
International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 504

Efficient Group Signature Scheme without
Pairings

Ke Gu1,2, Dianxing Liu2, and Bo Yin1

(Corresponding author: Ke Gu)

School of Computer and Communication Engineering, Changsha University of Science and Technology1

Wangjiali Rd, Tianxin district, Changsha, Hunan Province 410114, China

Key Laboratory of Network Crime Investigation of Hunan Provincial Colleges, Hunan Police Academy2

(Email: gk4572@163.com)

(Received Dec. 7, 2018; Revised and Accepted June 18, 2019; First Online July 31, 2019)

Abstract

Although currently many group signature schemes have
been proposed, most of them are constructed on pair-
ings. In this paper, we present an efficient group signature
scheme without pairings under the model of verifier-local
revocation, which is based on the modified EDL signature
(first proposed by D. Chaum et al. in Crypto 92). Com-
pared with other group signature schemes, the proposed
scheme does not employ pairing computation and has
the constant signing time and signature size, whose secu-
rity can be reduced to the computational Diffie-Hellman
(CDH) assumption in the random oracle model. Also, we
give a formal security model for group signature and prove
that the proposed scheme has the properties of traceabil-
ity and anonymity.

Keywords: EDL Signature; Group Signature; Pairings;
Security Model

1 Introduction

1.1 Background

Group signature [18] allows group member (signer) to
hide his identifying information to a group when group
member signs messages, thus group signature only reveals
the fact that a message was signed by possible one of
group members (a list of possible signers). Additionally,
in a practical group signature scheme, the group must
be constructed by a group manager, who can revoke the
anonymity of any signer or identify the real group signer.
Because a list of possible signers must be constructed to
form a group, some intricate problems need to be solved,
such as joining the new members and the revocation of
group members. Ateniese et al. [1] first proposed an ef-
ficient and provably coalition-resistant group signature
scheme. However, the security of coalition-resistant group
signature was not formalized. In [6], Bellare et al. sum-
marized the requirements of group signature and showed

the security definitions of group signature. Boneh et al. [7]
proposed a short group signature scheme in the random
oracle model.

In public key cryptography, the management of public
keys is a critical problem. For example, certificate author-
ity (CA) generates a digital certificate, which assures that
public key belongs to the corresponding user. Then, in a
group signature scheme based on public key cryptography,
a group public key is corresponding to multi-distributing
private keys (signing keys), the joining and revocation of
group member is an intricate problem [2, 8, 11, 14]. For
large group, it is inefficient to update group public key
and distributing private keys when a user joins or exits a
group. Bresson et al. [11] proposed that the signer may
prove that his group certificate does not belong to a list
of revoked certificates. However, the length of group sig-
nature is proportional to the number of revoked group
members. Camenisch et al. [14] proposed a different way
to handle this problem by using accumulators1. However,
in some pairing-based accumulators [15, 32], the size of
public keys linearly grows with the maximal number of
accumulations.

The method of verifier-local revocation was proposed
by Brickell in [12]. Boneh et al. [8] gave the formal def-
initions of verifier-local revocation. In this kind of ap-
proaches [13,27,30,35], the verifiers receive the revocation
list of group members from the authority (such as private
key generator) when a signature needs to be verified, and
non-revoked group members do not need to update their
distributing private keys. So, the length of signature does
not depend on the number of revoked group members in
this model, and the verifiers only need to perform an ad-
ditional computing to test that whether the signature was
signed by a revoked group member on the revocation list
of group members. Of course, this kind of approaches in-
crease the verification cost being proportional to the size

1An accumulator is a kind of ”hash” function mapping a set of
values to a short, constant-size string while allowing to efficiently
prove that a specific value was accumulated.

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 505

of the revocation list.
In 2009, Nakanishi et al. [31] proposed a revocable

group signature scheme with constant complexities for
signing and verifying. Also, group members do not need
to update their distributing private keys. However, the
size of public keys linearly grows with the maximal num-
ber N of users in their scheme. In 2012, Libert et
al. [28,29] proposed two group signature schemes based on
public key cryptography, which have many useful proper-
ties [29]: O(logN)-size group public keys, revocation lists
of size O(r) ((r) is the number of revoked users), constant
membership certificate size, constant signature size and
verification time. However, their schemes need to employ
pairing computation.

Additionally, with a rapid development of identity-
based cryptography [9, 10, 17, 23], some researchers pro-
posed many identity-based signature schemes in the ran-
dom oracle model or standard model [5, 16, 23, 24]. So,
with these identity-based signature (IBS) schemes, a
lot of variants, such as the identity-based ring signa-
ture schemes [3,4,34], the identity-based group signature
schemes [21, 25], etc., have also been proposed. In 2011,
Ibraimi et al. [25] proposed an identity-based group signa-
ture with membership revocation in the standard model.
However, their security model is not enough complete
for identity-based group signature, some notions are con-
fused. And their scheme is not fully identity-based group
signature scheme, the master key of the system is still con-
structed on public key cryptography. In 2014, Emura et
al. [21] proposed an γ-hiding revocable group signature
scheme in the random oracle model. Because their scheme
introduces the notion of attributes, their scheme is enough
complex and inefficient.

EDL signature.

The EDL signature [19] and its variant [26] are re-
spectively proposed in 1992 and 1999. Because the
computations of the EDL signature do not employ
pairings, the efficiency of the schemes is very high. In
2003, Goh et al. [22] proved the security of the EDL
signature may be reduced to the CDH assumption
in the random oracle model. In 2005, Chevallier-
Mames [20] further improved the efficiency of the
EDL signature by offline/online computation and sig-
nature coupon [33], whose security may also be re-
duced to the CDH assumption in the random oracle
model.

1.2 Our Contributions

In this paper, we present a public key-based group signa-
ture scheme without pairings under the model of verifier-
local revocation. Also, we give the formal security mod-
els for group signature. Under our security models, the
proposed scheme is proved to have the properties of
anonymity and traceability with enough security in the
random oracle model. In this paper, our contributions
are as follows:

• We present a public key-based (and verifier-local re-
vocation) group signature scheme without pairings,
which is based on the modified EDL signature. By
modifying the EDL signature from [20, 22], we twice
use the modified EDL signature to build a complete
group signature scheme: a) we first use the modified
EDL signature to construct the partial member pri-
vate keys when the users join a group; b) we again
use the modified EDL signature to generate the valid
signatures.

• We present a framework for group signature and show
a detailed security model. We introduce the Libert et
al.’s models [25,29] to our security model. In our se-
curity model, we consider three situations for the se-
curity of group signature. Under our security model,
the proposed group signature scheme is proved to
be secure and has a security reduction to the simple
standard assumption (computational Diffie-Hellman
assumption) in the random oracle model. So, no
poly-time adversary can produce a valid group signa-
ture on any messages when the adversary may adap-
tively be permitted to choose messages after execut-
ing group-setup oracle, join-user oracle, revoke-user
oracle, signature oracle and trace-user oracle.

