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Abstract

It is generally agreed that two key points always attract
special concerns during the modelling of anomaly-based
intrusion detection. One is the techniques about discern-
ing two classes with different features, another is the con-
struction/selection of the observed sample of normally oc-
curring patterns for system normality characterization.
In this paper, instead of focusing on the design of spe-
cific anomaly detection models, we restrict our attention
to the analysis of the anomaly detector’s operating en-
vironments, which facilitates us to insight into anomaly
detectors’ operational capabilities, including their detec-
tion coverage and blind spots, and thus to evaluate them
in convincing manners. Taking the similarity with the in-
duction problem as the starting point, we cast anomaly
detection in a statistical framework, which gives a formal
analysis of anomaly detector’s anticipated behavior from
a high level.

Some existing problems and possible solutions about
the normality characterization for the observable subjects
that from hosts and networks are addressed respectively.
As case studies, several typical anomaly detectors are
analyzed and compared from the prospective of their
operating environments, especially those factors causing
their special detection coverage or blind spots. Moreover,
the evaluation of anomaly detectors are also roughly
discussed based on some existing benchmarks. Careful
analysis shows that the fundamental understanding of
the operating environments (i.e., properties of observable
subjects) is the elementary but essential stage in the
process of establishing an effective anomaly detection
model, which therefore worth insightful exploration,
especially when we face the dilemma between anomaly
detection performance and the computational cost.

Keywords: Anomaly detection, computer security, infor-
mation security, intrusion detection, misuse detection

1 Introduction

Intrusion detection is about discerning any intrusive
anomalies that might threaten the security from the nor-
mal operations/activities of information systems. Exist-
ing intrusion detection techniques fall into two general
categories: anomaly detection and misuse detection (or
signature-based intrusion detection). Anomaly detection
techniques mainly focus on establishing normal activities
pattern (set or rule) Φ, and any current activity φ that
deviates from Φ is treated as intrusion. On the contrary,
misuse detection techniques attempt to create a model of
attack signatures Ψ, when a current signature ψ matches
with Ψ, it is regarded as an intrusion. However, the de-
fects exist in anomaly detection and misuse detection,
false positive (ψ is misclassified to Φ) and false negative
(novel attack ψ ∈ Ψ is ignored) respectively, often cause
these techniques to fail. Due to the uncontrollable false
alarm rate, most of the existing commercial IDSs pre-
fer misuse detection rather than anomaly detection tech-
niques.

It is well known that two elements are essential to de-
sign an effective IDS, namely, modelling of the observable
subjects and the techniques of characterizing and analyz-
ing the data model. Specifically, several questions should
be considered carefully: What observable subjects should
be selected for monitor and analyse? What attributes
should be taken into account to characterize those selected
subjects? What existing approaches or novel methods can
be employed to detect anomalies based on the character-
ized observations? As we have known, network can be log-
ically classified into two parts, hosts and communication
links among the hosts. Accordingly, network traffic data,
which capture data packets travelling on the communicate
links, and audit data, which record the sequence of events
on the hosts can be selected as observable subjects. Those
two domains actually can be further exploited for seeking
more particular and effective observation, such as com-
mand line strings, system call traces, and resource con-
sumption patterns in the host audit data, or the intrinsic
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features, traffic features and content features of the net-
work packets. Based on the characterization of the data
model, all techniques that are capable of distinguishing il-
legitimate and normal behaviors worth consideration. Up
to now, techniques drawn from statistics [7, 27, 28], data
mining [13], pattern recognition [3, 30], machine learn-
ing [10, 12] and other research fields have been applied to
intrusion detection with limited performance.

As we know, the basic assumption for anomaly detec-
tion is that the intrinsic characteristic or regularity of
the observable subjects deviate significantly from that of
anomalies, therefore, the preprocess and analysis of the
operating environment, which is composed of specific ob-
servations, is an initial but important stage for the mod-
elling of anomaly detectors. In another intuitive expla-
nation, in order to detect anomalies as accurate as possi-
ble, meanwhile suppress false alarm rate as low as possi-
ble, characterization of the system normality is definitely
essential. However, due to the increasing complexity of
modern computer systems and the diverse nature of the
network, it is generally agreed that there is no such thing
as a typical and perfect “system normality description”.
A possible way, which is also the trend of current anomaly
detection research, is to develop methods for characteriz-
ing a given operating environment sufficiently well so that
optimal detectors for that environment can be designed.
The cost must be paid of such work is to allow the limits of
detectors, in terms of expected false alarm rate, to be pre-
dicted. Along the line, most of the available anomaly de-
tection techniques employ specific subjects with manage-
able properties as observation, and modelling the subjects
as they needed. Although many attacks can be identified
using these models, unperfect description of the normal-
ity and the novel legitimate activities make them suffer
from uncontrollable false alarm rate. Furthermore, most
of existing anomaly detectors pay more attention to the
technique itself, rather than the fundamental understand-
ing of the working field, which restricts them to a broader
application. Additionally, the evaluation of anomaly de-
tectors is deficient and unconvincing due to the limits of
so-called benchmark data set, especially for the researches
that have been focusing on a specific method for a partic-
ular operating environment, which built based solely on
“expert” knowledge.

With the introduced problems in mind, our work aims
to explore the fundamental attributes of some observable
subjects, and analyze the operating environment of sev-
eral typical anomaly detectors that drawn from different
research fields. In general, our work includes:

• Casting the anomaly-based intrusion detection in a
statistical modelling framework, and characterize the
system normality in a general way by selecting several
specific observable subjects that have been applied to
some existing typical anomaly detectors;

• Giving a critical analysis of the operating envi-
ronments that some anomaly detectors work with
(mainly the ordering property and frequency prop-

erty), as well as their operational capabilities/limits
and comparative studies;

• Concluding the current evaluation methodologies,
and propose our idea for better measurement met-
rics based on some critical analysis.

The rest of paper is organized as follows. Section 2
constructs a statistical framework to describe anomaly
detectors’s behavior from a general viewpoint. In Section
3, we give a general description of the selected observation
normality. Section 4 characterizes the operating environ-
ment of several typical anomaly detectors, together with
the analysis of their operational limits. In Section 5, we
propose our scheme for better anomaly detection metrics
based on some existing contributions. Finally, we give a
general discussion in Section 6.

2 A General Statistical Descrip-

tion

A general statistical formulation of the computer misuse
detection have been discussed in [7], which is generally
regarded as a theoretical framework for the latter devel-
opment of intrusion detection models. With the simi-
lar formulation, while pay more attention to the anomaly
detectors’ operating environments, i.e., the properties of
observable subjects, in this section, we give another sta-
tistical description for the anomaly detectors’ anticipated
behavior from a more general viewpoint. The description
is based on the analogy between anomaly detection and
induction reference problem.

