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Abstract

We describe an identity based signature scheme that uses
biometric information to construct the public key. Such a
scheme would be beneficial in many repudiation situations
for example a legal dispute over whether a contract had
been signed or not by a user. A biometric reading pro-
vided by the alleged signer would be enough to verify the
signature. We make use of fuzzy extractors to generate
a key string from a variable biometric measurement. We
use this biometric based key string and an elliptic curve
point embedding technique to create the public key and
corresponding private key. We then make use of a pairing
based signature scheme to perform signing and verifica-
tion with these keys. We discuss security issues of the
system and suggest countermeasures to attack. Finally
we describe a working biometric signature scheme devel-
oped in part by reusing components in an existing Java
Identity Based Encryption implementation.

Keywords: Biometrics, cryptographic applications, iden-
tity based signatures, repudiation

1 Introduction

In this paper we present a biometric identity based signa-
ture scheme (BIO-IBS). Traditional public key cryptosys-
tems use very long integers, typically 2048 bits, as public
keys. These systems rely on digital certificates to connect
an identity like a person or a machine to a public key.
Identity based systems have the advantage that the public
key is the identity, usually an arbitrary string like an email
address. In our case we use a biometric measurement of
an individual. A significant problem here is the fact that
biometric identities tend to vary over time. Obviously
this causes problems for key generation. We discuss how
to counteract this problem below. One of the main uses
of signature schemes is in the area of non-repudiation of
documents. Our scheme is particularly useful in this area
as biometric measurements such as fingerprints have been
established for a long time as evidential tools [16].

Consider the following situation: A user signs a con-

tract with their private key using the BIO-IBS signature
scheme. A dispute develops about the signature on the
contract. The user only needs to have their biometric
taken by an arbitrator to determine the validity of the
signature. As the biometric measurement is used as a
public key here there is no need to worry about the bio-
metric measurement being compromised [22].

The paper is organized as follows. In Section 2 we
briefly outline the basics of elliptic curves over finite fields.
We also discuss the important concept of bilinear maps
over these curves that forms the core of identity based
systems. In Section 3 we describe the process of turning
biometric data into key strings. We include a discussion
on the type of error correcting codes used. Section 4 will
give an overview of the SOK-IBS identity based signature
scheme using the key strings generated from the biometric
data. It also describes the modifications needed to create
the BIO-IBS system. An implementation note on how to
practically embed an identity string onto an elliptic curve
is presented for completeness. Section 5 outlines security
issues with the system. Section 6 describes design issues
involved in extending an existing Java Identity Based En-
cryption system to incorporate BIO-IBS. Finally, we will
discuss conclusions and future work. We also provide ap-
pendices on the process of biometric extraction and on
the working BIO-IBS prototype developed.

2 Elliptic Curve Background

We use the symbol ⊕ to denote bitwise exclusive or,
XOR. We represent the finite field with p elements as
Fp = {0, 1, 2, 3, . . . , p − 2, p − 1}. For the remainder of
this paper we assume p ≡ 3 mod 4. The extension field
F2

p can be defined as F2
p = {a + bi} where a, b ∈ Fp and

i =
√
−1.

The basic units for elliptic curve arithmetic are points
(x, y) on an elliptic curve, E, over a finite field, Fp, de-
noted E(Fp), of the form

y2 = x3 + ax + b with x, y, a, b ∈ Fp.

We define abstract concepts of addition, P + Q, and
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scalar multiplication by an integer, sQ, on the points of
E(Fp). We also define a special point at infinity, ∞, which
is not a solution to the equation given above. These oper-
ations combine to make E(Fp) a finite abelian group with
∞ behaving as the identity element. Details of how these
concepts are implemented appear in [2, 14]. The elliptic
curve discrete logarithm problem (ECDLP) states: Given
two points in an elliptic curve group, P and Q, find a
number k such that kP = Q. k is called the discrete log-
arithm of Q to the base P . Cryptographic schemes based
on elliptic curves typically rely on the difficulty of solving
the ECDLP for their security. The order of a point P is
defined to be the smallest integer n such that nP = ∞.
We let E(Fp)[q] be the subgroup of E(Fp) consisting of
points of order q. This is also called the group of q-torsion
points on E(Fp).

