
Reinforcement Algorithms Using Functional Approximation for Generalization
and their Application to Cart Centering and Fractal Compression

Clifford Claussen, Srinivas Gutta and Harry Wechsler
Department of Computer Science

George Mason University
4400 University Dr.
Fairfax, VA 22030

U.S.A

Abstract
We address the conflict between identification
and control or alternatively, the conflict be­
tween exploration and exploitation, within the
framework of reinforcement learning. Q-
learning has recently become a popular off-
policy reinforcement learning method. The
conflict between exploration and exploitation
slows down Q-learning algorithms; their per­
formance does not scale up and degrades rap­
idly as the number of states and actions in­
creases. One reason for this slowness is that
exploration lacks the ability to extrapolate and
interpolate from learning and to a large extent
has to "reinvent the wheel". Moreover, not all
reinforcement problems one encounters are f i ­
nite state and action systems. Our approach to
solving continuous state and action problems
is to approximate the continuous state and ac­
tion spaces with finite sets of states and ac­
tions and then to apply a finite state and action
learning method. This approach provides the
means for solving continuous state and action
problems but does not yet address the per­
formance problem associated with scaling up
states and actions. We address the scaling
problem using functional approximation
methods. Towards that end, this paper intro­
duces two new reinforcement algorithms,
QLVQ and Quad-Q-learning, respectively, and
shows their successful application for cart
centering and fractal compression.

1 Introduction
Reinforcement learning is "the on-line learning of a
mapping from situations to actions so as to maximize a
scalar reward or reinforcement signal. The learner is
not told which action to take, but instead must discover
which actions yield the highest reward by trying them.
In most interesting and challenging cases, actions may
affect not only the immediate reward, but also the next
situation, and through that all subsequent rewards.

These two characteristics - trial-and-error search and
delayed reward - are the two most important distin­
guishing features of reinforcement learning" [Sutton,
1992].

In what is called on-policy learning [Sutton and
Barto, 1998], the agent learns to predict the long-term
reward from a fixed policy. With on-policy learning,
the learning agent does not change its policy function
during learning. The agent only learns to predict the
long term expected reward for each state of the envi­
ronment given that it maintains the same policy and it
learns the value function With off-policy learning,
on the other hand, the learning agent changes its policy
during learning so as to improve long term expected
reward. The objective of off-policy learning is to find
an optimal policy function, i.e., to find the policy that
always leads to the best possible long term expected
reward. Off-policy learning is accomplished through a
process of trial and error. The learning agent has to
probe the environment in order to determine the direc­
tional information needed to modify its behavior. This
probing action slows the operation of the learning
agent because the changes in behavior required to ex­
plore the environment are generally in conflict with
how behavior should be changed to exploit the gradi­
ent information determined by exploration. This prob­
lem is known as the conflict between identification and
control or alternatively, the conflict between explora­
tion and exploitation.

2 Q-Learning
Q-learning derives the optimal policy function incremen­
tally as it interacts with the environment. It assumes no a-
priori knowledge of rewards or transition probabilities.
The idea of Q-learning is to learn a Q-function that maps
the current state s and action a to a utility value Q(s, a)
that predicts the total future discounted reward that will be
received from current action a and from all subsequent
actions, assuming the optimal policy, is followed in
subsequent actions. The optimal policy is determined

1382 UNCERTAINTY AND PROBABILISTIC REASONING

from the Q function as = argmax Q(s, a). The

objective of Q-iearaing is to learn the Q function directly
without ever explicitly learning transition probabilities
and expected values of rewards. Suppose that we know
the Q function and that currently the environment is char­
acterized by the state An agent then chooses an action a
so as to maximize Choosing action a results in an
environmental state transition from state to state The
agent then chooses the next action b so as to maximize

Given that the optimal policy is followed after
action a is taken, which is the estimate of utility of
an action a taken from state is just the immediate reward
of taking action a from state plus the maximum utility
possible from the next state discounted by the discount
factor Therefore Q satisfies

where is the immediate reward received when
action a is taken from state and is the prob­
ability of transitioning to state given that the current
state is i. O-learning employs a one step back-up using
the estimated Q function value at the state of the next
time step [Watkins and Dayan, 1992].