First of all, several notations need to be given as
following for further analysis:

Notations:

H(t): a hidden stochastic process which maps the activi-
ties of legitimate users and attackers to a finite space
S in terms of discrete time step “t”; at time step t, if
H(t) = 0, means legitimate user traces is generated,
if H(t) = 1, means attacker traces is generated, and
it is transparent to the anomaly detectors.

h(x): a hidden stochastic process for generating event x.

Ot: observation that is captured at time interval t, it can
represent a single event or a group of events according
to the specific detection model, and its generation is
governed by the hidden process H ;

Set(Ot, w): a set of observation Oi (i depends on the
specific anomaly detection model) with window w at
time step t.

N(t): a legitimate stochastic process that is generated
at time unit t, i.e., H(t) = 0;

n(Ot): the probability that the subject to be generated
by N(t) at time step t is Ot, i.e., Pr{Ot|H(t) = 0};
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M(t): a malicious stochastic process that is generated
at time unit t, i.e., H(t) = 1;

m(Ot): the probability that generated malicious subject
at time step t is Ot, i.e., Pr{Ot|H(t) = 1};

φi, 0 ≤ i ≤ Num: a pattern (or a probability measure)
for legitimate activity that is stored in the normal
dataset Φ with size Num;

ÃD(·): the probabilistic anomaly detector with input Ot

or Set(Ot) and output is the probability that input
is determined as malicious;

AD(·): the deterministic anomaly detector with input
Ot or Set(Ot) and output is the binary determination
whether input is malicious.

λ: a priori probability that current observable subject
is normal, i.e., λ = Pr{H(t) = 0}, and λ is close to 1
due to the fact that the number of malicious process
is much smaller than that of normal process.

As we know, the objective of anomaly detectors is to
capture any malicious subjects that generated by the hid-
den stochastic process H(t), and what they depend on is
a collection of normality characterization of available sub-
jects. Since Num, the size of the samples of the normal
patterns Φ is limited, naturally, the most effective obser-
vations (or characterized patterns) are desirable. Gen-
erally, two properties of the observable subjects, that is,
ordering property and frequency property, can be taken
advantage of to construct the system normality accord-
ing to the correlation of individual observed events Ot.
Although some anomaly detectors drawn from machine
learning (or specification-based techniques) do not take
those two properties as their main concern, our analysis
is mainly based on this basic taxonomy.

2.1 Frequency-Based Analysis

If Ot is taken independently (here Ot is considered as a
unit of events), the available observation can be viewed
as an unordered collection of subjects in a particular unit,
and the consideration of temporal patterns that the ob-
servation may contain is excepted. Helman et al. [7] ever
gave a thorough analysis for the statistical foundations
of computers audit trail with such property, and in such
cases, the probability that current subject Ot is malicious
can be determined according to Bayes theorem,

Pr{H(t) = 1|Ot}

=
Pr1 · Pr{H(t) = 1}

Pr1 · Pr{H(t) = 1} + Pr2 · Pr{H(t) = 0}

=
Pr1 · (1 − λ)

Pr1 · (1 − λ) + Pr2 · λ

=
m(Ot) · (1 − λ)

m(Ot) · (1 − λ) + n(Ot) · λ

=
c(Ot)

c(Ot) + λ/(1 − λ)

Pr1 = Pr{Ot|H(t) = 1}, P r2 = Pr{Ot|H(t) = 0}

where c(Ot) = m(Ot)/n(Ot), and Pr{H(t) = 1|Ot} > α
iff c(Ot) > αλ/(1 − α)(1 − λ). Thus it is easy to find
that the performance of anomaly detectors is related di-
rectly with the value of Pr{H(t) = 1|Ot}, and it increases
with the value of c(Ot). Based on the equation, a simple
anomaly detection model can be defined as:

ÃD(Ot) = c(Ot), AD(Ot) =

{

0 if ÃD(Ot) < α
1 otherwise

A series of optimality conditions for the above detec-
tion model have been discussed in [7], and as they pointed,
due to the lack of prior knowledge about λ, m(Ot), and
n(Ot), it is almost impossible to carry it out into practice.
Specifically, a good estimates of λ and a thorough under-
standing of distributions of the processes N(t) and M(t),
which we call system normality, are not readily available,
which thus make the detection task deem to be NP -hard.

Actually, anomaly detection can be regarded as an in-
duction problem in some sense. Assume that we have an
unordered set of n finite description of observable events
(strings of symbols), O1, O2, O3, · · · , On. Given a new
event at time t, Ot, what is the probability that it belongs
to the set? A well fitting anomaly detector with good de-
scription for the known set of events is expected. The
universal distribution [23] gives a criterion for goodness
of fit of such description. According to our definition, the
universal distribution DÃD for anomaly detector ÃD can
be regarded as a weighted sum of all finitely describable
probability measures on finite events:

DÃD([Oi]) =
∑

j

βj

t
∏

i=1

pj(Oi). (1)

t is the time step representing the number of avail-
able observation set [Oi], βj can be taken as the weight
of the jth probability distribution on finite observations,
and its definition based on the particular detection model,
for example, for an anomaly detector using string match
method, βj = 1, if ongoing events match the exact pat-
tern φ that stored in normal pattern set Φ. Suppose that
[Oi], i = 1, 2, · · · , t is a set of t observations generated by
stochastic process h(x), the probability that DÃD([Oi])
assigns to a new observation Ot+1 is

Pr(Ot+1) = DÃD([Oi]
⋃

Ot+1)/DÃD([Oi]).

The probability assigned to [Oi] by stochastic genera-
tor h(x) is

h([Oi]) =

t
∏

i=1

h(Oi). (2)

In an effective anomaly detection model, for a suitable
set of observations [Oi] that used for characterizing sys-
tem normality, the probability assigned by DÃD in Equa-
tion (1) should be very close to those generated by hidden
stochastic process h(x) in Equation (2), that is, a maxi-
mal prior information an anomaly detector can posses is
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the exact knowledge of λ, but in many cases the true gen-
erating process h(·) is not known, what we expect is that
an anomaly detector based on D(·) performs well with
small expected errors between D(·) and λ. For such two
probability distributions on finite number of observations,
a corollary derived from Hutter [11] can be given as:

Corollary 1. The expected value of the sum of the
squares of the differences in probabilities assigned by the
stochastic generator h(·), and anomaly detector D(·) to
the elements of the observation are less than a certain
value, and the expected error in probability estimate might
decreases rapidly with growing size of the normal data set.

The corollary guarantees theoretically that predictions
based on D(·) are asymptotically as good as predictions
based on λ with rapid convergence. Any a priori infor-
mation that can be insert into D(·) to obtain less errors,
and we believe that if all of the needed a priori infor-
mation is put into D(·), then (1) is likely to be the best
probability estimate possible to h(·), and thus anomaly
detector could achieve one hundred percent accuracy. So
far, neither modelling approaches, which aim to estimate
c, n,m, nor nonmodelling approaches, which deduce and
generate normal behavior rules using heuristic, clustering
algorithms, data mining techniques and statistical mea-
sures, have given a thorough solution. Actually, the lim-
ited samples we can obtain, together with corresponding
sampling errors, determine what we can do is just es-
timate and predict system normality in an approximate
way.