We let µ(q) = {a ∈ F2
p | aq = 1} be the qth roots

of unity. In the following we concentrate on the curve
E(Fp) : y2 = x3 + x.

Fundamental to pairing based cryptography is the con-
cept of a bilinear mapping between two groups G1 and G2

denoted by ê : G1 × G1 → G2 with the bilinearity prop-
erty that ê(xP, yQ) = ê(P, Q)xy for all P, Q ∈ G1 and for
any integers x, y.

One such mapping is the Tate pairing τ ′

q that outputs
an element of the finite field F2

p.

τ ′

q : E(Fp)[q] × E(F2
p)/qE(F2

p) → µ(q)

τ ′

q(P, Q) = a + bi ∈ µ(q).

Note that we can make computational savings by using
a modified version of the Tate pairing. We define the map
φ : E(Fp) → E(F2

p) as follows:

φ(x, y) = (−x + 0i, 0 + yi).

For example, given (3, 12) ∈ E(F19), φ(3, 12) = (16 +
0i, 0 + 12i). We then define the modified Tate pairing

τq : E(Fp)[q] × E(Fp) → µ(q)

as follows:

τq(P, Q) = τ ′

q(P, φ(Q)).

This allows us to pick Q in E(Fp) and thus avoid the
complexity of dealing with cosets in E(F2

p). A more de-
tailed account of the modified Tate pairing appears in [9].
The evaluation of the Tate pairing involves the ideas of
formal divisors on elliptic curves and functions defined
on these divisors. These abstract concepts can be com-
puted numerically by using a computationally efficient al-
gorithm developed by Miller [18]. A good account of how
Miller’s algorithm is used to evaluate the Tate pairing is
given in [25]. The most important property of the Tate
and modified Tate pairing is bilinearity. Further details
on bilinear maps can be found in [25].

3 Generating Key Data from Bio-

metrics

Using biometric data as a basis for cryptographic keys
is problematic as biometric measurement is not perfectly
reproducible. Recent work [8, 10, 11] demonstrates how
such data can be used to generate strong keys for any
kind of cryptographic application. They use the notion
of a fuzzy extractor to describe the process of extracting
a unique string ID from a biometric input b, in such a
way that a certain amount of error is allowed for. If the
input changes slightly to b′ then the extracted ID will
be the same. To enable the regeneration of ID from a
slightly different biometric b′ the fuzzy extractor process
also outputs a publicly available reproduction parameter
PAR. Dodis et al. [8] describe three metrics to measure
the variation in the biometric reading: Hamming Dis-
tance, Set Difference and Edit Distance. They then detail
the construction of fuzzy extractors using these metrics.
Hamming Distance is defined to be the number of bit po-
sitions that differ between b and b′ and is probably the
most natural and straightforward metric to work with,
although the other metrics may be more efficient for par-
ticular biometrics and applications.

3.1 Fuzzy Extraction

Obtaining a biometric reading is a variable process that
introduces errors. Examples of such errors include varia-
tion in the physical biometric (e.g. a cut on a finger) or
bad placement of the finger on the reading device. The
reader and matching software can attempt to fix these er-
rors using various techniques. These techniques such as
feature extraction may also introduce variation [16]. We
use Fuzzy Extractors as an extra level of error correction
to try to improve the situation further. The fuzzy extrac-
tor construction using the Hamming Distance metric is
based on previous work on a fuzzy commitment scheme
in [10]. We now give a simplified outline of how such an
extractor is constructed. Comprehensive accounts appear
in [8, 10]. Further information on the other metrics can
be found in [7, 8, 11].