• Compared with other group signature schemes pro-
posed by [21,25,27,29,30], the proposed group signa-
ture scheme is not based on pairing computation, and
has the constant signing time and signature size (the
comparisons of the schemes are given in Section 6).

1.3 Outline

The rest of this paper is organized as follows. In Sec-
tion 2, we review the bilinear pairings and complexity
assumptions on which we build. In Section 3, we show a
framework for group signature. In Section 4, we set up
the security models for group signature. In Section 5, we
propose a group signature scheme under our proposed sig-
nature framework. In Section 6, we analyze the efficiency
and security of the proposed scheme. Finally, we draw
our conclusions in Section 7.

2 Preliminaries

Definition 1. Computational Diffie-Hellman (CDH)
Problem: Let G1 be a group of prime order q and g be
a generator of G1; for all (g, ga, gb) ∈ G1, with a, b ∈ Zq,
the CDH problem is to compute ga·b.

Definition 2. The (~, ε)-CDH assumption holds if no
~-time algorithm can solve the CDH problem with prob-
ability at least ε.

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 506

3 A Framework for Group Signa-
ture

Definition 3. Group Signature Scheme: Let
GS=(System-Setup, Generate-Key, Group-Setup,
Join-User, Revoke-User, Sign, Verify, Trace-User)
be a group signature scheme. In GS, all algorithms are
described as follows:

1) System-Setup: The randomized algorithm run
by the trusted authority inputs a security parameter
1k, and then outputs all system parameters GK on
the security parameter 1k.

2) Generate-Key: The randomized algorithm run
by a group member generates his public/private key
pair (pki, ski) with i ∈ {1, 2......n}, where n is the
maximal number of users in a group, pki is the public
key of the group member i and ski is the private key
of the group member i.

3) Group-Setup: The randomized algorithm run by
the trusted authority inputs (GK, Infor ∈ {0, 1}∗),
and then outputs a group private key skg to a group
manager, where Infor is a group public identity in-
formation (or Infor is seen as the public key of
group), skg is a group private key on the manage-
ment of the group manager.

4) Join-User: The randomized algorithm run by
the group manager inputs (GK, skg, pki), and then
outputs a member private key cski to a group mem-
ber, where cski is the member private key of the group
member and i ∈ {1, 2......n}.

5) Revoke-User: The randomized algorithm run by
the group manager inputs (GK, skg, pki, RL

t
pk), and

then outputs an updated revocation list RLt+1
pk , where

pki is the public key of the revoked user, RLt
pk =

{...(pkj ,<pkj
)...} is a revocation list in the duration

t (pkj is the public key of the revoked user and <pkj

is a credential on the corresponding public key).

6) Sign: The randomized algorithm is a standard
group signature algorithm. Signer needs to sign a
message M ∈ {0, 1}∗. The algorithm run by a group
member inputs (GK, cski, M), and then outputs a
signature σ, where σ ∈ {0, 1}∗ ∪ {⊥}, cski is the
member private key of the group member with i ∈
{1, 2......n}.

7) Verify: The signature receivers verify a standard
group signature σ. The deterministic algorithm run
by a signature verifier inputs (GK, M, Infor, σ,
RLt

pk), and then outputs the boolean value, accept or
reject.

8) Trace-User: The group manager traces a real
group member (signer) on group signature σ. The

deterministic algorithm run by the group manager in-
puts (GK, M, Infor, skg, σ, RLt

pk), and then out-
puts the corresponding public key of the real signer or
⊥.

The correctness of GS requires that for any
GK ←System-Setup(1k), skg ← Group-Setup(GK,
Infor ∈ {0, 1}∗), cski ←Join-User(GK, skg, pki) for
all i with i ∈ {1, 2......n}, M ∈ {0, 1}∗, then

Pr[Verify(GK, M, Infor, Sign(GK, cski, M),
RLt

pk)=1]=1.

The traceability of GS requires that for any
GK ←System-Setup(1k), skg ← Group-Setup(GK,
Infor ∈ {0, 1}∗), cski ←Join-User(GK, skg, pki) for
all i with i ∈ {1, 2......n}, M ∈ {0, 1}∗, then

Pr[Trace-User(GK, M, Infor, skg, Sign(GK, cski,
M), RLt

pk)=pki]=1,

where the public key pki belongs to the group named by
the identity information Infor.

4 Security Model

According to [25, 29], we consider that a secure group
signature scheme must meet the following three security
requirements:

1) Unforgeability: A valid group signature must be
signed by a valid group member (signer). Therefore,
no poly-time adversary can produce a valid group
signature on any messages when the adversary may
adaptively be permitted to choose messages after ex-
ecuting group setup oracle, joining user oracle, re-
voking user oracle, signature oracle and tracing user
oracle.

2) Anonymity: A valid group signature can only re-
veal that one group identity possessed by a group
manager satisfies the signature. It means a valid
group signature can hide the identifying information
of real signer to one group.

3) Traceability: In some situations, a valid group sig-
nature needs to reveal the identity (or public key) of
real signer from one group. It means a valid group
signature can trace a real signer. Then we split the
requirement to the following two small security no-
tions2 [29]:

a) The first one is called security against misidenti-
fication attacks, which requires that even if the
adversary can introduce (or corrupt) and revoke
any user, a valid group signature can not reveal
the identifying information outside the set of the
identities of unrevoked adversarially-controlled
users.

2The two security notions are more detailedly expanded from the
correctness of traceability.

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 507

b) The second one is called security against framing
attacks, which requires that an honest user is
only responsible for the messages that he signed,
namely there is no situation that a valid group
signature can reveal the identity of a real group
member (signer) but this signer did not sign this
signature.

Based on the above three situations, we propose a com-
plete security model for group signature. To make our
security model easier to understand, we construct several
algorithms interacting with adversary, which may make
attack experiments to the group signature schemes in the
above three situations. In our security model, we maxi-
mize adversary’s advantage, and assume that all attack-
ing conditions needed by adversary hold and adversary
may forge signatures after limitedly querying oracles in
the above three situations.

In our security model, we assume there are n users in
a group signature scheme (n ∈ N is a maximal number of
group members), and at least one user u∗ of n users is not
corrupted by adversary. And we maximize adversary’s
advantage, where adversary can get all useful information
except for the private key of u∗.

All symbols and parameters are defined as follows in
the algorithms:

1) Ua is a set of users that were registered by an ad-
versary in this game, where the user uai ∈ Ua with
i ∈ {1, 2......}, pkai is the public key of the user uai .

2) U b is a set of honest users when an adversary acts
a dishonest group manager in this game, where the
user ubi ∈ U b with i ∈ {1, 2......}, pkbi is the public
key of the user ubi .

3) k is a secure parameter, A represents an adversary.