2.2 Sequence-based Analysis

In many cases, the ordering property rather than the fre-
quency property dominates the characteristic of observ-
able subjects, the pattern of Set(Ot, w) rather than the
individual event Ot is thus of potential interest, and the
ongoing events should be considered in a consecutive man-
ner instead of independently. Based on the assumption
that current event Ot is related with previous events, hid-
den generation process, and time instant t, a pair of prob-
ability distribution can be given as following:

Pr{Ot|H(t) = 1, Ot−1Ot−2 · · ·O1, t}

Pr{Ot|H(t) = 0, Ot−1Ot−2 · · ·O1, t}

for most problems, the ultimate goal is just to identify
a short temporal pattern of anomalous events, there-
fore, the sequence Ot−1Ot−2 · · ·O1 can be replaced by
Set(Ot, w),

Pr{Ot|H(t) = 1, Set(Ot, w), t}

Pr{Ot|H(t) = 0, Set(Ot, w), t}.

Similar to the analysis for unordered event set, a poste-
rior probability of anomaly detection based on temporal-

related events can be given as:

Pr{H(t) = 1|Ot, Set(Ot, w), t}

=
Pr{Ot|H(t) = 1, Set(Ot, w), t} · (1 − λ

′

)

Pr3 · (1 − λ′) + Pr4 · λ′

=
c · (1 − λ

′

)

c · (1 − λ′) + λ′

Pr3 = Pr{Ot|H(t) = 1, Set(Ot, w), t}
Pr4 = Pr{Ot|H(t) = 0, Set(Ot, w), t}.

Where λ
′

= Pr{H(t) = 0, Set(Ot, w), t} is similar with
λ, represents a priori probability of the legitimate pat-
tern which contains w consecutive events that has been
generated by h(x), and an unknown constant

c =
Pr{Ot|H(t) = 1, Set(Ot, w), t}

Pr{Ot|H(t) = 0, Set(Ot, w), t}

From the above formulation, we do not know with cer-
tainty the generation of Set(Ot, w) by mixture process
h(x), nor do we know the distribution of M(t) and N(t).
The ongoing event Ot may depend on the current time
step t, as well as the temporal pattern of events gener-
ated at time steps prior to t, which allows the possibility
that M(t) and N(t) are non-stationary. Furthermore, in-
stead of restricting our attention on Set(Ot, w) whether
and which its subsequence is generated by M(t) or N(t),
we regard it as a whole dynamic temporal pattern, there-
fore, the detection problem of interest is to decide whether
the appearance of ongoing event reveal the temporal pat-
tern includes w events as anomalous, rather than concern
the individual Ot, however, we do not exclude the pos-
sibility that the sudden appearance of anomalous event
uncover any previous potential anomalies at once.

Similarly, the estimation of Pr{Ot|H(t) =
1, Set(Ot, w), t} and Pr{Ot|H(t) = 0, Set(Ot, w), t}
can also be roughly considered as a simple induc-
tive inference problem: Given a string O<t (denote
O1, O2, · · · , Ot−1), take a guess at its continuation
Ot. Specially, the generation of the event sequence
O1, O2, · · · , Ot−1 is governed by a hidden stochastic
process h(·), and µ is unknown probability distribution
for taking Ot at particular time instant t based on the
available event O1, O2, · · · , Ot−1, i.e. µ(Ot|O<t), while ρ
is a guess probability distribution close to µ or converges,
in a sense, to µ, and we expect that an anomaly detector
based on ρ performs well. Assume P := {p1, p2, · · · , pn}
is a countable set of candidate probability distributions
on event sequences, a universal probability distribution
π hence can be defined as:

π(O1:t) :=
∑

p∈P

wpp(O1:t),
∑

p∈P

wp = 1, wp > 0. (3)

As the above notations, P is known and might contain
the true distribution µ = pi if P is sufficiently large or
with well characterization. Based on those assumptions,
two corollaries therefore can be deduced from theorems of
[11] as follows for modelling anomaly detection models:
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Corollary 2. Convergence: Assume anomaly detector
observe a sequence O1O2 · · · over a finite space S drawn
with probability µ(O1:n) for the first n events. The univer-
sal conditional probability π(Ot|O<t) of the next symbols
Ot given O<t is related to the true conditional probability
µ(Ot|O<t) in the following way:

n
∑

t=1

E<t

∑

Ot

(µ(Ot|O<t) − π(µ(Ot|O<t))
2 ≤ lnw−1

µ

where E<t[·] :=
∑

x<t∈P t−1 µ(x<t)[·] is the expectation
and wµ is the weight (4) of µ in π.

which shows that the predication accuracy of antici-
pated anomaly detectors are asymptotically as good as
predications based on the stochastic generator h(·) with
rapid convergence. However, in practice, ongoing obser-
vation might not have exact matching pattern in P , i.e.,
µ /∈ P , in such case, a “nearby” distribution µ̂ with weight
w(µ̂) is expected, and the distance between µ̂ and µ is
bounded by a constant. The convergence of anomaly de-
tectors determines the amount of training time or data re-
quired to have a stable model, and the detector converges
well when most of the “anticipated” patterns appear re-
peatedly and are extracted well.

Corollary 3. Error Bound: Assume anomaly detector
observe a sequence O1O2 · · · over a finite space S drawn
with probability µ(O1:n) at time t. Θπ is the universal
prediction scheme (used by probabilistic anomaly detector
ÃD to determine the deviation between normal sequence
and abnormal ones) based on the universal prior π, Θµ

is the optimal prediction scheme based on the stochastic
generator h(·). The total u-expected number of prediction

errors EΘπ
n and E

Θµ
n of Θπ and Θµ are bounded by:

0 ≤ EΘπ

n − EΘµ

n ≤
√

2QnSn ≤ 2Sn + 2

√

E
Θµ

n Sn

where Qn =
∑n

t=1E<t is the expected number
of non-optimal predictions made by Θπ, Sn :=
∑n

t=1E<t

∑

Ot
(µ(Ot|O<t) − π(Ot|O<t))

2 is the squared
Euclidian distance between µ and π.

The corollary actually gives the upper bound of the
false alert rate of an ideal sequence-based anomaly detec-
tor. We usually pay our attention to the lower bound of
the false alert rate of anomaly detectors, but in fact, all
the possible detection schemes also have a upper bound
to some extent. Although it makes little sense on design-
ing an anomaly detection system with near zero false alert
rate, it really gives us an impression that any anomaly de-
tection schemes based on sequence prediction would never
perform too badly. And obviously, how to select a uni-
versal probability distribution π, specifically, pi ∈ P and
wi, is always the key to design an ideal sequence-based
anomaly detection system.