First we give the formal definition of a fuzzy extractor.
Let M = {0, 1}v be a finite dimensional metric space con-
sisting of biometric data points, with a distance function
dis: M × M → Z+, which calculates the distance be-
tween two points based on the metric chosen. Let l be
the number of bits of the extracted output string ID and
t be the error threshold (i.e. for two points b, b′ ∈ M to
be classed as the same dis(b, b′) ≤ t ). An (M, l, t)-fuzzy
extractor is constructed using two functions Gen and Rep.
Gen is a probabilistic generation procedure, which on in-
put b ∈ M outputs an “extracted” string ID ∈ {0, 1}l and
a publicly available reproduction parameter, PAR. Rep is
a deterministic reproduction procedure allowing recovery
of ID from the corresponding PAR and any b′ sufficiently
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close to b. To clarify

∀ b, b′ ∈ M with dis(b, b′) ≤ t,

if Gen(b) → 〈ID ,PAR〉,
then Rep(b′,PAR) → ID .

We now outline the construction of a fuzzy extractor
for the space M under the Hamming Distance metric.
This construction is built using error correcting codes. We
now define what we mean by an error correcting code. Let
the set C be a subset of n-bit words (i.e. C ⊆ {0, 1}n),
with n > v and having at least 2k elements for some
positive integer k. Let Ce : M → C be a one-to-one
encoding function and also let Cd : {0, 1}n → C be a
decoding function that has an error threshold of t (can
correct up to t-bit errors). The decoding function Cd

will take an arbitrary n-bit string and “correct” it to the
nearest codeword in C. Using coding theory notation the
combination of C, Ce, and Cd gives us an [n, k, 2t + 1]
binary error correcting code [24]. We also define H : {0,
1}n → {0, 1}l to be a one way hash function.

A note on the error correction process may be useful
here. The most common use of error correcting codes is
to reconstruct the original data from a possibly corrupted
version of itself. The corruption is usually introduced dur-
ing transmission. In our case we use error correcting codes
to reconstruct the original string representing a biometric
measurement from a possibly corrupted version of itself
where the corruption is introduced by variation in the
biometric and/or in the reader.

3.2 Choice of Error Correcting Codes

In this section we will give the reader an overview of
the specific error correcting code we use in the imple-
mentation. We chose to use a BCH (Bose-Chaudhuri-
Hocquenghem) code because it is an excellent general pur-
pose binary code. The fact that the BCH class of codes
have polynomials as codewords makes them more com-
plex and powerful compared to simpler codes like Ham-
ming codes, as they can be constructed to be multi-error
correcting. They can be designed to correct errors up to
about half the code’s block length.

We now look at the actual process of constructing a
BCH code. The variable t is defined to be the number
of errors to be corrected and n = 2m − 1 is the length
of the code, where m, n are positive integers. The poly-
nomial f(x) ∈ Z2[x] is defined to be xn − 1. The ring
R = Z2[x]/(f(x)) consists of the polynomials in Z2[x]
of degree less than n. There exists a special genera-
tor polynomial g(x) ∈ Z2[x] that divides f(x).The code
C is generated by g(x) and consists of the multiples of
g(x) in Z2[x] of degree less than n creating a vector space
in R with dimension k = n − deg g(x). The polynomials
in C form codewords in an [n, k] linear code in R with 2k

codewords. A codeword c(x) ∈ Z2[x] with n coefficients
can be easily expressed as a unique vector in Zn

2 by listing
its coefficients in order.

The generator polynomial g(x) must be computed in a
particular way in order to construct a valid BCH code. If
p(x) is a primitive polynomial of degree m in Z2[x] then
Z2[x]/(p(x)) is a field of order 2m whose nonzero elements
are generated by the field element x. We let a1, a2, . . . , as

where s < n, be the roots of f(x) with minimum poly-
nomials m1(x), m2(x), . . . , ms(x). We then let the roots
ai = xi for i = 1, . . . , s. Using this method we can find
g(x) by forming the product of each unique mi(x), as a
result g(x) will divide f(x) giving us a [n, k, 2t + 1] BCH
code.