3 Learning and Functional Approxi­
mation

The basic Q-learning algorithm is very slow to con­
verge. One reason for this slowness is that the Q func­
tion must be learned for each state and action pair in­
dependently; having a good idea of the value of Q(i, a)
provides no information about the value of Q(j, b) for
nearby state j and action b. Algorithms may converge
to local optima or may not converge at all. With on-
policy learning, the convergence of the value function,

is all that is of concern because the policy remains
fixed. However, with off-policy learning, the objective
is to find an optimal policy by incrementally changing
it to improve system performance. Hence with off-
policy learning, the exploration aspect is important and
convergence to the optimal policy is of primary con­
cern, although convergence of the value function is
also important.

For finite state and action systems, both on-policy
and off-policy algorithms exist that can be proven to
converge [Sutton and Barto, 1998]. The problem that
arises with these algorithms is that although they con­
verge, they do not scale up well; that is their perform­
ance degrades rapidly as the number of states and ac­
tions increases. Moreover, not all reinforcement prob­
lems one encounters are finite state and action systems.
Our approach to solving continuous state and action
problems is to approximate ("discretize") the continu­
ous state and action spaces with finite sets of states and
actions and then to apply a finite state and action

learning method. This approach provides the means
for solving continuous state and action problems but
does not address the performance problem associated
with scaling up states and actions. We address the
scaling problem using functional approximation meth­
ods. Sect. 4 and 6 describe two new reinforcement
algorithms, QLVQ and Quad-Q-learning, respectively,
that address the discretization and scaling up problems.

4 QLVQ
Q-learning performance deteriorates as the dimension
of the state space increases. For the case when the
policy function is a piecewise constant function with
relatively smooth transition regions, we describe in this
section QLVQ, a novel reinforcement algorithm, that
tessellates the state space into regions with piecewise
smooth boundaries using Labeled Vector Quantization
(LVQ) [Kohonen, 1990]. The motivation behind inte­
grating LVQ and Q-learning comes from the fact that
LVQ (i) discretize the phase space for control prob­
lems and significantly reduces the state space require­
ments, and (ii) improves the overall accuracy as it es­
timates ('interpolates') between neighboring cells.

The new Q - learning and Learning Vector Quantization
(QLVQ) algorithm is shown in Fig. 1. Steps 1 through 5
are similar to those employed by Q-learning. First one
positions K (random) action prototypes for each of the
C possible actions on the state X
space. The action ai consists of prototypes
whose labels correspond to their positioning on the state
space X, A total of KC prototypes are used by the LVQ
component of QLVQ. If prototype is nearest to state
x then the action selected is while ties are ar­
bitrarily broken. The estimate for the utility is
then updated as it was the case with the conventional Q-
learning by combining the immediate reward with a
discounted utility estimate from the next state y. Let dQ
be the change in the value of Q after Step 5. The proto­
types are then repositioned (at iteration t) (see Step 6).

Initialize the action-value function Q and the learning
rates and
1. While stopping condition is false
2. Randomly generate state
3. Select an action a to execute:
4. Execute action a, and let y be the next" state and be

the reward received.
5.Update
6. Let dQ be the change measured after Q update (step 5)

7. Update the policy function such that

Figure 1. QLVQ Algorithm

CLAUSSEN, GUTTA, AND WECHSLER 1383

5 Cart Centering Using QLVQ
Control problems represent a good test bed to assess
reinforcement algorithms due to their need to deter-
mine decision control boundaries expressed as policy
(stimulus -action) functions (mappings). The cart-
centering problem, discussed in this section, was cho­
sen because its analytical solution is readily available
and comparative performance is thus feasible. Cart
centering is modeled using a phase space representa-
tion and the control aspect is handled using QLVQ
reinforcement learning.