Rather than considering the specific design of anomaly
detectors, here we just attempt to show that anomaly de-
tection problem essentially is also a prediction problem

in some sense. Related proof of those two corollaries can
be found in [11], which provides theoretic foundation for
any anomaly detection scheme, and shows that probabil-
ity distribution of the expected controllable process con-
verge to that of the hidden stochastic process and limited
by errors bound. Based on the historic data, the extent
of the deviation between an expected event and ongoing
event thus determines whether anomaly appears.

Generally, this section casts the anomaly detection
problem in a statistical framework to describe the antici-
pated behavior of anomaly detectors from an overall view-
point, which facilitate us to construct a basic modelling
for the further discussion in the latter part this paper.
Although the unrestricted assumption of the framework
is quiet complex and general, it is nevertheless meaning-
ful to provide an outline for our detailed analysis. As we
know, many of subjects that anomaly detection scheme
to examine are notoriously noisy, non-stationary, and de-
fined on extremely large alphabets, while our framework
extracts them to a comprehensible and manageable level,
and based on which, we select several typical subjects that
have been widely used for analysis.

3 Normality Characterization of
Observable Subjects

Basically, two kinds of observable subjects from computer
systems can be selected as the objects for monitoring
and analyzing in order to capture the anomalous traces,
namely, hosts in the network and the communication links
among the hosts. From a high level view, several criteria
to the selection of observable subjects need consideration,
in order to characterize the system normality effectively:

• Availability, the basic condition, which means that
the subject can be observed and captured directly or
by some assist tools.

• Tangibility, which means that subjects can be
recorded in a specific form, and can be recognized
or dealt with in a particular way, such as user pro-
files or audit files.

• Operability, a subject might have a large number of
attributes, but it should be possible to be managed
by some techniques such as attribute projection, fea-
ture selection or value aggregation.

• Sensitivity, which means that the subject is both ro-
bust to variations in normal, and perturbed by in-
trusion, so that it can reflect the changing of system
normality well.

3.1 Normality of the Observation from
Hosts

A great number of variables could be employed to char-
acterize the state of a host, such as command line strings
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[18, 19], system call traces [5], resource consumption pat-
terns [16], etc. The properties of all those variables could
be encompassed into the framework that we established
in the last section. However, in fact, the normal behavior
of many variables does not have obvious pattern, which
would be taken as “noise” of “normality”. Burgess et al.
[1] gave a careful analysis on the computer system normal-
ity, according to which, the system can be distinguished
as three scales:

• Microscopic, details exact mechanisms at the level of
atomic operations, such as the individual system calls
and other atomic transactions in operating systems
(in terms of milliseconds).

• Mesoscopic, looks at small conglomerations of mi-
croscopic processes and examines them in isolation,
such as the individual process or session, or a group
of processes executed by one program (in terms of
seconds).

• Macroscopic, concerns the long-term average behav-
ior of the whole system, such as the periodical activ-
ities of the users and their corresponding resources
consuming patterns.

All the host subjects fall into these three categories,
and can be taken as the objects for anomaly detectors,
whether it aims to look for suspicious patterns or attempts
to identify the values that deviate from the acceptable
distribution of values. But actually, most of the available
host-based anomaly detection methods take subjects at
mesoscopic level due to its better controllable attributes
to establish anomaly detection models. For instance, For-
rest et al. [5, 8] ever proposed an immunological detection
model by analyzing system calls sequences, which focus
on the mesoscopic level of UNIX operating system, and
some subsequent independent works [14, 15] also take sys-
tem calls sequences as observable subjects. Consequently,
the motivation to analyze the normality of the mesoscopic
scale is obvious, that is, why system calls sequences can be
selected as observation? What attributes these sequences
have? Whether the regularity of such computing environ-
ment benefits the anomaly detection? Actually, Forrest
et al. [5] has given an satisfied answer for the first ques-
tion, but for the last two questions, there are still some
problems need further exploration.

Most the work took the name of the system calls as
the observable (other parameters passed to the system
calls are ignored), after sequence is established, namely,
(s1, s2, · · · , sl), detection methods such as Enumerating
Sequences, Frequency-based methods, Data mining tech-
niques, HMM (Hidden Markov Model), or some text cat-
egorization methods were applied to identify anomalies.
The work of Lee et al. [14] showed that additional infor-
mation to the sequence elements would improve detection
performance without considering the trade-off between
detection accuracy and computational cost. For instance,
sequence can be established as (s1 o1, s2 o2, · · · , sl ol) or
(s1, o1, s2, o2, · · · , sl, ol), where oi represent the obname

of system call i. Additionally, Lee et al. gave an analy-
sis for the regularity of these objects using information-
theoretic measures, such as entropy, conditional entropy,
relative conditional entropy, information gain and infor-
mation cost, which gives us a good clue for the charac-
terization of the system normality. Specifically, for an
audit data set X where each data item belongs to a class
x ∈ Cx, y ∈ Cy, several information theoretic measures
can be used to describe its characteristics, in order to
built an appropriate anomaly detection model:

• Entropy:

H(X) =
∑

x∈CX

P (x)log
1

P (x)
,

where H(X) is the entropy of X relative to CX , and
P (x) is the probability of x in X . As we know, the
amount of variability is most easily characterized by
the entropy of the signal, if the variations in data
are equally distributed about some preferred value,
the distribution over a sufficient number of instances
would be normal. H(X) thus can be used to mea-
sure the regularity of the record in audit data, and
the data set with smaller entropy would improve the
detection performance due to its purer nature and
simpler structure.

• Conditional Entropy:

H(X |Y ) =
∑

x,y∈CX,CY

P (x, y)log
1

P (x|y)
,

As we explained in the last section about sequence-
based anomaly detection models, for two sequence
sets,
X = (x1, x2, · · · , xm), xi = (e1i , e

2
i , · · · , e

n−1
i , en

i ),

Y = (y1, y2, · · · , ym), yi = (e1i , e
2
i , · · · , e

k−1
i , ek

i ),

where ej
i represent the event and k < n, H(X |Y ) thus

can be used to measure the regularity of sequential
dependencies, that is, how much uncertainty remains
for ek+1

i · · · en
i of xi with knowledge of yi. Obviously,

the smaller the values is, the more deterministic of
the sequence x after y is obtained, which therefore
benefits the build of anomaly detection models.