Encoding a block of data to a BCH codeword is straight
forward. The binary data is first converted to a polyno-
mial d(x) ∈ Z2[x]. The redundancy polynomial w(x) is
then calculated as the remainder after dividing xn−kd(x)
by the generator g(x). The codeword is then the coeffi-
cients of w(x) with the coefficients of d(x) appended to
the end.

Due to the special way g(x) is formed it is possi-
ble to correct errors in transmitted codewords. Suppose
c(x) ∈ C is transmitted and r(x) 6= c(x) ∈ Z2[x] is re-
ceived with degree less than n. Then r(x) = c(x) + e(x)
for some nonzero polynomial e(x) ∈ Z2[x], called the er-
ror polynomial, with degree less then n. To correct r(x)
all we need to find is e(x). Theorem 4.1 in [12] implies
that r(ai) = e(ai) for i = 1, . . . , 2t, thus knowing r(x)
provides us with information about e(x). The values of
r(ai) are called the syndromes of r(x). Consider e(x) =
xm1 + xm2 + . . . + xmp for some integer error positions
m1 < m2 < · · · < mp with p ≤ t and mp < 2n−1. We find
these error positions by computing the first 2t syndromes
of r(x), i.e. r(a), r(a2), . . . , r(a2t) and using the error lo-
cater polynomial E(z) = (z−am1)(z−am2) . . . (z−amp).
To find these error positions in our implementation we
used Berlekamp’s iterative algorithm, we refer the reader
to [17] for a comprehensive account of BCH codes and
Berlekamp’s algorithm.

3.3 The Extraction Process

In this section we will give an overview of the implemen-
tation of the process of acquiring a unique string from
a varying biometric. For the purposes of this paper this
implementation will take place using a standard personal
computer and a biometric reader connected via a USB
port using BioAPI1 compliant readers.

The first step is to obtain b from the biometric reader.
We outline the approach in Appendix 7.

The next step is to use an error correcting code such as
a BCH code to fuzzy extract some data from the biometric
input. We now describe how such a code is used to build
a fuzzy extractor by defining the Gen and Rep functions.
The Gen function takes the biometric input b and outputs
ID = H(b) that is used for key generation and a publicly
accessible reproducer PAR = b ⊕ Ce(ID) which is used
in conjunction with another biometric input b′ to recover
ID . The Rep function takes b′ and PAR as input and

1The BioAPI Consortium: http://www.bioapi.org
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outputs ID ′ = Cd(b
′ ⊕ PAR) = Cd(b

′ ⊕ b ⊕ Ce(ID))
which is equal to ID if and only if dis(b, b′) ≤ t. We
illustrate the process below in Figure 1.

The parameters produced in this phase, ID and PAR
form the inputs into the key generation phase of Sec-
tion 4.2. Note that PAR will be needed during verification
in order to reconstruct the biometric key.

4 Biometric Identity Based Signa-

ture Scheme

Shamir first proposed the concept of identity-based cryp-
tography in [23]. In this paper he also constructed an
IBS scheme using the existing RSA algorithm [20]. After
Boneh and Franklin used the bilinear pairing to create
their Identity Based Encryption (IBE) scheme [3], many
IBS schemes based on the bilinear pairing were created.
One such scheme was the Sakai-Ohgishi-Kasahara Iden-
tity Based Signature (SOK-IBS) scheme [21]; a modi-
fied version of this scheme is given in Section 4.1. The
SOK-IBS scheme forms the basis of the proposed BIO-
IBS scheme described in Section 4.2. In Section 4.3, The
functions to map a binary string to a point on an elliptic
curve are briefly discussed.

4.1 Modified SOK-IBS

The modified SOK-IBS scheme [1], which can be regarded
as an identity based extension of a randomized version of
the Boneh-Lynn-Shacham (BLS) short signature scheme
[4], was proven to have a “sub-optimal reduction from
the Diffie-Hellman problem” in [15]. It consists of the
following four parts.