Definition 4. Unforgeability of A Group Signature
Scheme: Let GS=(System-Setup, Generate-Key,
Group-Setup, Join-User, Revoke-User, Sign, Ver-
ify, Trace-User) be a group signature scheme. Ad-
ditionally, we set that k is a secure parameter, and
Pr(BU GS(k,A)=1) is the probability that the algorithm
BU GS returns 1. Then the advantage that the adversary
A breaks GS is defined as follows:

Adv
u gs−uf
GS (k, qg, qj , qs, ~)=Pr(Bu gs(k,A)=1),

where qg is the maximal number of ”Group-Setup” oracle
queries, qj is the maximal number of ”Join-User” oracle
queries, qs is the maximal number of ”Sign” oracle queries
and ~ is the running time of B. If the advantage that the
adversary breaks GS is negligible, then the scheme GS is
secure.

According to the Definition 4, the algorithm BU GS is
described as follows:

Setup: Running System-Setup, GK ←System-
Setup(1k), and then GK is passed to A.

Queries: A makes queries to the following oracles for
polynomially many times:

Group-Setup(): Given the public parameters GK
and the identity information Infor of the group,
the oracle returns a group private key skg to A.

Join-User(): Given the public parameters GK,
the group private key skg (or the identity
Infor) and the public key pki of the group
member, the oracle returns a group member pri-
vate key cski to A, where skg is a group private
key on the identity Infor of the group.

Sign(): Given the public parameters GK, the
group member private key cski (or the public
key pki) and the message M, the oracle returns
a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}.

Forgery: A outputs its forgery, (M∗, σ∗) for Infor∗

and RLt
pk∗ , where the identity Infor∗ and the revo-

cation list RLt
pk∗ are arbitrary forgeries generated by

A. It succeeds if

1) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

2) A did not query Group-Setup on input
Infor∗, did not query Join-User on inputs
sk∗g and pk∗, and did not query Sign on inputs
csk∗ and M∗, where the public key pk∗ belongs
to the group named by the identity Infor∗.

Definition 5. Traceability of A Group Signature Scheme:
Let GS=(System-Setup, Generate-Key, Group-
Setup, Join-User, Revoke-User, Sign, Verify,
Trace-User) be a group signature scheme, which meets
the requirement of unforgeability. GS is traceable if the
following conditions can be satisfied:

1) For all valid generated GK ←System-Setup(1k),
skg ←Group-Setup(GK, Infor), cski ← Join-
User(GK, skg, pki) with i ∈ {0, 1}, then
σ0 =Sign(GK, csk0, M) and σ1 =Sign(GK, csk1,
M), the outputs of Trace-User(GK, M, Infor,
skg, σ0, RLt

pk) and Trace-User(GK, M, Infor,

skg, σ1, RLt
pk) are distinguishable in polynomially

many times.

2) We set that k is a secure parameter, and
Pr(BTM GS(k,A)=1) is the probability that
the algorithm BTM GS returns 1, and that
Pr(BTF GS(k,A)=1) is the probability that the
algorithm BTF GS returns 1. Then the advantage
that the adversary A breaks GS is defined as follows:

Adv
t gs−mf

GS (k, qg, qj , qr, qs, ~)=Pr(Btm gs(k,A)=1)
‖Pr(Btf gs(k,A)=1),

where qg is the maximal number of ”Group-Setup”
oracle queries, qj is the maximal number of ”Join-
User” oracle queries, qr is the maximal number of
”Revoke-User” oracle queries, qs is the maximal
number of ”Sign” oracle queries and ~ is the running
time of B. If the advantage that the adversary breaks
GS is negligible, then the scheme GS is secure.

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 508

According to the Definition 5, the algorithm BTM GS

is described as follows:

Setup: Running System-Setup, GK ←System-
Setup(1k), and then GK is passed to A.

Queries: A makes queries to the following oracles for
polynomially many times:

Join-User(): Given the public parameters GK,
the group private key skg (or the identity
Infor) and the public key pkua

i
of the group

member uai , the oracle returns a group member
private key cskua

i
to A, where skg is a group

private key on the identity Infor of the group
and the user (group member) uai is added to the
set Ua.

Revoke-User(): Given the public parameters GK,
the group private key skg (or the identity
Infor), the public key pkua

i
of the revoked

group member uai and the revocation list RLt
pk

of the last duration t, the oracle returns an up-
dated revocation list RLt+1

pk .

Sign(): Given the public parameters GK, the
group member private key cskua

i
(or the public

key pkua
i
) and the message M, the oracle returns

a signature σ to A, where σ ∈ {0, 1}∗∪{⊥}, and
the user uai is added to the set Ua if uai /∈ Ua.

Forgery: A outputs its forgery, (M∗, σ∗) for Infor∗

and RLt
pk∗ , where the identity Infor∗ and the revo-

cation list RLt
pk∗ are arbitrary forgeries generated by

A. It succeeds if

1) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

2) A did not query Join-User on inputs sk∗g and
pk∗, did not query Revoke-User on inputs sk∗g ,

pk∗ and RLt−1
pk∗ , and did not query Sign on in-

puts csk∗ and M∗, where the public key pk∗ of
the user upk∗ belongs to the group named by the
identity Infor∗ and upk∗ /∈ Ua \ {uapki

| pki ∈
RLt

pk∗};
(c) pk∗ ←Trace-User(GK, M∗, Infor∗, sk∗g , σ∗,

RLt
pk∗).

And then the algorithm BTF GS is described as follows:

Setup: Running System-Setup, GK ←System-
Setup(1k), and then GK is passed to A.

Queries: A makes queries to the following oracles for
polynomially many times:

Group-Setup(): Given the public parameters GK
and the identity Infor of the group, the oracle
returns a group private key skg to A.

Join-User(): Given the public parameters GK,
the group private key skg (or the identity
Infor) and the public key pkub

i
of the group

member ubi , the oracle returns a group member
private key cskub

i
to A, where skg is a group

private key on the identity Infor of the group
and the user (group member) ubi is added to the
set U b where U b 6= ∅.

Revoke-User(): Given the public parameters GK,
the group private key skg (or the identity
Infor), the public key pkub

i
of the revoked group

member ubi and the revocation list RLt
pk of the

last duration t, the oracle returns an updated
revocation list RLt+1

pk .

Sign(): Given the public parameters GK, the
group member private key cskub

i
(or the public

key pkub
i
) and the message M, the oracle returns

a signature σ to A, where σ ∈ {0, 1}∗∪{⊥}, and
the user ubi is added to the set U b if ubi /∈ U b.