• Relative Conditional Entropy:

E(p|q) =
∑

x∈CX

p(x)log
p(x)

q(x)
,

where p(x) and q(x) are two probability distributions
over the same x ∈ Cx, and E(p|q) can be applied to
measure the similarity of two datasets (e.g. train-
ing data and test data). The distance (similarity)
between two audit datasets could provide us a prior
knowledge to build and evaluate anomaly detection
models.
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• Information Gain:

Gain(X,A) = H(X) −
∑

v∈V alues(A)

|Xv|

|X |
H(Xv),

where V alues(A) is the set of possible values of A
and Xv is the subset of X where A has value v.
Gain(X,A) can be used as a criteria to select impor-
tant attributes for achieving better classification, and
thus prediction performance, essentially, it has the
similar contribution as conditional entropy to mea-
sure regularity of sequential dependencies.

Although there are still some details about the data
normality worth consideration, the proposed information-
theoretic measures give us some fundamental understand-
ing about the regularity of computing environment that
the anomaly detectors work. Lee et al. [14] applied con-
ditional entropy to determine the appropriate length used
for sequencing the system calls to construct an anomaly
detection model with the conclusion that there is a re-
lationship between the fall of in entropy and the appro-
priate window size for probabilistically-based classifiers.
But interestingly, Tan et al. [24] suggested that condi-
tional entropy is not a universal sequence-length selec-
tion metric, and it almost has the same appearance in a
general manner, independent of the particular datasets,
which undermines its effectiveness. However, we still be-
lieve that those information theories can contribute to the
characterization of the environment normality, and thus
improve the performance of anomaly detectors to some
extent. Moreover, we have already found out the inter-
section between those information-theoretic measures and
the stochastic framework we have discussed in the last
section, especially for those sequence-based anomaly de-
tection models.

To measure the computer system normality from a
macroscopic level, Burgess et al. [1] applied a scaling
transformation to the measured data, and the distribu-
tion of fluctuations about the mean was approximated by
a steady-state, maximum-entropy distribution with mod-
ulation by a periodic variation. The idea can be brief
described as:

Motivation for Transformation: the entropy of the col-
lected data are computed to gauge the variability of the
signal, which indicates that signal is maximally; average
and standard deviations are computed in terms of peri-
odicity, and the periodogram standard deviation is itself
a pseudoperiodic functions of time, which shows that the
system acts as a scale of activity that varies in time; each
time is rescaled by its local standard deviation, and the
scaled distribution of measurements at a given periodic
time is closely resembles a Planck distribution.

Transformation: As the entropy to be high, processes
which have “fluctuation structure” can be written in ex-
ponential form exp(−βEi) as a Boltzmann distribution
with some arbitrary set of parameters Ei, which satisfies

the maximum entropy condition for fitting the data; The
probability distribution is approximately written as

p[q] = exp(−βE[q])/

∫

dqexp(−βE[q]).

To determine parameters E[q], a stochastic model is used:

E[q] =

∫

dt[(
dq

dt

2

) + V (q)],

As the system is moderately loaded, two simple as-
sumptions are based on: (a) maximal entropy of data
and (b) fluctuations at no cost, therefore, V (q) = 0. Fi-
nally, Planck distribution, which is the form of the equiv-
alent, transformed steady-state system is yielded through
computing the fluctuation spectrum for the model on a
periodogram.

Burgess et al. gave a method to characterize system
normality from the point of view of macroscopic scale,
which inspire us to detect host-based system anomalies
from a macro perspective, however, due to its approx-
imate nature, any attacks with normal pattern appear-
ance are difficult to be identified based on such model, in
addition, what information are required and effective for
detecting anomalies need further exploration, and it heav-
ily depends on what will we do once anomalies have been
discovered. Intuitively, the normality of those observable
subjects from mesoscopic and macroscopic scales could
be combined to achieve better performance, macroscopic
normality is used to monitoring the variant of system
coarsely, while mesoscopic give doubtful activities further
analysis and fine-grain characterization.

3.2 Normality of the Network Observa-
tion

Due to the diverse nature of the computer network, it
is almost impossible to establish an ideal mathematical
model with perfect characterization of the normality of
observable subjects, i.e. network packets, nor it is easy to
design efficient intrusion detection techniques for network-
ing. However, this does not only for intrusion detection,
but also more or less for other fields, such as traffic mod-
elling and analysis. In this sense, the fundamental under-
standing of basic protocol behavior is a possible way to
go. In addition, due to the inherent limits of the avail-
able IDSs and the increasing application of encryption in
communication, such as IPSec, SSL, intrusion detection
and prevention have once again moved back to the host
systems. Here, we only propose some preliminary ideas
to measure network normality, while further experimental
analysis and verification are left to our later work.

So far, tcpdump data has been widely applied to de-
tect attacks from the protocol scale (connection behav-
ior). Generally, each record describes a connection us-
ing several features: timestamp, duration, source port,
source host, source bytes (outbound bytes from source to
destination), destination port, protocol type(TCP, UDP,
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ICMP or others), destination host, destination bytes (in-
bound bytes from source to destination), and flag. Due
to the huge data amount generation everyday and the
transient nature, it is really difficult to describe the sys-
tem normality in details, and therefore simplification and
preprocess is needed. Taking those features as various at-
tributes, Lee at al. [14] used information gain as guiding
principle to partition tcpdump data based on the assump-
tion that the smaller the entropy is, the more regularity
the dataset, and therefore benefit for modelling and char-
acterizing anomaly detectors, and conditional entropy was
applied to compute temporal and statistical features. Al-
though it is true that such pre-analysis could facilitate
anomaly detection modelling, huge amount of data and
transient nature make it is time-consuming to determine
the proper granularity of the subjects. Some techniques
for online analysis of continuous stream give us some clues
to capture the transient nature of network subjects [2, 6].
Additionally, some network traffic modelling methods also
give us some inspiration to monitor and obtain the nec-
essary information for measuring network normality at a
macroscopic level [17].

In order to develop a traffic model which can accu-
rately characterize the diverse statistical properties with
complex temporal correlation and non-Gaussian distribu-
tions of heterogeneous network, Ma et al. [17] proposed a
wavelet domain-based models. In these models, correla-
tion structures of wavelet coefficients for long/short-rang
dependence processes are reduced to only a few key ele-
ments. For Gaussian traffic, Markov models can be im-
plemented through a linear model on wavelet coefficients
to capture the short-range dependence among wavelet co-
efficient, i.e.

ds =
s−1
∑

l=1

as(l)dl + bsws, 1 ≤ l ≤ N

where as(l) and bs are weighting factors depending on the
one-dimensional index s, and ws is i.i.d Gaussian noise
with zero mean and a unit variance. The value of s and
as(l) = 0 determines the model and the relations be-
tween wavelet coefficients, for example, when s = 1, and
as(l) = 0 for all l, the model is the simplest one, i.e., an
independent wavelet model.

