proof of Theorem 2 Given a random instance (g, ga, gb)
of the Gap Diffie-Hellman (GDH) problem, we will show
how B can use A to obtain the value of gab with the help
of Decisional Diffie-Hellman (DDH) Oracle. In the proof,
we regard the hash function as the random oracle H.
B will simulate all the oracles in the proof to answer

A′s queries. In the simulation, B will maintain a list
which is called H-List to record the hash queries and the
corresponding values. This H-List consists of the items
(m, r, σ, coin), where (m, r) is the input of the hash, σ is
the output of the hash, coin = 1 if r = gab and coin = 0
if r 6= gab (This is determined by the DDH oracle). We
assume that A is well-behaved in the sense that A will
never repeat the same queries in our simulation.

• Game0 We consider an EF-CMA adversary A with
the success probability SuccEF−CMA

SSDV S, A. The signers,

Alice , selects her secret key SKA = xA ∈ ZZ∗

q , com-
putes yA = gxA and sets her public key PKA = yA.
The designated verifier, Bob, also selects his secret
key SKB = xB ∈ ZZ∗

q , computes yB = gxB sets his
public key PKB = yB.

The adversary A, with yA and yB, can query
the hash oracle H, the signing oracle S and ver-
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ify oracle V . A outputs (m∗, σ∗), such that
Verify(m∗, σ∗,SKB,PKA) = 1.

Let qH, qS , qV denote the number of queries to the
H, signing algorithm and verifying algorithm. The
requirement is that m∗ cannot be queried to the sign-
ing algorithm.

In any Gamei, we denote by Forgei the event
Verify(m∗, σ∗,SKB,PKA) = 1. By definition, we
have

Pr[Forge0] = SuccEF−CMA
SSDV S, A.

• Game1 In this game, B set yA = ga and yB = gb

where ga, gb is the instance of the GDH problem.
Since a, b are randomly chosen, therefore

Pr[Forge1] = Pr[Forge0].

• Game2 In this game, B simulates the random oracle
H. For any query (mi, ri) to the oracle H, B submits
(ga, gb, ri) to the DDH oracle and DDH oracle will
tell B whether ri = gab.

1) ri = gab, B checks the H-List

a. If there exists an item (mi,⊥, σi, 1) in the
H-List (item of this form can be added into
the H-List during the signing queries), B
returns σi as the answer.

b. Otherwise, B chooses σi ∈R ZZ∗

q such that
there is no item (·, ·, σi, ·) in the H-List. B
then adds (mi, ri, σi, 1) into the H-List and
returns σi as the answer.

2) Else ri 6= gab, B chooses σi ∈R ZZ∗

q such that
there is no item (·, ·, σi, ·) in the H-List. B then
adds (mi, ri, σi, 0) into the H-List and returns
σi as the answer.

In the random oracle model, this game is clearly iden-
tical to the previous one. Hence

Pr[Forge2] = Pr[Forge1]

• Game3 In this game, B simulates the signing algo-
rithm. After receiving A’s choice of the message mi,
B checks the H-List:

1) If there is an item (mi, ri, σi, 1) in the H-List
(which means ri = gab), B outputs σi as the
signature.

2) Else, B chooses σi ∈R ZZ∗

q such that there is
no item (·, ·, σi, ·) in the H-List. B then adds
(mi,⊥, σi, 1) into the H-List and returns σi as
the signature.

Then A gets the value σi as the signature of mi. Of
course, this oracle simulates the signature perfectly,
so

Pr[Forge3] = Pr[Forge2].

• Game4 In this game, B simulates the verifying al-
gorithm. After receiving A’s request of (mi, σi), B
performs the followings:

1) If there is no item (·, ·, σi, ·) in the H-List, B
rejects (mi, σi) as an invalid signature.

2) Else, there is an item (·, ·, σi, ·) in the H -List:

a. If this item has the form of (mi,⊥, σi, 1)
or (mi, ri, σi, 1), B will accept it as a valid
signature.

b. Otherwise, B rejects it as an invalid signa-
ture.