Forgery: A outputs its forgery, (M∗, σ∗) for Infor∗

and RLt
pk∗ , where the identity Infor∗ and the revo-

cation list RLt
pk∗ are arbitrary forgeries generated by

A. It succeeds if

1) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

2) A did not query Group-Setup on input
Infor∗, did not query Join-User on inputs
sk∗g and pk∗, did not query Revoke-User on

inputs sk∗g , pk∗ and RLt−1
pk∗ , and did not query

Sign on inputs csk∗ and M∗, where the public
key pk∗ of the user ubpk∗ belongs to the group

named by the identity Infor∗ and ubpk∗ ∈ U b;

3) pk∗ ←Trace-User(GK, M∗, Infor∗, sk∗g , σ∗,
RLt

pk∗).

Definition 6. Anonymity of A Group Signature Scheme:
Let GS=(System-Setup, Generate-Key, Group-
Setup, Join-User, Revoke-User, Sign, Verify,
Trace-User) be a group signature scheme. Addi-
tionally, we set that k is a secure parameter, and
Pr(BA GS(k,A)=1) is the probability that the algorithm
BA GS returns 1. Then the advantage that the adversary
A breaks GS is defined as follows:

Adv
a gs

GS (k, qg, qj , qr, qs, ~)=|Pr(Ba gs(k,A)=1)− 1
2 |,

where qg is the maximal number of ”Group-Setup” oracle
queries, qj is the maximal number of ”Join-User” oracle
queries, qr is the maximal number of ”Revoke-User” or-
acle queries, qs is the maximal number of ”Sign” oracle
queries and ~ is the running time of B. If the advan-
tage that the adversary breaks GS is negligible, then the
scheme GS is secure.

According to the Definition 6, the algorithm BA GS is
described as follows:

Setup: Running System-Setup, GK ←System-
Setup(1k), and then GK is passed to A.

Queries Phase 1: A makes queries to the following
oracles for polynomially many times:

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 509

Group-Setup(): Given the public parameters GK
and the identity information Infor of the group,
the oracle returns a group private key skg to A.

Join-User(): Given the public parameters GK,
the group private key skg (or the identity
Infor) and the public key pki of the group
member, the oracle returns a group member pri-
vate key cski to A, where skg is a group private
key on the identity Infor of the group.

Revoke-User(): Given the public parameters GK,
the group private key skg (or the identity
Infor), the public key pki of the revoked group
member and the revocation list RLt

pk of the last
duration t, the oracle returns an updated revo-
cation list RLt+1

pk .

Sign(): Given the public parameters GK, the
group member private key cski (or the public
key pki) and the message M, the oracle returns
a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}.

Challenge: A sends to the challenger its forgeries (M∗,
Infor∗, RLt

pk∗) and two group member public keys
pk∗0 and pk∗1 that belong to the group named by the
group identity Infor∗. The forgeries satisfy the fol-
lowing conditions:

1) A did not query Group-Setup on input
Infor∗;

2) A did not query Join-User on inputs Infor∗,
pk∗0 (and pk∗1);

3) A did not query Revoke-User on inputs
Infor∗, pk∗0 (and pk∗1) and RLt−1

pk∗ .

The challenger picks a random bit x ∈ {0, 1}, and
then runs and outputs σ∗ ←Sign(GK, csk∗x, M∗)
to A.

Queries Phase 2: A makes queries to the following
oracles for polynomially many times again:

Group-Setup(): Given the public parameters GK
and the identity information Infor of the group
(where Infor 6= Infor∗), the oracle returns a
group private key skg to A.

Join-User(): Given the public parameters GK,
the group private key skg (or the iden-
tity Infor) and the public key pki of the
group member (where skg 6= sk∗g and pki /∈
{pk∗0 , pk∗1}), the oracle returns a group mem-
ber private key cski to A, where skg is a group
private key on the identity Infor of the group.

Revoke-User(): Given the public parameters GK,
the group private key skg (or the identity
Infor), the public key pki of the revoked group
member and the revocation list RLt

pk of the
last duration t, the oracle returns an updated
revocation list RLt+1

pk (where A did not query
Revoke-User on inputs sk∗g , pk∗0 (and pk∗1)).

Sign(): Given the public parameters GK, the
group member private key cski (or the public
key pki) and the message M, the oracle returns
a signature σ to A, where σ ∈ {0, 1}∗ ∪ {⊥}.

Guess: A outputs a bit x′ ∈ {0, 1} and succeeds if x′ =
x.

5 Group Signature Scheme Based
on EDL Signature

Let GS=(System-Setup, Generate-Key, Group-
Setup, Join-User, Revoke-User, Sign, Verify,
Trace-User) be a group signature scheme. In GS, all
algorithms are described as follows:

GS.System-Setup: The algorithm run by the trusted
authority inputs a security parameter 1k. Then, let
G1 be group of prime order q and module p, and
g be a generator of G1. The size of the group is
determined by the security parameter. And four hash
functions, H0 : {0, 1}∗ → Z∗q , H1 : G1 → G1, H2 :
G4

1 × {0, 1}∗ → Z∗q and H3 : G3
1 × {0, 1}∗ → Z∗q can

be defined. Finally, the algorithm outputs the public
parameters GK=(G1, g, H0, H1, H2, H3).

GS.Generate-Key : The algorithm run by a group
member generates his public/private key pair (pkl,
skl) with l ∈ {1, 2......n}, where n is the maximal
number of users in a group. The algorithm randomly
chooses skl ∈ Z∗q , and then computes pkl = gskl .

GS.Group-Setup: The algorithm run by the trusted
authority inputs (GK, Infor ∈ {0, 1}∗), where
Infor is a group public identity information. The
algorithm randomly chooses d ∈ Z∗q , computes and
outputs a group private key skg = d ·H0(Infor) to a
group manager, and then publishes the group public
key pkg = gd.

GS.Join-User : The algorithm run by the group man-
ager inputs (GK, skg, pkl), and then the following
steps are finished:

1) The algorithm run by the group manager ran-
domly chooses a ∈ Z∗q , computes

u1 = ga,

h1 = H1(u1),

x1 = h
skg

1 ,

v1 = ha1 ,

c1 = H2(u1, x1, v1, pkg, Infor),

r = a+ c1 · skg.

The algorithm outputs a partial member private
key δ = (x1, c1, r) to a group member whose
public key is pkl, and then saves the tuple (pkl,
u1), where u1 is used to trace the real signer.

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 510

2) The algorithm run by a group member with the
public key pkl and the private key skl verifies
the partial member private key δ = (x1, c1, r)
by the following computations:

u′1 = gr · (pkg)−c1·H0(Infor),

h′1 = H1(u′1),

v′1 = (h′1)r · (x1)−c1 ,

c′1 = H2(u′1, x1, v
′
1, pkg, Infor),

and then checks c′1 = c1. If the equation c′1 = c1
is correct, the group member accepts δ, other-
wise the group member requires that the group
manager must resend δ. Finally, the algorithm
computes and outputs the group member pri-
vate key cskl = {u′1, δ = (x1, c1, r)} to the group
member, where u′1 = u1 = ga.