4.1.1 Setup

Given a security parameter k, the Private Key Generator
(PKG) selects groups G1 and G2 of prime order q > 2k, a
generator P of G1, a randomly chosen master key s ∈ Z∗

q

and the associated public key Ppub = sP . It also se-
lects cryptographic hash functions of the same domain
and range H1, H2 : {0, 1}∗ → G∗

1. A more detailed dis-
cussion on the workings of H1 and H2 are given in Sec-
tion 4.3. The system’s public parameters are

params = (G1, G2, ê, P, Ppub, H1, H2).

4.1.2 Key Generation

Given a user’s identity Φ, the PKG computes QΦ =
H1(Φ) ∈ G1 and the associated private key dΦ = sQΦ ∈
G1 that is transmitted to the user.

4.1.3 Sign

In order to sign a message M ,

1) Pick a random integer r ∈ Zq and compute U = rP ∈
G1. Then H = H2(Φ, M, U) ∈ G1.

2) Compute V = dΦ + rH ∈ G1 where “+” indicates
addition on the group G1.

The signature on M is the pair σ = 〈U, V 〉 ∈ G1 × G1.

4.1.4 Verify

To verify a signature σ = 〈U, V 〉 ∈ G1 ×G1 on a message
M , the verifier first obtains the signer’s identity Φ and
computes QΦ = H1(Φ) ∈ G1. The verifier recalculates
H = H2(Φ, M, U) ∈ G1. He then accepts the signature if
ê(P, V ) = ê(Ppub, QΦ)ê(U, H) and rejects it otherwise.

4.2 BIO-IBS

Our proposed scheme will incorporate fuzzy extractors
into the SOK-IBS scheme. Like SOK-IBS, the BIO-IBS
scheme consists of four parts.

4.2.1 Setup

Given a security parameter k, the Private Key Gener-
ator (PKG) selects groups G1 and G2 of prime order
q > 2k, a generator P of G1, a randomly chosen mas-
ter key s ∈ Z∗

q and the associated public key Ppub = sP .
It also selects cryptographic hash functions of the same
domain and range H1, H2 : {0, 1}∗ → G∗

1. The PKG picks
H3 : b → {0, 1}∗, an encoding function Ce and a decoding
function Cd. It also selects a method of extracting the fea-
tures of a biometric, Fe. The system’s public parameters
are

params = (G1, G2, ê, P, Ppub, H1, H2, H3, Ce, Cd, Fe).

4.2.2 Key Generation

On obtaining a user’s biometric b using the feature ex-
tractor Fe, the identity string can be calculated as ID =
H3(b). The PKG computes the public key QID =
H1(ID) ∈ G1 and the associated private key dID =
sQID ∈ G1.

4.2.3 Sign

In order to sign a message M ,

1) Pick a random integer r ∈ Zq and compute U = rP ∈
G1. Then H = H2(ID, M, U) ∈ G1.

2) Compute V = dID + rH ∈ G1.

3) The value PAR = b ⊕ Ce(ID) is included as part of
the signature.

The signature on M is the triple σ = 〈U, V, PAR〉.

4.2.4 Verify

To verify a signature σ = 〈U, V, PAR〉 on a message M for
an identity ID, the verifier performs the following steps.
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Figure 1: Biometric fuzzy extraction process

1) Obtain a biometric reading b′ and calculate ID′ =
Rep(b′, PAR).2

2) Calculate Q′

ID = H1(ID′) ∈ G1 and H =
H2(ID′, M, U) ∈ G1.

3) Signature is verified if ê(P, V ) = ê(Ppub, Q
′

ID)ê(U, H)
and rejected otherwise.