Phase space for a dynamical system refers to the
entire set of allowable states. For a non-autonomous
system, such as cart centering, an external control
variable, in addition to the initial state and a specified
control function, determine the future trajectory of the
system. For discrete control problems such as cart
centering ("bang-bang") control, the optimum policy or
decision function is piecewise constant on disjoint re­
gions of the phase space. These regions are separated
by hypersurfaces called "switching boundaries". De­
termination of optimum control then reduces to the
computation of these boundaries. The table look up
approach of Q-learning, however, does not exploit the
property of the policy function being piecewise con­
stant. The LVQ algorithm exploits this property in the
determination of the optimal switching boundaries and
this motivates the hybrid QLVQ reinforcement learn­
ing scheme.

The cart-centering problem involves a cart that can
move either to the left or to the right on a frictionless
one-dimensional track [Bryson and Ho, 1975; Koza,
1992]. The problem is to center the cart in minimal
time, by applying a force of fixed magnitude. The fol­
lowing state information is available: the current posi­
tion of the cart along the track (x) and the current ve­
locity of the cart (v). At each time step (t), the con­
troller must decide in which direction the force should
be applied to the cart so as to bring the cart to a target
state of rest (velocity: 0.0; position: 0.0). The cart-
centering problem can be described using the follow­
ing set of equations:

x: position of the cart, v: velocity of the cart, t: time, a:
acceleration, r. size of the time step (normally set to
0.02 sec), m: mass of the cart (here 2.0 kg) and F:
magnitude of force (here IN).

The exact (analytical) time-optimal solution specifies
that for any given current position x(t) and current veloc­
ity v(t), the applied fixed force F would accelerate the cart
in the positive direction if the inequality shown
below holds true:

The applied fixed force F accelerates the cart in the nega­
tive direction when the above inequality does not
hold. Fig. 2 depicts the computed time-optimal solution
map for the cart-centering problem. The boundary be­
tween the shaded and unshaded portions of the graph is
the switching boundary for the problem.

Figure 2. Time-Optimal Solution Map for the Cart-
Centering Problem.

Standard Q-learning for cart-centering is run on two
(x, v) grid sizes, (101, 501) and (202, 1002), respec­
tively, to assess how it scales up. Q-learning computes
the overall change in the policy Q function from one
cycle to the next and should stop as soon as the change
becomes less than a given threshold Using such
stopping criteria the Q-learning algorithm failed to
otop for both grid sizes. When the phase space dimen­
sion is (101, 501), the Q learning algorithm is termi­
nated after (arbitrary) 567 cycles. Note that even
though a state is randomly selected, the chance of a
state (x, v) not being considered during several cycles
is very small as Q-learning is executed for hundreds of
cycles, each cycle consisting of x * v iterations. Fig. 2a
below shows the Q (phase state) - map for Q- learning
algorithm after 176 cycles, the number of cycles re­
quired by QLVQ (see Fig. 2b) to stop, while Fig. 2c
shows the Q - map after Q-learning has been aborted.
Similar behavior for Q-learning is observed when the
grid size is doubled to (202, 1002). Q-learning is
aborted after 1,016 cycles, while QLVQ requires only
328 cycles before it stops.

Figure 2a. Q - Map for
Cart-Centering Using a
Phase Space (101,501)
Grid After 176 Cycles

Figure 2b. QLVQ - Map for
Cart-Centering Using a
Phase Space (101, 501) Grid
After 176 cycles

1364 UNCERTAINTY AND PROBABILISTIC REASONING

Figure 2c. Q - Map for Cart-Centering Using a Phase Space
(101, 501) Grid After 567 cycles

We also assessed whether there exists a solution
leading to the state of "rest", i.e., the state (x, v) = (0

starting from every point in the phase
space and within a specified time limit, e, arbitrarily
set to 3, is used to compensate for the grid being dis­
crete rather than continuous. The time limit for each
point in the phase space is a slight increase (two) on
the number of steps required by the analytical solution
to reach the rest state.