GS.Revoke-User : The algorithm run by the group
manager inputs (GK, skg, pkl, RL

t
pk), where pkl is

the public key of the revoked user. The algorithm

computes rvl = (pkl)
1
c1 , where rvl is a credential on

the corresponding public key pkl. Finally, the algo-
rithm outputs and adds a tuple [pkl, rvl] to the re-
vocation list RLt

pk, and then an updated revocation

list RLt+1
pk is published by a secure approach.

GS.Sign : A group member with the group member pri-
vate key cskl needs to sign a message M ∈ {0, 1}∗.
The algorithm run by the group member inputs (GK,
cskl, M), and then randomly chooses k, f ∈ Z∗q , com-
putes3

u2 = gk · (u′1)f ,

h2 = H1(u2),

v2 = hf ·r+k
2 ,

c′′1 = c1 · f,
c2 = H3(u2, v2, pkg, c

′′
1 ,M, Infor),

y = f · r + c2 · f · skl,

x2 = skl · f −
k

c2
, x3 = gk, x4 = gskl·f .

Finally, the algorithm outputs a signature σ =
{c′′1 , c2, x2, x3, x4, y}.

GS.Verify : The signature receivers verify a group sig-
nature σ. The algorithm run by a signature verifier
inputs (GK, M, Infor, σ, RLt

pk), and then the fol-
lowing steps are finished:

1) The algorithm computes the following equa-
tions:

u′2 = gy · (pkg)−c
′′
1 ·H0(Infor) · g−x2·c2 ,

h′2 = H1(u′2),

v′2 = (h′2)y · (h′2)−x2·c2 ,

c′2 = H3(u′2, v
′
2, pkg, c

′′
1 ,M, Infor),

3c′′1 may be also seen as {0, 1}∗ in the computation of H3().

and then checks c′2 = c2. If the equation c′2 =
c2 is correct, then the algorithm runs into the
next step, otherwise the algorithm outputs the
boolean value reject.

2) The algorithm finishes the following steps on the
revocation list RLt

pk:

• Check the equation gx2 = (x3)−
1
c2 · x4; if

the equation is correct, then the algorithm
continues, otherwise the algorithm outputs
the boolean value reject;

• Compute the equation u′′2 = gy ·
(pkg)−c

′′
1 ·H0(Infor) · x3 · (x4)−c2 , then check

the equation u′′2 = u′2; if the equation is
correct, then the algorithm continues, oth-
erwise the algorithm outputs the boolean
value reject;

• Compute rv′l = (rvl)
c′′1 ·c2 =

(pkl)
1
c1
·c1·f ·c2 = (pkl)

c2·f = gskl·c2·f , and
rv′′l = gx2·c2 ·x3 = gskl·f ·c2−k ·x3 = gskl·c2·f ,
and then check rv′l = rv′′l ; if the equation
rv′l = rv′′l is correct, then the algorithm
directly outputs the boolean value reject;
otherwise, if the algorithm does not find
the correcting equation rv′l = rv′′l on the
revocation list RLt

pk, then the algorithm
outputs the boolean value accept.

Remark: rv′l = rv′′l can denote whether the
group member (signer) has been revoked.

GS.Trace-User : The group manager traces a real
group member (signer) on group signature σ, which
can be verified by GS.Verify . The algorithm run by
the group manager computes the following equation:

[
gc1·(y−x2·c2)

(pkg)c
′′
1 ·c1 · (x3)c1

]
1
c′′1 = [

gc1·(f ·r+k)

(pkg)c
′′
1 ·c1 · (x3)c1

]
1
c′′1

= [
gc1·f ·(a+c1·skg)+c1·k

(pkg)c
′′
1 ·c1 · (x3)c1

]
1
c′′1

= [
gc
′′
1 ·a · gskg·c′′1 ·c1 · gk·c1
(pkg)c

′′
1 ·c1 · (x3)c1

]
1
c′′1

= ga = u1.

Finally, the algorithm finds and outputs the corre-
sponding public key pkl by u1.

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 511

6 Analysis of the Proposed
Scheme

6.1 Efficiency

In the proposed scheme, σ = {c′′1 , c2, x2, x3, x4, y}, where

c′′1 = c1 · f,
c2 = H3(u2, v2, pkg, c

′′
1 ,M, Infor),

y = f · r + c2 · f · skl,

x2 = skl · f −
k

c2
,

x3 = gkandx4 = gskl·f .

Thus, the length of signature is 2 · |G1| + 4 · |Z∗q |, where
|G1| is the size of element in G1 and |Z∗q | is the size of
element in Z∗q . Additionally, the signing and verifying
procedure is mainly based on integer multiplication and
hash computation, so if we assume that the time for inte-
ger multiplication and hash computation can be ignored,
then signing a message for a group signature only needs
to compute 5 exponentiations in G1 and 1 multiplication
in G1, and verification requires at most 2 · Lr + 8 expo-
nentiations in G1 and Lr + 6 multiplications in G1, where
Lr is the number of the revoked users in the revocation
list RLt

pk
4.

In this paper, we compare the proposed scheme (the
scheme of Section 5) with the other group signature
schemes [21,25,27,29,30]. Table 1 shows the comparisons
of the schemes. Compared with other schemes, although
our scheme is constructed in the random oracle model,
our scheme does not employ pairing computation and has
the constant signing time and signature size.

6.2 Security

In the section, we show the proposed scheme (the scheme
of Section 5) has the unforgeability, traceability and
anonymity under the adaptive chosen message attacks,
which can be reduced to the CDH assumption. Our proofs
for the following theorems are based on the security mod-
els of Section 45.

Theorem 1. The scheme of Section 5 is (~, ε, qg, qj ,
qs)-unforgeable (according to the Definition 4), assuming
that the (~′, ε′)-CDH assumption holds in G1, where:

ε′ = ε− qg
2nq
− qj · (

1

2nq
+

2 · qh
2nq

)

−qs · qh
26·nq

− qs · (qh + qs)

2nq
,

~′ = ~ +O((qh + qg + 4 · qj + 12 · qs) · Cexp

+4 · qs · Cmul),

4We only consider the bad thing that the revoked user is the last
one in the revocation list when verification starts from the first one
to the last one.

5As the proofs of Theorem 2 and Theorem 3 are similar to the
proof of Theorem 1, we omit the similar proofs in this paper.

and qh is the maximal number of ”Hash” oracle queries, qg
is the maximal number of ”Group-Setup” oracle queries,
qj is the maximal number of ”Join-User” oracle queries,
qs is the maximal number of ”Sign” oracle queries, Cmul

and Cexp are respectively the time for a multiplication
and an exponentiation in G1.

Proof. Let GS be a group signature scheme of Section 5.
Additionally, let A be an (~, ε, qg, qj , qs)-adversary at-
tacking GS.