4.3 Map To Point

For H1 and H2 mentioned above, a binary string {0, 1}∗
has to be embedded onto a point Q on the elliptic curve
E(Fp). This requires the use of a function f : {0, 1}∗ →
G

∗

1 where G1 is a subgroup of the points on an elliptic
curve. Rather than map directly onto G∗

1 we use a stan-
dard hash function, H , to hash to a set A ⊆ {0, 1}∗. Then
we use a deterministic encoding function, G, to map A
onto G∗

1 so f(ID) = G(H(ID)). See [3] for more details.
Various algorithms exist to embed onto a point on the

curve. We use the algorithm by Koblitz [14, Section 6.2],
as we are using curves of the form y2 = x3 + x. Boneh
and Franklin [3, Section 4.3] detail a simpler method for
embedding points on curves of the form y2 = x3+1 which
is suitable for Weil Pairing.

5 Security Issues

5.1 Malicious signing

It is relatively easy to obtain biometric data from an in-
dividual. For example fingerprints can be lifted from a
glass. Other examples appear in [16]. Having this data

2If the error b′⊕b between the two readings is less than the error

threshold of the code, then ID′ = ID and QID = Q′

ID
.

does not allow an attacker to sign a document as the pri-
vate key is the one used in the signature generation. So
this attack is redundant. However it is possible to use this
data to attempt to acquire a user’s private key.

It is possible for an attacker to obtain your biometric
measurement, b, and submit it to the PKG. The PKG will
then calculate the corresponding private key and return
it to the attacker. The attacker can then use this key
to sign documents. This can be counteracted as in most
identity based systems by imposing proper authentication
procedures for users applying to the PKG to receive pri-
vate keys. For example users could use a digital certificate
here. The advantage over traditional public key systems
is that a certificate is necessary only once to obtain a
private key.

Note that a practical PKG could issue the private key
to a user on a smart card at registration. If this card is pin
protected the verification process would be a three-factor
authenticated process.

5.2 Disavowal

In our situation recovery of the original biometric is not a
problem as we use it to generate the public key. However
tampering with β would be useful in an attempt by a le-
gitimate signer to later disavow their signature. Recent
work by Boyen et al. [5, 6] shows that the description of
fuzzy extractors given in Section 3.1 and [8] is vulnerable
to attack. The fuzzy extractor construction of Section 3.1
is secure despite there being a publicly available value β.
However, it was found in [5, 6] that this construction is not
secure if an active attacker performs a malicious modifi-
cation of β . Depending on the particular construction of
a fuzzy extractor such an attacker may be able to recover
the original biometric data. The solution is the use of



International Journal of Network Security, Vol.5, No.3, PP.317–326, Nov. 2007 322

Figure 2: An existing IBE implementation with BIO-IBS extension

a so called robust fuzzy extractor which protects against
modification of β. The user will be able to detect if β has
been modified with a high probability. This solution is
proven secure using the standard model. The proof and
details of the construction of a robust fuzzy extractor can
be found in [6].

It is also possible for a signer to attempt disavowal by
physical attempts to alter their biometric. For example a
signer could wear a thin film with another print on their
finger or alter facial characteristics to try to fool facial
scanners. As this is an undeniable signature scheme these
threats can be counteracted by inspecting the biometric
prior to taking the measurement.

5.3 Security of the Signature Scheme

A framework for analysing the security of Identity Based
Signature schemes was given in [1]. This framework re-
duces the problem of proving a complex IBS scheme into
that of proving a relatively simpler scheme. Consequently,
a modified version of the SOK-IBS scheme [21] is then
proven by Bellare et. al. to be secure against forgery by
chosen message attack.

6 Implementation of BIO-IBS

In this section, we discuss the design and implementation
issues involved in extending an existing IBE implemen-
tation to incorporate the BIO-IBS system. An overview
of the IBE implementation and the BIO-IBS extension
is given in Figure 2. Firstly we give a brief overview of
the existing IBE implementation. We then discuss the
issues related to implementing fuzzy extractors. This sec-
tion concludes by covering the design of the BIO-IBS key
generation and signature scheme.