This makes a difference only if (mi, σi) is a valid sig-
nature, while σi is not queried from the H. Since,
H is uniformly distributed, this case happens with
probability less than 1

2`−qH−qS
. Summing up for all

verifying queries, we get

Pr[Forge3]− Pr[Forge4] ≤
qV

2` − qH − qS

.

After Game4 terminates, A outputs a valid signature
(m∗, σ∗) such that Verify(m∗, σ∗,SKB,PKA) = 1, that is
there is an item (·, ·, σ∗, ·) in the H-List. By the definition
of the EF-CMA adversary model, m∗ can not be queried
in the sign oracle, so σ∗ is returned as the hash value
of A′s query (m∗, r∗). That is to say there is an item
(m∗, r∗, σ∗, 1) in the H-List and r∗ = gab. Therefore, B
successfully solves an instance of the GDH problem with
probability:

SuccGDH
B ≥ SuccEF−CMA

SSDV S, A −
qV

2` − qH − qS

.

Proof of Theorem 3: Given a random instance (g, ga, gb)
of the Gap Diffie-Hellman (GDH) problem , we will show
how B can use A to obtain the value of gab with the help
of Decisional Diffie-Hellman (DDH) Oracle. In the proof,
we regard the hash function as the random oracle H.
B will simulate all the oracles in the proof. In the

simulation, B will maintain a list which is called H-List
to record the hash queries and the corresponding values.
We assume that A is well-behaved in the sense that A
will never repeat the same queries in our simulation.

• Game0 Consider an PSI-CMA adversary A with ad-
vantage AdvPCI−CMA

SSDV S, A . There are two possible sign-
ers A0 and A1 with the corresponding secret key
xA0

, xA1
∈ ZZ∗

q and public key as yA0
= gxA0 , yA1

=
gxA1 (mod p). The designated verifier, Bob, also se-
lects his secret key xB ∈ ZZ∗

q and sets his public key
as yB = gxB (mod p).

The adversary A, with yA0
, yA1

and yB, can query
the random oracle H, the signature algorithm and
verify algorithm. A outputs a message m∗. A
challenge signature is produced by flipping a coin
r ∈ {0, 1} and computing σ∗ = Sign(m∗, xAr

, yB).
Input σ∗, the adversary A outputs a bit r′.
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Let qH, qS , qV denote the number of queries to the
H, signing algorithm and verifying algorithm. The
requirements are that m∗ cannot be queried to the
signing algorithm and (m∗, σ∗) cannot be queried to
the verifying algorithm.

In any Gamei, we denote by Guessi the event r = r′.
By definition, we have

|2 Pr[Guess0]− 1| = AdvPSI−CMA
SSDV S, A .

• Game1 In this game, B randomly chooses a′ ∈R ZZ∗

q

and compute yA0
= ga, yA1

= ga · ga′

and yB = gb,
where ga, gb is the instance of GDH problem. Since
a, b, a′ are randomly chosen, therefore

Pr[Guess1] = Pr[Guess0].

• Game2 In this game, B simulates the random or-
acle H. There is a table H-List which maintains
all the queries and answers and consists of the item
(mi, ri, σi, signeri, coini). Here (mi, ri) is the input
of the H, σi is the output ofH, signeri ∈ {A0, A1,⊥}
and coini ∈ {0, 1}. For any query (mi, ri) to the or-
acle H, B submits (ga, gb, ri) to the DDH oracle and
DDH oracle will tell B whether ri = gab.

1) If ri = gab, B checks whether the H-List con-
tains (mi,⊥, σi, A0, 1) (item has this form will
be added into the H-List during the simulation
of the sign algorithm). If it does,B outputs σi

as the answer. Else B chooses σi ∈R ZZ∗

q such
that there is no item (·, ·, σi, ·, ·) in the H-List.
Then B adds (mi, ri, σi, A0, 1) to theH-List and
outputs σi as the answer.