From the adversary A, we construct an algorithm B,
for (g, ga, gb)∈ G1, the algorithm B is able to use A to
compute ga·b. Thus, we assume the algorithm B can solve
the CDH with probability at least ε′ and in time at most
~′, contradicting the (~′, ε′)-CDH assumption. Such a
simulation may be created in the following way:

Setup: The trusted authority system inputs a security
parameter 1k. Then, let G1 be group of prime order
q and module p, and g be a generator of G1. The size
of the group is determined by the security parameter.
Also, H0 : {0, 1}∗ → Z∗q can directly be computed on
no querying. H1 : G1 → G1, H2 : G4

1 × {0, 1}∗ → Z∗q
and H3 : G3

1 × {0, 1}∗ → Z∗q can be simulated by the
algorithms H1 Queries, H2 Queries and H3 Queries,
where we set that gb (B does not know b) is used
to answer the query on H1 Queries. Additionally,
we assume that the user u∗ is a challenger, whose
public key is pk∗ = ga (B does not know a where a is
seen as the corresponding private key). Finally, the
algorithm outputs the public parameters GK=(G1,
g, H0).

Queries: When running the adversary A, the relevant
queries can occur according to the Definition 4. The
algorithm B answers these in the following way:

H 1 Queries: If this query is fresh, then the al-
gorithm chooses random s ∈ Z∗q , computes and

outputs (gb)s = gb·s to the adversary A; oth-
erwise the algorithm returns the same result.
Also, the algorithm saves the new tuple (s, gb·s)
to U List.

H 2 Queries: If this query is fresh, then the algo-
rithm outputs the new result to the adversary
A; otherwise the algorithm returns the same re-
sult.

H 3 Queries: If this query is fresh, then the algo-
rithm outputs the new result to the adversary
A; otherwise the algorithm returns the same re-
sult.

Group-Setup Queries: Given the public param-
eters GK and the identity information Infor
of the group, the algorithm randomly chooses
d ∈ Z∗q , computes and outputs a group private
key skg = d ·H0(Infor) and a group public key
pkg = gd to A.

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 512

Table 1: Comparisons of the six schemes

Signature Size Signature Cost Verification Cost Model
Scheme [30] O(1) O(1) O(Lr) random oracle
Scheme [27] O(1) O(1) O(Lr) without random oracle
Scheme [29] O(1) O(1) O(1) without random oracle
Scheme [25] O(1) O(Lm) O(Lm + Lk) without random oracle
Scheme [21] O(1) O(Lm) O(1) random oracle
Our Scheme O(1) O(1) O(Lr) random oracle

caption: Lm is the length of signed message, Lk is the length of user identity,
Lr is the number of revoked users in the revocation list.

Join-User Queries: Given the public parameters
GK and the group identity Infor, the algo-
rithm randomly chooses t, d ∈ Z∗q , computes

u1 = gt, h1 = H1(u1),

x1 = h
d·H0(Infor)
1 ,

v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor),

r = t+ c1 · d ·H0(Infor).

The algorithm outputs a partial member private
key δ = (x1, c1, r) to A. Because the algorithm
does not know the private key of the queried
group member, the algorithm only outputs a
partial member private key to A. However, the
adversaryA is easy to compute out the complete
group member private key when the adversary
A corrupted some group members or registered
some controlled group member to the simulation
system.

Sign Queries: Given the public parameters GK,
the identity information Infor of the group, the
public key pkl and the message M, the following
setups are finished:

1) The algorithm randomly chooses t, d ∈ Z∗q ,
computes

u1 = gt,

h1 = H1(u1),

x1 = h
d·H0(Infor)
1 ,

v1 = ht1,

c1 = H2(u1, x1, v1, g
d, Infor).

2) The algorithm randomly chooses
c2, y, f, k ∈ Z∗q , computes

u2 = gy · g−d·c1·f ·H0(Infor) · g−k,

and then queries the oracle H 1 Queries
for u2, if u2 has been queried, then the algo-
rithm aborts; otherwise the algorithm con-
tinues.

3) The algorithm randomly chooses j ∈ Z∗q ,
computes

v2 = hy2 · g−k·j ,
where we set h2 = H1(u2) = gj (satisfy the
condition that DLh2((h2)k) = DLg(gk) =
k).

4) The algorithm queries the oracle H 3
Queries, if the tuple (u2, v2, g

d, c1 ·
f,M, Infor) has been queried, then the
algorithm aborts; otherwise the algorithm
continues.

5) The algorithm computes x2 = k
c2

, x3 =

g−k ·(pkl)f , x4 = (pkl)
f
c2 , and then outputs

a group signature σ = {c′′1 , c2, x2, x3, x4, y}
to the adversary A, and saves the tuple
(t, d, c2, f, k) to S List.

Forgery: If the algorithm B does not abort as a
consequence of one of the queries above, the ad-
versary A will, with probability at least ε, re-
turn a forgery (M∗, σ∗, Infor∗, RLt

pk∗) for the
challenger u∗, where the identity Infor∗ and
the revocation list RLt

pk∗ are arbitrary forgeries
generated by A. And the forgery satisfies the
following condition:

1) 1←Verify(GK, M∗, Infor∗, σ∗, RLt
pk∗);

2) A did not query Group-Setup on input
Infor∗, did not query Join-User on in-
put Infor∗, and did not query Sign on in-
puts Infor∗, pk∗ and M∗ where the public
key pk∗ of the challenger u∗ belongs to the
group named by the identity Infor∗.

Then, if the adversary A did not query the oracle
H 1 Queries, or U List is empty or S List is empty,
then the algorithm B aborts.

Otherwise, the algorithm B can get h2 = H1(∗) =
gb·s. So, when the condition DLh2((h2)a·f ·c2−k) =
DLg(ga·f ·c2−k) = a · f · c2 − k holds, we can get the
followings:

hx2·c2
2 = (h2)(a·f−

k
c2

)·c2

= (gb·s)(a·f−
k
c2

)·c2

= (gb·s)(a·f ·c2−k)

= ga·b·s·f ·c2−b·s·k,

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 513

then B computes and outputs (hx2·c2
2 · gb·s·k)

1
c2·s·f =

ga·b, which is the solution to the given CDH problem.

Now, we analyze the probability of the algorithm B
not aborting. For the simulation to complete without
aborting, we require that all Group-Setup queries
and all Join-User queries are fresh, and all Sign
queries do not abort. So, if the algorithm B does not
abort, then the following conditions must hold:

1) All Group-Setup queries are fresh, because
H0 : {0, 1}∗ → Z∗q is uniformly distributed in

Zq, the collision probability of H0 is 1
2nq , then

the failure probability of the queries is at most
qg
2nq .

2) All Join-User queries are fresh, similarly the
collision probability of H0 is 1

2nq , and because
t, d ∈ Z∗q are uniformly distributed in Zq, the

collision probability of H1 is qh · 1
2nq = qh

2nq and
the collision probability of H2 is qh · 1

2nq = qh
2nq ,

then the failure probability of the queries is at
most qj · (1

2nq + 2·qh
2nq).