For non-Gaussian distribution traffic, a shaping algo-
rithm was derived using the relationships among wavelet
coefficients, scale coefficients, and the cumulative process.
Specifically, it includes two stages:

• Traffic Modelling: wavelet transform on a training
sequence x̂ to obtain wavelet coefficients and scaled
coefficients, and then estimate the variance of wavelet
coefficients and the cumulative probability function
of scale coefficients at each time scale.

• Synthetic Traffic Generation: generating the back-
ground wavelet coefficients by Gaussian wavelet
model and compute the shaped wavelet coefficients
and scale coefficients recursively for all time scales,

Figure 1: A simple framework for measuring network nor-
mality

after wavelet inverse transformation, synthetic se-
quence x̃ is obtained.

Therefore, after wavelet transformation, whatever
short- and long-range temporal dependence traffic are all
“short-range” dependent on the wavelet-domain, which
facilitates significantly the characterization of network
normality and our analysis of anomalies at a macro level.

The countermeasure to deal with the transient nature
of network observable subjects is online analysis, that is,
process the data in a single pass, or a small number of
passes. For instance, under some definition of “similar-
ity”, similar items can be clustered in the same partition,
while different items are in different partitions. Based on
the existing facility location algorithm, Guha et al. [6]
modified it to produce exactly k clusters for solving k-
Median problem in one pass, their experiment on KDD-
CUP 99 intrusion detection data showed that raw tcp-
dump could be clustered into five clusters with 34 con-
tinuous attributes. In addition, Cormode et al. [2] ever
proposed a novel algorithm for calculating a small sum-
mary for any data stream, i.e. lo sketch, and employed
Hamming norm to estimate the similarity of streams on-
line, which also give us a rapid and ease method to analyze
network regularity.

Based on the available techniques we have analyzed, a
framework for measuring network normality can be con-
cluded through a top-down procedure as follows (its skele-
ton is shown in Figure 1):

1) Coarse-grained Level:

• Mapping network traffic into wavelet domain to
discover the periodicity of the specific network
activities, which can disclose the sudden system
collapse and unrhythmic activities;

• Sketch-based techniques and clustering methods
are applied to a certain doubtful time-scale (or
a periodicity) to have further insightful investi-
gation.

2) Fine-grained Level:

• Information-theoretic measures are used to di-
vide the processed network data from coarse-
grained level into more “pure” data sets with
higher regularity;
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• Building anomaly detection models based on the
characterization of system normality.

Actually, collection and monitor of network observable
subjects in a discrete way rather than a continuous way
may not deteriorate the performance [1]. From the point
of view of the observable subjects, we envision a frame-
work in which several levels of data analysis are used as
the basis to be combined to yield a single but effective
system normality characterization. We envision further
an approach in which anomaly detection models are built
on the fundamental understanding of their operating envi-
ronments, and have the adaptability in response to chang-
ing situation. The hope is that a collection of simple,
elaborate surrogates based on specific observable subjects
can evolve into generic models without performance de-
terioration. From the similar motivation, a host-based
autonomic detection coordinator have been developed in
[31].

4 Case Studies

Generally, operating environment means the working
situation constructed by the observable subjects that
anomaly detectors working with, and most of them can
be cast in the framework we proposed in Section 2. In
the last section, we gave a general discussion of normality
characterization for observable subjects from hosts and
network. After a broad survey of the existing literature
on anomaly detectors, we found that most work pay more
attention to the design of the anomaly detection models
themselves, rather than the operating environment. Here,
we take two kinds of anomaly detectors (frequency-based
and sequence-based ) as instances to insight their opera-
tional mechanisms from the perspective of operating en-
vironment.

4.1 STIDE Detector

The stide algorithm can be described as follows [5]:
Predefinition: for two sequence X and Y ,
X = (x1, x2, · · · , xN ), Y = (y1, y2, · · · , yN ),
the similarity between them is defined as:

Sim(X,Y ) =

{

0 if xi = yi, for all i, 0 ≤ i ≤ (N − 1)
1 otherwise

Given a set of sequences in the normal database,
{Y1, Y2, Y3, · · · , YM}, |Yi| = N, 1 ≤ i ≤ M ,
and a ordered set of sequences in test data,
{X1, X2, X3, · · · , XZ−(N−1)},
where Xs = (xs, xs+1, · · · , xs+(N−1)) for 1 ≤ s ≤
(Z − (N − 1)), and the size of test data is Z, the
similarity measure assigned the sequence XS is:

ˆSim(Xs) =

{

1 if Sim(Xs, Yj) = 1, for all j, 1 ≤ j ≤M
0 otherwise.

Finally, locality frame count (LFC) with size L for each
size N sequence in the test data is defined as:

LFC(Xs) =

{

∑s
l=((s−L)+1)

ˆSim(Xl) for s ≥ L
∑s

l=1
ˆSim(Xl) for s < L

Based on this algorithm, a concise database contain-
ing normal sequences with length N can be generated for
detecting anomalies. The algorithm is easy and effective,
some more sophisticated models do not have significant
performance improvement over the original model [26].
In the original work, the sliding window of the STIDE
detector was set 6, Lee at al. [14] gave an analysis using
conditional entropy to explain the selection of the “magic
number”, but Tan et al. [24] undermined the entropy-
based analysis using a random data set. Furthermore,
they gave a thorough analysis on the selection of detec-
tor window using a synthetic data set [24, 25]. Actually,
this phenomena depends heavily on the STIDE’s operat-
ing environment, and the detector essentially works in an
exhaustive way, its performance therefore is effected by
the normal data set, any foreign elements or sequences
that unincorporated in the normal data set would be de-
tected easily. As Maxion et al. [18] analyzed, STIDE has
a blind region under x = y in coordinate, where x-axle
represents “size of foreign-sequence anomaly” and y-axle
denotes “size of detector window”. The existence of blind
region cause the detector to suffer from simple exploits
by a sophisticated attacker who have fundamental un-
derstanding with its operational limits. Therefore, the
analysis and construction of normal sequence data set is
essential to improve the performance of STIDE. The trad-
off between the cost and accuracy is the variant detector
window above six.

4.2 Minimum Cross Entropy-based
Anomaly Detector (MCE)

Based on the assumption that the occurrence frequencies
of different observable subjects can be measured during a
certain time scale, a probability distribution can be used
to represent the occurrence pattern during this period.
In this model, the sequential property is out of considera-
tion, which essentially is a kind of static method [4]. The
method has not been widely used because of its unsat-
isfactorily performance in some situation. Its basic idea
can be described as follows:

Assume P (M) denotes the probability distribution
characterizing the behavior of a normal model M and
Pi(M), i = 1, 2, · · · , N denote the occurrence probabil-
ity of event i among a set of N events, the similarity of
two distributions P and Q can be measured using cross
entropy:







C(P,Q) =
∑N

i=1(Qi − Pi)log
Qi

Pi
.

C(P,Q) ≥ 0,
C(P,Q) = 0 ⇔ P = Q.