2) Else ri 6= gab, then B submits (ga · ga′

, gb, ri)
to the DDH oracle and DDH oracle will tell B
whether ri = g(a+a′)b.

a. If ri = g(a+a′)b, B checks whether the H-
List contains (mi,⊥, σi, A1, 1) (item has
this form will be added into theH-List dur-
ing the simulation of the sign algorithm). If
it does, B outputs σi as the answer.

b. Else B chooses σi ∈R ZZ∗

q such that there
is no item (·, ·, σi, ·, ·) in the H-List. Then
B adds (mi, ri, σi, A1, 1) to the H-List and
outputs σi as the answer.

3) Otherwise, ri 6= gab and ri 6= g(a+a′)b. If this
case happens, B chooses σi ∈R ZZ∗

q such that
there is no item (·, ·, σi, ·, ·) in the H-List. Then
B adds (mi, ri, σi,⊥, 0) to the H-List and out-
puts σi as the answer.

In the random oracle model, this game is clearly iden-
tical to the previous one. Hence

Pr[Guess2] = Pr[Guess1].

• Game3 In this game, B simulates the signing algo-
rithm. After receiving A’s choice of the message mi

and the sender Ar (r ∈ {0, 1}), B performs:

1) If there is an item (mi, ri, σi, Ar, 1) in the H-
List, B outputs σi as the signature.

2) Else B chooses σi ∈R ZZ∗

q such that there is no
item (·, ·, σi, ·, ·) in the H-List. Then B adds
(mi,⊥, σi, Ar, 1) to the H-List and outputs σi

as the answer.

Of course, this oracle simulates the signature, so

Pr[Guess3] = Pr[Guess2].

• Game4 In this game, B simulates the verifying al-
gorithm. After receiving A’s request of (mi, σi, Ar)
(r ∈ {0, 1}), B does:

1) If there is no item (·, ·, σi, ·, ·) in the H-List, B
rejects (mi, σi) as an invalid signature.

2) Else, there is an item (·, ·, σj , ·, ·) in the H-List
such that σj = σi:

a. If this item has the form (mi,⊥, σi, Ar, 1) or
(mi, ri, σi, Ar, 1), then B accepts (mi, σi) as
a valid signature.

b. Otherwise, B rejects it as an invalid signa-
ture.

This makes a difference only if (mi, σi, Ar) is a valid
signature, while σi is not queried from the H. Since,
H is uniformly distributed, this case happens with
probability less than 1

2`−qH−qS
. Summing up for all

verifying queries, we get

Pr[Guess3]− Pr[Guess4] ≤
qV

2` − qH − qS

.

• Game5 In this game, A outputs a message m∗ such
that m∗ is not queried to the singing algorithm. we
choose r ∈R {0, 1} and σ∗ ∈R ZZ∗

q such that there
is no item (·, ·, σ∗, ·, ·) in the H-List. Then we re-
turn (m∗, σ∗) to the adversary A. A now still can
query to the signing and verifying algorithm. Since
the challenge signature is randomly chosen it gives A
no information about r, in an information theoretic
sense, we have

Pr[Guess5] = 1/2.

The final game is indistinguishable from the pre-
vious one unless (m∗, σ∗) is queried to the verify-
ing algorithm, m∗ is queried to the signing oracle,
(m∗, gab) or (m∗, g(a′+a)b) is queried to the H by
the adversary A. By the definition of the PSI-CMA

attack model, m∗ can not be queried to the sign-
ing oracle and (m∗, σ∗) cannot be queried to the
verifying algorithm. So the last case must happen,
that is to say there is an item (m∗, r∗, σ∗, A0, 1) or
(m∗, r∗, σ∗, A1, 1) in the H-List:
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1) If (m∗, r∗, σ∗, A0, 1) is in the H-List, B outputs
r∗ as the solution of the GDH problem since
r∗ = gab.

2) Else (m∗, r∗, σ∗, A1, 1) is in the H-List, B out-
puts r∗ ·(gb)−a′

as the solution of the GDH prob-
lem since r∗ · (gb)−a′

= g(a+a′)b · (gb)−a′

= gab.

Therefore, B can obtain the solution of GDH prob-
lem. Therefore

|Pr[Guess5]− Pr[Guess4]| = SuccGDH
B .

That is

SuccGDH
B ≥

1

2
AdvPSI−CMA

SSDV S, A −
qV

2` − qH − qS

.
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