If the grid size is of dimension (101, 501), then the
number of points in the phase space trying to reach the
state of rest neighborhood is 101 * 501 - 1 ('rest state')
= 50,600 while for a grid size dimension of (202,
1002) the number of points is 202,4031 Experimental
data shows that for a grid size dimension of (101, 501),
6, 578 or 13% of the points in the phase space, using Q
- learning, do not reach the state of rest neighborhood
within the time limit, while for QLVQ, only 3.9% of
the points in the phase space do not reach the rest state
neighborhood. For the case when the grid size is in-
creased to (202, 1002), 24,086 or 11.9% of the points
in the phase space, using the Q - learning solution, fail
to reach the state of rest neighborhood within the time
limit, while for the QLVQ solution 3,643 or only 1.8%
of the points in the phase space, fail this test.

6 Quad-Q-Learning
Quad-Q-learning is an outgrowth of Q-learning. Quad-
Q-learning, requires a different notion of state than
that of Q-iearning. In Quad-Q-learning there are two
types of actions: those that create new states, called
split type actions, and those that do not, called no split
type actions. When a split type action is taken, four
new environments arise, each with their own state.
When a no split type action is taken, the corresponding
environment's state does not change and no further
actions are taken with respect to that environment. To
avoid confusion, we wil l use the term block attribute,
or just attribute, with respect to Quad-Q-learning, in­
stead of state. Quad-Q-learning is best understood in
the context of a Quad tree partitioned image, where an
attribute vector such as size and variance represents
each image block in the Quad tree partition.

The objective of Quad-Q-learning is to learn a pol­
icy function, denoted as that maps local attributes of
a range block to a decision on whether or not to split
the block and, if the decision is not to split the block,

whether to use the affine or Bath transform to code it
in terms of the pool of available domain blocks. This
decision is made in a way that wil l lead to a decom­
pressed image of the desired quality while maintaining
good compression rates. The policy function is learned
by generalizing from a few image blocks to make deci­
sions about an entire image.

With respect to fractal compression, it is more con­
venient to work with costs instead of rewards. Costs
can be thought of as negative reward, but it wil l be
convenient to use a version of Quad-Q-learning that
can handle costs directly. We are actually interested in
two costs, one corresponding to compressed image
quality, and one corresponding to image compression
rate. Instead of learning directly, we learn a func­
tion that maps * block attribute vector and related ac­
tion to an expected cost. The block attribute consists of
two components, block size and block variance. For
each block size and each action the value of the
functions is assumed to be a linear function of range
variance. Block size is a discrete value because of the
nature of Quad tree partitioning, while variance, on the
other hand, is a continuous attribute. Hence the local
block attribute of a block can be denoted as (i , x),
where i is an index of block size, and x is the continu­
ous valued block variance. There are four possible
actions: (1) code block using affine transformation, (2)
code block using Bath transformation, (3) split as an
affine block, and (4) split as a Bath block. Hence the
expected cost of an action a on a block with attribute
(i , x) is denoted as Q The policy function n is
related to Q and learned using

We assume that the Q func-
a

tion can be expressed as

We learn the Q function by learning estimates of
and At each time s tepdu r i ng learning one ob­
tains estimates which are used to esti­

mate At each time step of the learning
procedure, a potential range image block with attribute
vector (i , x) is considered. A no split decision corre­
sponds to a decision to code the block using the affine
transform or the Br th transform. A split type decision
corresponds to a cecision to split the block and use
only the affine or only the Bath transform to code its
sub blocks.