After determining a threshold for the similarity be-
tween P and Q using training data and validation data
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set, we can decide whether ongoing events set should
be considered as intrusive with respective to the normal
model. Actually, the performance of this method might
be improved significant with the preprocess of data using
information-theoretic measures that we discussed in last
section.

Here, we do not intend to undermine the contribution
of the work [4], and we only want to point out that a care-
ful analysis of the operating environments that anomaly
detectors work could also obtain the same conclusion as
that from expensive trial-and-prone-to-error experiments.
In their work, the anomaly detector operated with two
kinds of observable subjects, one is program profiles based
on Unix system calls, another is user profiles based on
Unix shell commands. As we know, system calls exe-
cuted by the same process have certain temporal pattern,
namely, system calls from a specific process have the se-
quential correlation, at least the order between several
system calls always keep unchanging. While for the shell
command data, although individual user has particular
pattern during his/her login session, that is, the token
was recorded almost always keep the same entropy, the
frequency of tokens rather than the sequential relations
have more contribution to the characterization of user
behavior. Under such cases, anomaly detectors which
can capture temporal characteristics, such as HMM-based
anomaly detector, obviously have better performance in
the system calls data set than that of in the shell com-
mand data set. On the contrary, frequency distributions-
based anomaly detector have the inverse performance due
to the properties of operating environment. Therefore,
after simply but effective analysis of the operating envi-
ronments, we can get the same conclusion that [4] ever
got easily.

4.3 Probabilistic Anomaly Detectors

Ye et al. [27] gave a nearly thorough analysis on the prob-
abilistic techniques-based anomaly detectors with com-
puter audit data, including decision tree, Hotelling’s T 2

test, chi-square multivariate test and Markov chain. Part
of conclusion they obtained was “...unless the scalability
problem of complex data models taking into account the
ordering property of activity data is solved, intrusion de-
tection techniques based on the frequency property provide
a viable solution that produces good intrusion detection
performance with low computational overhead.”

Among the various probabilistic techniques-based in-
trusion detectors, expect Markov chain, all the others can
be regarded as static intrusion detectors due to their sta-
tistical nature (although some ordering property of the
observable subjects were also considered). Our analysis
on their operating environment is motivated by following
questions:

• Whether the property of the selected observable sub-
jects have been explored thoroughly?

• If not, whether complex models could discover more?
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Figure 2: Decay effect with different smoothing constants

otherwise, whether frequency property is enough for
their operational performance?

• Can we get a conclusion that some information will
be lost when only event type of computer audit data
are used to characterize system normality?

Here, we only consider the basic data model that all the
probabilistic anomaly detectors applied. In the model, the
observable subjects, namely, audit data are represented
as frequency distribution (X1, X2, X3, · · · , XN), where N
denotes the number of different event in the audit set,
and the exponentially weighted moving average method
(EWMA) was applied to compute the value of Xi, specif-
ically, if the current event t belongs to the ith event type,

Xi(t) = c ∗ 1 + (1 − c) ∗Xi(t− 1),

if the current event t different from the ith event type,

Xi(t) = c ∗ 0 + (1 − c) ∗Xi(t− 1),

where Xi(t) is the observed value of the ith variable in
the vector of an observation (X1, X2, X3, · · · , XN ) for the
current event t, thus a M×N vector with M target values
is constructed if the observation set has M data points;
c is the smoothing constant that determines the decay
rate; and 1 ≤ i ≤ N . This model can convey not only
the relative frequency distribution of N in a sequential
events during a certain time scale, but also reflect the
intensity of activities. However, from the point of view
of the observable subjects, two aspects of the data mod-
elling worth insightful consideration, i.e., the selection of
parameter λ, and the correlation among data points. A
figure below shows the decay effect of different smoothing
constants.

We can see from Figure 2 that after a certain period,
the weights drops close to zero, but the speed is differ-
ent due to the various value of c. For example, when
c = 0.3, the frequency value of Xi(t) at the current event
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considers about the past 15 audit events (k = 0, · · · , 14),
while past 22 events (k = 0, · · · , 21) are taken into ac-
count when c = 0.2. In work [28], c was set to 0.3−a
commonly used value for the smoothing constant, other
values were not tried and compared. Although we do not
expect that some unknown c could improve the modelling
performance dramatically, a comparative study should be
carried out to insight the impacts of different values, and
thus select one for better modelling. Furthermore, cmight
vary in different situation, due to the drifting of system
normality, a constant value thus can hardly characterize
all the normal activities well.

Both the normal and intrusive training data can be rep-
resented using the frequency distribution representation,
and thus probabilistic techniques such as Hltelling′s T 2

Test, Chi − Square Multivariate T est can be used to
calculate the distance between testing data and training
data. An assumption to support this model is that test-
ing data are taken as a whole collection of audit events.
Although some ordering property is carried in the model,
the knowledge of the unobservable process distribution
is ignored. As we know, each process might generate a
group of audit events, and there might exist some in-
tervals between those groups, an underlying continuous
measurement therefore should be considered in the data
model, in order to capture the process shift. Based on
this fact, a grouped data EWMA model [9], rather than
variables based EWMA, might have more contribution to
the characterization of computer audit events.

Additionally, in the original data model, only the au-
dit event type was considered, while other attributes, such
as user ID, process ID, session ID, the system object ac-
cessed, were omitted. To incorporate those necessary ad-
ditional information, a multivariate EWMA can be used
as follows:

Xi(t) = C ∗Oi(t) + (1 − C) ∗Xi(t− 1),

where Xi(t) is the ith EWMA vector, Oi(t) is the ith
observation vector at time t, i = 1, 2, 3, · · · , n, C is
the diag (c1, c2, · · · , cp) which is a diagonal matrix with
c1, c2, · · · , cp on the main diagonal, and p is the number of
variables, i.e., the number of attributes that we are con-
sidering. The MEWMA model takes into account all the
necessary variables of audit events, and thus can be used
to capture the process shift in multi-scales. Although it is
much more complex than the univariate EWMA, a better
performance is expected to be achieved if some scalability
problems are solved well.

Preliminary analysis shows that the characterization of
the operational situation has great effect on the anomaly
detector’s performance. Tracing back to the problems
posed in the beginning of this subsection, we infer that
more accurate/complex data models might benefit the im-
provement of anomaly detector’s detection performance.
However, scalability problem is another obstacle, which
was claimed in [29]. The work also proved that the per-
formance of first-order Markov chain is better than that
of high-order stochastic models, although the latter one

has more complex model (means more expensive compu-
tational cost) than the former one.

4.4 Comparative Analysis

As former analysis, all the anomaly detectors are special-
ized by their different detection coverage or blind spot,
part of which attribute to operating environment. We
hope that a thorough comparison analysis could provide
us an approach to combine anomaly detectors together
to achieve a broader detection coverage. In fact, the sta-
tistical modelling in Section 2 facilitates the comparison
between those anomaly detectors, in terms of detection
capability and operational limits.