6.1 An Existing Identity Based Encryp-

tion System

One of the core technologies required for our BIO-IBS is a
bilinear mapping over an elliptic curve. Such a mapping,
the Tate pairing, was previously developed as part of an

implementation, [19] of the Boneh and Franklin (BF-IBE)
system [3]. Details on an object-oriented (OO) solution
for this system with a developer-friendly API appears in
[9]. The design follows a pluggable architecture allowing
for use of both alternative and enhanced implementations.

The flexible design accommodates both perfectly and
not perfectly reproducible identities and, where appro-
priate, adheres to the Java Cryptographic Architecture
(JCA) [13].

6.2 Fuzzy Extractors

The fuzzy extractor class performs two functions, the gen-
eration function Gen and the reproduction function Rep.
Since the generation function returns two strings ID and
PAR, those strings are encapsulated in the Generator

class. The reproduction function result is encapsulated in
the Reproducer class.

A binary error correcting code and a metric space
make up the attributes of the fuzzy extractor. These at-
tributes are represented by the interfaces BinaryError

CorrectingCode and MetricSpace respectively, allowing
for choice in the type of error correcting codes and met-
ric spaces to be used. We extend the MetricSpace class
with a HammingDistance MetricSpace that implements
the Hamming Distance metric.

7 Conclusion

We have presented a biometric identity based signature
scheme. We have utilised, extended, and implemented
ideas in the areas of error corrected string construction
from biometric data, key generation, and pairing based
signature schemes to form the components of our system.
We presented the application of such a scheme to repu-
diation situations. We discussed the advantage of using
the biometric data in the public key and described the
utility of using biometric evidence in disputes that may
arise. We also discussed the main security issues around
this system. Finally we described how such a biomet-
ric signature scheme was incorporated into an existing
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IBE software package. The pluggable architecture pro-
vides for easy incorporation of different implementations
of component algorithms. This will facilitate inclusion of
future performance enhancements to existing algorithms
or inclusion of new algorithms to the system.
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Appendix A: Acquiring Biometric

Data

We outline how to obtain the biometric data b from the
biometric reader. An overview of this process can be seen
in Figure 3. The process uses the BioAPI framework to
acquire the biometric data from the reader. The BioAPI
interfaces with the reader through the Biometric Service
Provider (BSP) interface of the reader. The BSP inter-
face acquires the raw biometric sample and constructs
a Biometric Identification Record (BIR) from this data.
This BIR can then be processed by the BSP to enhance
the quality of the capture and perform feature extraction
on the sample. The BIR returned from a raw sample
is large and will contain significant differences from any
other sample acquired from the same person depending
on properties of the capture. An example of this can be
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Figure 3: Biometric data extraction process

found in fingerprint biometrics, where the position and
orientation of the finger results in significant differences
between samples. To get around this problem distinguish-
ing features of the sample are identified using a feature
extraction process to form a template. Examples of fea-
ture extraction techniques appear in [16]. It is this tem-
plate which will make up the biometric data b used in
key generation. Using the template introduces a problem
concerning the compatibility of feature extraction algo-
rithms used by different BSP developers, the algorithm
to be used must be then explicitly defined by the sys-
tem and must not change throughout the process to avoid
compatibility problems.

Once the template has been created, we must transfer
the data from the native BioAPI interface into the Java
fuzzy extractor implementation for key generation. Our
approach to this was to create a Java Native Interface
(JNI) to the native BioAPI framework. This is important
for our system as it allows for system initiated capture,
process or template creation operations whenever needed.
Our system can use the Java BioAPI Interface to initiate
the capture of a biometric sample. The interface then
forwards this call to the native BioAPI which performs
the capture operation and returns the capture in the form
of a BIR to our system. This is then passed onto the next
stage for string generation.

Appendix B: Demonstration Appli-

cation

A Java based implementation of the BIO-IBS scheme ex-
ists. In this section we outline the working prototype. The
implementation of the scheme conforms to the Java Cryp-
tography Architecture (JCA) API. The JCA API allows
developers to use cryptographic components without de-
tailed knowledge of the underlying mathematics reducing
the time and effort required by a developer to integrate
these components into their own solutions. The BIO-
IBS JCA Provider and source code can be downloaded
at http://crypto.cs.nuim.ie/.