For simplicity, let where

is an index representing the kth block of size consid­
ered for action 'V (code using the affine or Bath trans­
form) and n is the number of blocks visited,
be an instance of the cost of no split action "a" for a block

CLAUSSEN, GUTTA, AND WECHSLER 1365

with attribute and

Then one way to estimate mi.a and b is as follows:

(A)

(B)
where the denominator of (A) is assumed to increase infi­
nitely as n increases without bound. Equations (A) and (B)
are just the equations for calculating regression coeffi-
cients where are the independent variables and are
the dependent variables. In other words we are estimating
the parameters of a linear function relating the block vari­
ance and the cost of coding. The split action estimation
procedure is similar. In the no split case, we are simply
trying to estimate the dependent variable cost, as a linear
fimction of block variance. The split case is the same,
except that the dependent variable is estimated from esti­
mates of the children blocks. That is, we are bootstrapping
our estimates.

7 Fractal Compression Using Quad-
Q-Learning

The image compression process involves image pre-
smoothing, lean domain pool construction, block clas­
sification, Quad-Q-learning, fractal compression, and
parameter quantization, coding and storage. Quad-Q
learns a Q function which is used to partition an image
and to make decisions about which transform, affine or
Bath, to use for regions in an image based upon local
block attributes. The fractal compression phase ex­
ploits the Q function to encode an image.

Quad-Q-learning learns a Q function that captures
the relationship between cost, local block attributes
and a decision on how to encode a block. A decision
determines whether or not a block wil l be split and
what transform method, either affine or Bath, wil l be
used to encode a range block. We wil l actually use
two different costs. The first cost estimates the quality
of the reconstructed image measured as the root mean
square (RMS) distance between the original image and
the decoded image. The second cost estimates the
compression rate measured as the number of bits that it
takes to encode a block. These two costs wil l be used
for learning two different Q functions, one corre­
sponding to image quality and the other corresponding
to image compression. Image quality, is estimated us­

ing the RMS distance between the transformed domain
block and the range block [Barnsley, 1993].

Quad-Q-learning proceeds in two stages. The first
stage learns the Q function for no split type decisions,
while die second stage learns the Q function for split
type decisions. In general a block at level m of a quad­
tree is of size In stage 2 no costs are calcu­
lated; rather the costs calculated in stage 1 and the Q
function estimates from the previous level of stage 2
are passed up in the quad-tree, similar to boot strap­
ping [Sutton and Barto, 1998]. That is the cost of
splitting a block of size is an estimate of the
sum of the minimum Q function estimates of each
quadrant block.

Fractal compression uses the Q functions as follows.
First one calculates the variance for the largest range
block. One then uses the variance, block size, and the
Q function to determine the estimated image quality
cost (RMS) of directly coding the block using each of
the affine and Bath transforms. If both transforms are
acceptable, we use the affine transform since it re­
quires fewer bits. If neither Bath nor affine transforms
wil l achieve the desired quality by direct coding, then
we use recursive block splitting. The Q function is
used to determine the expected RMS from block split­
ting. If both transforms achieve the desired RMS
through block splitting, as determined by the Q func­
tion, then the transform type yielding the minimum
product of expected RMS and expected bit rate is cho­
sen. Otherwise, the transform with the best expected
RMS is used. Once the transform for the block of larg­
est size is chosen, only that transform is used to code
sub-blocks of that block. For smaller blocks, if the
block is of smallest size and therefore cannot be split,
the block is coded directly using the current transform
type. If the block is not of smallest size, then a split or
no split decision is made by first calculating the vari­
ance for the block and then using the Q function to
determine the estimated image quality cost of coding
the block directly. If the cost of direct coding is ac­
ceptable, the block is coded directly; otherwise, the
block is split.

Our novel scheme for fractal compression is evalu­
ated by comparing between JPEG [Nelson, 1992],
Fisher's fractal compression [Fisher, 1995] as imple­
mented in FRACOMP [Kassler, 1995], and fractal
compression with Quad-Q-learning, denoted as Learn-
Frac in the graphics below. Both rate-distortion curves
and compression-time curves are calculated and de­
picted for each of the aforementioned methods for sev­
eral images. Fig. 3 shows comparative results for the
aforementioned compression methods on the LENA
image.