3) All Sign queries do not abort, then we may get
the followings:

• The algorithm may abort in the setup b),
namely u2 has been queried on the oracle
H 1 Queries. So, as t, d, c2, y, f, k ∈ Z∗q
are uniformly distributed in Z6

q, the colli-

sion probability of H1 is qh · 1
26·nq = qh

26·nq ,
then the failure probability of the queries is
at most qs·qh

26·nq ;

• The algorithm may abort in the setup d),
namely the tuple (u2, v2, g

d, c1·f,M, Infor)
has been queried on the oracle H 3
Queries. So, as j ∈ Z∗q is uniformly dis-
tributed in Zq, the collision probability of
H3 is (qh + qs) · 1

2nq = qh+qs
2nq , then the

failure probability of the queries is at most
qs·(qh+qs)

2nq .

Therefore, from the above analysis, we get that the
algorithm B can compute ga·b from the forgery as
shown above, with probability at least ε′ = ε− qg

2nq −
qj · (1

2nq + 2·qh
2nq) − qs·qh

26·nq −
qs·(qh+qs)

2nq . The time com-
plexity of the algorithm B is ~′ = ~+O((qh + qg + 4 ·
qj +12 ·qs) ·Cexp+4 ·qs ·Cmul), where we assume that
the time for integer addition, integer multiplication
and hash computation can both be ignored.

Thus, Theorem 1 follows.

Theorem 2. The scheme of Section 5 is a traceable
group signature scheme when it is unforgeable (Theorem
1 holds) and satisfies the following conditions (according
to the Definition 5):

1) The outputs of ”Trace-User” oracle are distinguish-
able in polynomially many times;

2) The scheme of Section 5 is (~′′, ε′′, qg, qj, qr, qs)-
secure, assuming that the (~′, ε′)-CDH assumption
holds in G1, where:

ε′′ = [ε′ + qj · (
1

2nq
+

2 · qh
2nq

)

+qr · (
1

2nq
+

2 · qh
2nq

)

+
qs · qh
26·nq

+
qs · (qh + qs)

2nq
]

‖ [ε′ +
qg
2nq

+ qj · (
1

2nq
+

2 · qh
2nq

)

+qr · (
1

2nq
+

2 · qh
2nq

) +
qs · qh
26·nq

+
qs · (qh + qs)

2nq
],

~′′ = MAX{~′ −O((qh + 4 · qj + 5 · qr + 12 · qs)Cexp

+4 · qs · Cmul), ~′ −O((qh + gg + 4 · qj
+5 · qr + 12 · qs) · Cexp + 4 · qs · Cmul)}.

and qh is the maximal number of ”Hash” oracle
queries, qg is the maximal number of ”Group-Setup”
oracle queries, qj is the maximal number of ”Join-
User” oracle queries, qr is the maximal number of
”Revoke-User” oracle queries, qs is the maximal
number of ”Sign” oracle queries, Cmul and Cexp are
respectively the time for a multiplication and an ex-
ponentiation in G1.

Theorem 3. The scheme of Section 5 is (~, ε, qg, qj , qr,
qs)-anonymous (according to the Definition 6), assuming
that the (~′, ε′)-CDH assumption holds in G1, where:

ε′ = ε− qg1 + qg2
2nq

− (qj1 + qj2) · (1

2nq
+

2 · qh
2nq

)

−(qr1 + qr2) · (1

2nq
+

2 · qh
2nq

)− (qs1 + qs2) · qh
26·nq

− (qs1 + qs2) · (2 · qh + qs1 + qs2)

2nq
,

~′ = ~ +O((qh + qg1 + qg2 + 4 · (qj1 + qj2)

+5 · (qr1 + qr2) + 12 · (qs1 + qs2)) · Cexp

+4 · (qs1 + qs2) · Cmul),

and qh is the maximal number of ”Hash” oracle queries,
qg1 and qg2 are respectively the maximal numbers of
”Group-Setup” oracle queries in the Queries Phase 1
and 2, qj1 and qj2 are respectively the maximal num-
bers of ”Join-User” oracle queries in the Queries Phase 1
and 2, qr1 and qr2 are respectively the maximal numbers
of ”Revoke-User” oracle queries in the Queries Phase 1
and 2, qs1 and qs2 are respectively the maximal numbers of
”Sign” oracle queries in the Queries Phase 1 and 2, Cmul

and Cexp are respectively the time for a multiplication and
an exponentiation in G1.

7 Conclusions

In this paper, by modifying the EDL signature, we present
a public key-based group signature scheme in the random

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 514

oracle, which is based on the model of verifier-local revo-
cation. Also, we give the security models for group sig-
nature. Under our security models, the proposed scheme
is proved to have the properties of anonymity and trace-
ability with enough security. Compared with other group
signature schemes proposed by [21,25,27,29,30], the pro-
posed group signature scheme does not employ pairing
computation and has the constant signature size, so the
proposed scheme is efficient. However, because the pro-
posed scheme is not enough efficient in revoking verifica-
tion of signatures, the work about group signature still
needs to be further progressed.

Acknowledgments

This study is funded by the Open Research Fund of
Key Laboratory of Network Crime Investigation of Hunan
Provincial Colleges (No.2017WLFZZC003), the National
Natural Science Foundations of China (No.61402055,
No.61504013) and the Hunan Provincial Natural Science
Foundation of China (No.2018JJ2445, No.2016JJ3012).
The authors gratefully acknowledge the anonymous re-
viewers for their valuable comments.

References

[1] G. Ateniese, J. Camenisch, M. Joye, G. Tsudik,
”A practical and provably secure coalition-resistant
group signature scheme,” in Annual International
Cryptology Conference, pp. 255-270, 2000.

[2] G. Ateniese, D. Song, G. Tsudik, ”Quasi-efficient re-
vocation in group signatures,” in Proceedings of the
6th International Conference on Financial Cryptog-
raphy, pp. 183-197, 2002.

[3] M. H. Au, J. K. Liu, W. Susilo, T. H. Yuen, ”Se-
cure ID-based linkable and revocable-iff-linked ring
signature with constant-size construction,” Theoret-
ical Computer Science, vol. 469, pp. 1-14, 2013.

[4] A. K. Awasthi, S. Lal, ”ID-based ring signature and
proxy ring signature schemes from bilinear pairings,”
International Journal of Network Security, vol. 4, no.
2, pp. 187-192, 2007.

[5] P. S. L. M. Barreto, B. Libert, N. McCullagh, J.
Quisquater, ”Efficient and provably-secure identity-
Based signatures and signcryption from bilinear
maps,” in International Conference on the Theory
and Application of Cryptology and Information Se-
curity, pp. 515-532, 2005.