A demonstration application that illustrates the usabil-
ity of the BIO-IBS scheme can also be downloaded at the
aforementioned URL. Due to the lack of an available bio-
metric input device, the demonstration application simu-
lates the capture of biometric data.

Setup

Figure 4 shows a screenshot of the initialisation of the
BIO-IBS implementation. The screen consists of two text
areas, the left one showing the text to be signed and the
right one showing the parameters of the BIO-IBS. The
far right shows three biometrics, Bob’s biometric at key
generation and signing (Bob), Bob’s biometric at verifica-
tion (Bob+e) where e denotes a variation in his biometric
reading, such that the variation is within the error cor-
recting capabilities of the BCH code, and Alice’s biomet-
ric. Bob’s biometric should verify his signature on the
document whereas Alice’s biometric should not verify the
signature of the document.

Figure 4: Initialisation of the BIO-IBS. The document to
be signed is shown on the left hand side of the screenshot.
The right hand side shows the parameters used in the
BIO-IBS implementation.

Note that the BCH parameters [n, k, 2t + 1] =
(905, 160, 201). The elliptic curve used is y2 = x3 + x.
The master key s is also shown at the end of the right
text area. It is shown here for demonstrative purposes
only.

Key Generation

Bob uses the biometric reader to sign the document. Be-
fore the document is signed, his public and private keys
are generated as in Figure 5. As in standard Identity
Based cryptosystems, his public key is based on his iden-
tity. In the case of BIO-IBS, his public key is derived from
his biometric. Note the first part of his biometric value

b = D4 44 5C B3 71 D8 47 A1 20 5B 5D AD 37 06 82
E0.

Please note the underlined segments for later. The
remainder of the biometric reading is omitted for brevity.
Note that his identity

ID = 15 2A 1E 68 B1 90 27 5C 5C 9C 58 AB 4F C8 0E
AE 26 43 CE 38.
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Figure 5: Key generation using BIO-IBS. The public and
private keys are generated the first time Bob signs a doc-
ument (right hand side).

His public key QID is then derived from this identity
value as shown in Section 4.2.2. His corresponding private
key is the affine coordinate sQID = (x, y) as shown in the
bottom of the right text area.

Signing and Verification

Figure 6 shows the values that represent the signature
σ =< U, V, PAR > that are calculated by the BIO-IBS
implementation. These values are digitally appended to
the document to sign it.

Figure 6: Signing using BIO-IBS. The values for the triple
< U, V, PAR > are shown in the right text area.

Bob attempts to verify his signature at a later date
(Bob + e) as in Figure 7. His biometric is obtained again.
For a variety of reasons there may be errors in his bio-
metric. The screenshot shows that the first part of his
biometric is now

b = D4 44 5C FB 71 D8 47 A1 20 5B 58 AD 37 06 82 E0.

Figure 7: Verification using BIO-IBS. As shown in the
bottom of the right text area, Bob’s signature is success-
fully verified.

Note that the underlined segments of this biometric
reading are different from those underlined segments of
the reading taken at the key generation stage. These are
the errors that are corrected by the fuzzy extractor to
generate the original identity of

ID’ = 15 2A 1E 68 B1 90 27 5C 5C 9C 58 AB 4F C8 0E
AE 26 43 CE 38.

The signature is then verified by performing the rel-
evant Tate pairing τq(P, V ) = τq(Ppub, Q

′

ID)τq(U, H)
where P , Ppub and H are system parameters, U and V are
taken from the signature and Q′

ID is the recreated public
key based on the biometric reading.

Verification Failure

Figure 8 illustrates when Alice attempts to verify a docu-
ment signed by Bob. The error correcting code does not
create the same identity ID as Bob’s. The resulting Tate
pairing fails resulting in the signature not being verified.

Figure 8: Verification using BIO-IBS. As shown in the
bottom of the right text area, Alice’s signature is not
verified.
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