1366 UNCERTAINTY AND PROBABILISTIC REASONING

Figure 3. Comparison of Compression Methods

Bit rate (compression) is measured as the ratio of the
file size of the original image measured in bytes to the
file size of the compressed image measured also in
bytes. Distortion (image quality) is measured as the
peak signal to noise ratio (PSNR). The compression
rate vs time to compression curves are important to
ensure that improvements in the rate-distortion curves
are not merely the result of increased compression
time. In general, fractal compression with Quad-Q-
learning requires approximately 0.5 seconds for learn­
ing time, independent of compression. The time ad­
vantage gained from learning at high PSNR more that
offsets the cost of learning and hence fractal compres­
sion with Quad-Q-learning performs comparatively
better than fractal compression without learning at low
compression and high PSNR. For practical locations
on the bit rate distortion curve, including the point of
the crossover image, fractal compression with Quad-Q-
learning generally performs better than fractal com­
pression alone. The Quad-Q-learning method and the
associated new fractal techniques taken together form a
new fractal compression algorithm that frequently out
performs other fractal compression algorithms with
respect to the trade-off between bit rate, distortion, and
compression time. At compression rates above 11:1,
fractal compression with quad-Q-learning will produce
better quality compressed images than JPEG and out­
perform it with respect to PSNR for high compression
rates. JPEG will compress faster, but our proposed
method still is well under 10 seconds for a 256 x 256
pixel image on a typical PC. In addition, the proposed
method is faster than other fractal compression algo­
rithms for the same compression rate and compressed

image quality. Another advantage of our proposed
method comes from the possibility of choosing the
transform type. The Bath transform, because of its lin­
ear functional part, should be the choice for ranges
with significant slope characteristics.

8 Conclusions
We addressed in this paper the conflict between identi­
fication and control or alternatively, the conflict be­
tween exploration and exploitation, within the frame-
work of reinforcement learning. Our approach to
solving continuous state and action problems has been
to approximate the continuous state and action spaces
with finite sets of states and actions and then to apply a
finite state and action learning method. This approach
provides the means for solving continuous state and
action problems but does not yet address the perform­
ance problem associated with scaling up states and
actions. We addressed the scaling problem through
generalization using functional approximation meth­
ods. Towards that end, this paper introduced two new
reinforcement algorithms, QLVQ and Quad-Q-
learning, respectively, and showed their successful use
of functional approximation for generalization pur­
poses with application for cart centering and fractal
image compression.

References
[Barnsley, 1993], Fractals Everywhere, Academic Press,
San Diego, California.

[Bryson and Ho, 1975], Applied Optimal Control, Hemi­
sphere.

[Fisher, 1995], Fractal Image Compression, Theory and
Application, Springer—Verlag, Netherlands.

[Kassler, 1995], Fraktale Bildkompression unter Win­
dows, Diplomarbeit im Studiengang Mathematik an der
Mathematish-Naturwissenshaftlichen Fakultaet der Unver-
sitaet Augsburg,

[Kohonen, 1990], The Self-Organizing Map, Proceedings
of the IEEE 78:1464-1480.

[Koza, 1992], Genetic Programming, MIT Press, Cam­
bridge, Massachusetts.

[Nelson, 1992], The Data Compression Book, M&T
Books, San Mateo, California.

[Sutton, 1992], Special issue on Reinforcement Learning,
In R. S. Sutton (Ed.), Machine Learning, 8(4): 1-395.

[Sutton and Barto 1998], Reinforcement Learning, An
Introduction, MIT Press, Cambridge, Massachusetts.

[Watkins and Dayan 1992], Technical Note Q-
Learning, Machine Learning, 8(4): 279-292.

CLAUSSEN, GUTTA, AND WECHSLER 1367