[6] M. Bellare, D. Micciancio, B. Warinschi, ”Founda-
tions of group signatures: Formal definitions, simpli-
fied require- ments, and a construction based on gen-
eral assumptions,” in International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pp. 614-629, 2003.

[7] D. Boneh, X. Boyen, H. Shacham, ”Short group sig-
natures,” in Annual International Cryptology Con-
ference, pp. 41-55, 2004.

[8] D. Boneh, H. Shacham, ”Group signatures with
verifier-local revocation,” in Proceedings of the 11th
ACM conference on Computer and Communications
Security, pp. 168-177, 2004.

[9] D. Boneh, M. Franklin, ”Identity-based encryption
from the Weil pairing,” in Annual International
Cryptology Conference, 213-229, 2001.

[10] D. Boneh, M. Hanburg, ”Generalized identity based
and broadcast encryption schemes,” in International
Conference on the Theory and Application of Cryp-
tology and Information Security, 455-470, 2008.

[11] E. Bresson, J. Stern, ”Efficient revocation in group
signatures,” in International Workshop on Public
Key Cryptography, pp. 190-206, 2001.

[12] E. Brickell, ”An efficient protocol for anonymously
providing assurance of the container of the private
key,” Submission to the Trusted Computing Group,
2003. (https://www.semanticscholar.org/
paper/An-e-cient-protocol-for-anonymously

-providing-of-of-Brickell/

0a780b09cdcee20cc617d5b840f4c9dafb398fa8)

[13] E. Brickell, J. Camenisch, L. Chen, ”Direct anony-
mous attestation,” in Proceedings of the 11th ACM
Conference on Computer and Communications Se-
curity, pp. 132-145, 2004.

[14] J. Camenisch, A. Lysyanskaya, ”Dynamic accumula-
tors and application to efficient revocation of anony-
mous credentials,” in Annual International Cryptol-
ogy Conference, pp. 61-76, 2002.

[15] J. Camenisch, M. Kohlweiss, C. Soriente, ”An accu-
mulator based on bilinear maps and efficient revo-
cation for anonymous credentials,” in International
Workshop on Public Key Cryptography, pp. 481-500,
2009.

[16] J. C. Cha, J. H. Cheon, ”An identity-based signa-
ture from gap Diffie-Hellman groups,” in Interna-
tional Workshop on Public Key Cryptography, pp.
18-30, 2002.

[17] C. C. Chang, C. Y. Sun, S. C. Chang, ”A
strong RSA-based and certificateless-based signature
scheme,” International Journal of Network Security,
vol. 18, no. 2, pp. 201-208, 2016.

[18] D. Chaum, E. van Heyst, ”Group signatures,” in
Workshop on the Theory and Application of of Cryp-
tographic Techniques, pp. 257-265, 1991.

[19] D. Chaum, T. P. Pedersen, ”Wallet databases with
observers,” in Annual International Cryptology Con-
ference, pp. 89-105, 1992.

[20] B. C. Mames, ”An efficient CDH-based signature
scheme with a tight security reduction,” in Annual
International Cryptology Conference, pp. 511-526,
2005.

[21] K. Emura, A. Miyaji, K. Omote, ”An r-hiding revo-
cable group signature scheme: Group signatures with
the property of hiding the number of revoked users,”
Journal of Applied Mathematics, vol. 2014, no. 272,
pp. 14, 2014.

International Journal of Network Security, Vol.22, No.3, PP.504-515, May 2020 (DOI: 10.6633/IJNS.202005 22(3).16) 515

[22] E. J. Goh, S. Jarecki, ”A signature scheme as se-
cure as the Diffie-Hellman problem,” in International
Conference on the Theory and Applications of Cryp-
tographic Techniques, pp. 401-415, 2003.

[23] D. He, M. K. Khan, S. Wu, ”On the security of a
RSA-based certificateless signature scheme,” Inter-
national Journal of Network Security, vol. 16, no. 1,
pp. 78-80, 2014.

[24] F. Hess, ”Efficient identity based signature schemes
based on pairings,” in International Workshop on Se-
lected Areas in Cryptography, 310-324, 2002.

[25] L. Ibraimi, S. Nikova, P. Hartel, W. Jonker, An
Identity-Based Group Signature with Member-
ship Revocation in the Standard Model, 2010.
(https://pdfs.semanticscholar.org/7a1c/
0f61d15c957d3c599779f2aafbca0ae1eae8.pdf)

[26] M. Jakobsson, C. Schnorr, ”Efficient oblivious proofs
of correct exponentiation,” Secure Information Net-
works, volume 23, pp. 71-86, 1999.

[27] B. Libert, D. Vergnaud, ”Group signatures with
verifier-local revocation and backward unlinkability
in the standard model,” in International Conference
on Cryptology and Network Security, pp. 498-517,
2009.

[28] B. Libert, T. Peters, M. Yung, ”Scalable group signa-
tures with revocation,” in Annual International Con-
ference on the Theory and Applications of Crypto-
graphic Techniques, pp.609-627, 2012.

[29] B. Libert, T. Peters, M. Yung, ”Scalable group sig-
natures with almost-for-free revocation,” in Annual
Cryptology Conference, pp.571-589, 2012.

[30] T. Nakanishi, N. Funabiki, ”Verifier-local revocation
group signature schemes with backward unlinkability
from bilinear maps,” in International Conference on
the Theory and Application of Cryptology and Infor-
mation Security, pp. 533-548, 2009.

[31] T. Nakanishi, H. Fujii, Y. Hira, N. Funabiki, ”Re-
vocable group signature schemes with constant costs
for signing and verifying,” in International Workshop
on Public Key Cryptography, pp. 463-480, 2009.

[32] L. Nguyen, ”Accumulators from bilinear pairings and
applications,” in Cryptographers Track at the RSA
Conference, pp. 275-292, 2005.

[33] A. Shamir, Y. Tauman, ”Improved online/offline sig-
nature scheme,” in Annual International Cryptology
Conference, pp. 355-367, 2001.

[34] F. Zhang, K. Kim, ”ID-based blind signature and
ring signature from pairings,” in International Con-
ference on the Theory and Application of Cryptology
and Information Security, pp. 533-547, 2002.

[35] S. Zhou, D. Lin, ”Shorter verifier-local revocation
group signatures from bilinear maps,” in Interna-
tional Conference on Cryptology and Network Secu-
rity, pp. 126-143, 2006.

Biography

Ke Gu received his Ph.D. degree in School of Information
Science and Engineering from Central South University
in 2012. He is currently an associate professor at Chang-
sha University of Science and Technology. His research
interests include cryptography, network and information
security.

Dianxing Liu is currently an associate professor at Hu-
nan Police Academy. His research interests include net-
work analysis.

Bo Yin is currently an assistant professor at Changsha
University of Science and Technology. His research inter-
ests include data analysis, network and information secu-
rity.