A brief compared results is shown in Table 1, where N
is the size of normal data set that has been constructed
in a particular form, while L is the size of ongoing trace
being detected. For STIDE, w is a predefined window
size. What we compare here is only the detection cost,
while the cost of models’ construction are not consid-
ered. Note that the detection cost of STIDE can be re-
duced to L ∗ logN , if normal data are stored in an effect
form, i.e., forest of trees. The detection cost of proba-
bilistic detectors are differ in specific techniques, for in-
stance, Hotelling′s T 2 requires a large memory to store
the variance-covariance matrix and much time to compute
the matrix multiplication and inverse, its time complex-
ity for detection nearly O(N2) (L << N), while Markov
chains or chi-squre multivariate test need less computa-
tional overhead, i.e., O(N) or so.

Although the original detection models have their own
operating environments. Careful analysis allow them to
be extended to a broader application field. For example,
STIDE was originally developed with system calls of priv-
ileged programs, but it can also be applied to audit events
provided the scope of activities is not so wide, based on
the similar properties of those two observations. Simi-
larly, the probabilistic anomaly detectors that were origi-
nally operated with audit events and shell command lines
can also be extended to system calls, if enough ordering
property are included during the data modelling.

Among those detectors, STIDE has the highest detec-
tion capability in general case, because it stores all the
unique system calls sequences in the normal profile. Any
ongoing traces with system call sequences that never ap-
peared in normal profile will be detected as anomalies
(determined by LFC). According to Corollary 2, STIDE
has a good convergence due to the high average value of
wµ. Generally, two elements contribute to the higher de-
tection capability of STIDE:

• Observable subjects, i.e., system calls. As we know,
system calls of privilege processes is a good level to
reflect the user behaviors due to its limited range
of actions, sensitivity to changes, and stability over
time. While shell user command lines and audit
events have less characteristics compared with sys-
tem calls.
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Table 1: A comparison between three typical anomaly detectors

Anomaly Detector Observation Main Property Detection Cost

Frequency Ordering

STIDE System calls
√

N ∗ (L − w + 1)

MCE
System calls/

√
N ∗ L

User commands

Probabilistic Markov Chain N ∗ L

Hotelling’s T 2 Audit Events
√ √

N2 ∗ L

Detectors Chi-square N ∗ L

• Nearly exhaustive searching mode. All the available
unique system calls sequences are used to charac-
terize system normality, which constructs a broad
boundary to encompass normal behavior.

For frequency-based anomaly detectors, less character-
istics of their operating environments, e.g., unpredictable
range of activities, instabilities over time, cause them to
suffer from low detection capability. According to the
Corollary 1, only the huge size of normal data set provides
them an opportunity to decrease expected error between
probability estimation and stochastic generator to a low
level.

5 Evaluation of the Anomaly De-

tectors

Another hard stone in the anomaly detection research
community is the anomaly detectors’ evaluation. Most of
existing IDSs take 1998 and 1999 DARPA Intrusion De-
tection System Evaluations Data Set [21] as benchmark
for evaluating their performance, and most researches fo-
cus on tallying with detection accuracy and false positive
rate of detection methods, rather than the fundamental
understanding of evaluation environment. Therefore, the
specific design of anomaly detectors based on particular
situation, together with some strong assumptions limit
their application to a broader application scope.

Mchugh [20] gave a thorough analysis of so-called
benchmark data set, and proposed the essential condi-
tions that ideal measurements should have. Briefly, it
includes:

• The primary method, i.e ROC (Receiver Operating
Curve), to present the results of the evaluation pro-
vides no insights into the root-causes for IDS per-
formance, and the more helpful metrics should be
developed.

• The curse of the false alarms generation has not been
explained clearly, therefore, the useful description of
the difference between activities that are identified
correctly as an attack and those that provoke a false
alarm needs more insightful investigation.

• To make sure that the false alarm rate for synthetic
data has an obvious relationship to that of real data,
background traffic data characterization is needed for
calibrated artificial test data sets.

Up to now, we have not found such work that meet
above requirements completely. With the problem that
whether the environment regularity has effect on the prob-
abilistic algorithms-based anomaly detectors, Maxion and
Tan [19] provided an idea for successful data synthesis,
and the result verified their hypothesis. But their model
is too simple to interpret more complex anomaly detection
models, and some additional observational work from real
data is needed. In addition, only juxtapositional anoma-
lies was considered in that model, while temporal anomaly
detection was left.

Inspired by those former works, we have a primary idea
to generate synthetic data for the general evaluation of
anomaly detectors. Although it is still during the pro-
cess of implementation and verification, we believe that it
will contribute to the development of anomaly detection
evaluation to some extent.

Firstly, collect pure real normal data source from a real
environment, and mapping those collected data into con-
trollable domain (for example, mapping network packets
into wavelet domain and approximate host audit data as
the Planck distribution respectively).

Secondly, apply some candidate anomaly detectors to
the controllable data set, and analyze the data that ever
provoked false alarms. This step should be done recur-
sively to prune the data as pure normal data without
confused false alarms.

Thirdly, in order to ensure the regularity of processed
data, information-theoretic measures could be used to di-
vide the data as smaller but purer ones.

Finally, artificial anomalies (such as foreign symbols
or sequences, and rare sequences) are incorporated into
the data. One way to make it more effective is to add
predefined anomalies one by one, until to a determined
amount.

6 Concluding Remarks

This work aims to explore following questions and provide
some potential solutions:
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• The operational limits of some anomaly detectors are
due to themselves or the particular operational envi-
ronments they run.

• Whether a better characterization of system normal-
ity can improve the performance of anomaly detec-
tors (sometimes obviously, sometimes may not).

• How to select proper anomaly detectors for a spe-
cific situation when we take into count the trade-off
between performance and cost.

• It is usually hard to find a general way to evaluate
existing anomaly detector’s performance (including
those state-of-the-art ones) in terms of admitted cri-
teria (hits, misses, and false alerts). ROC is generally
regarded as a typical but superficial analysis tool.

Those questions have been analyzed and discussed in
a general way based on the available achievements, al-
though there are still some problems worth further con-
sideration, and some proposed ideas remains verification
and implementation, we believe that future work along
this way could contribute additional insight for the re-
search and application of anomaly detectors. Someone
may argue that our work are obvious and straightforward,
we believe that it is important to develop a framework for
the anomaly detection field, including characterization,
identification and evaluation of their operating environ-
ment in order to guarantee their formal and rapid devel-
opment, and it seems more important than just pruning
detector itself regardless of its insightful understanding
and broader application. Obviously, our future work in-
cludes the implementation of our proposed ideas, and the
further analysis for the operating environment of several
anomaly detectors from the view of observable subjects.
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