
Solving Non-Markovian Control Tasks with Neuroevolution

Faustino J. Gomez and Risto Miikkulainen
Department of Computer Sciences

The University of Texas
Austin, TX 78712, U.S. A

(i n a k i , r i s t o @ c s . u t e x a s . e d u)

Abstract

The success of evolutionary methods on standard
control learning tasks has created a need for new
benchmarks. The classic pole balancing problem is
no longer difficult enough to serve as a viable yard­
stick for measuring the learning efficiency of these
systems. The double pole case, where two poles
connected to the cart must be balanced simultane-
ously is much more difficult, especially when ve­
locity information is not available. In this article,
we demonstrate a neuroevolution system, Enforced
Sub-populations (ESP), that is used to evolve a con­
troller for the standard double pole task and a much
harder, non-Markovian version. In both cases, our
results show that ESP is faster than other neuroevo-
lution methods. In addition, we introduce an in­
cremental method that evolves on a sequence of
tasks, and utilizes a local search technique (Delta-
Coding) to sustain diversity. This method enables
the system to solve even more difficult versions of
the task where direct evolution cannot.

1 Introduction
The pole-balancing or inverted pendulum problem has been
established as a standard benchmark for artificial learning
systems. For over 30 years researchers in fields rang­
ing from control engineering to reinforcement learning have
tested their systems on this task [Schaffer and Cannon, 1966;
Michie and Chambers, 1968; Anderson, 1989], There are two
primary reasons for this longevity: (1) Pole balancing has in­
tuitive appeal. It is a real-world task that is easy to understand
and visualize. It can be performed manually by humans and
implemented on a physical robot. (2) It embodies many es­
sential aspects of a whole class of learning tasks that involve
temporal credit assignment [Sutton, 1984]. In short, it is an
elegant environment that is a good surrogate for more general
problems.

Despite this long history, the relatively recent success of
modern reinforcement learning methods on control learning
tasks has rendered the basic pole balancing problem obso­
lete. It can now be solved so easily that it provides little
or no insight about a system's ability. Neuroevolution (NE)

systems (i.e. systems that evolve neural networks using ge­
netic algorithms), for example, often find solutions in the ini­
tial random population [Moriarty and Miikkulainen, 1996;
Gomez and Miikkulainen, 1997]. In response to this need
for a new benchmark, the basic pole-balancing task has been
extended in a variety of ways.

Wieland[1991] presented several variations to the standard
single pole task that can be grouped into two categories: (1)
modifications to the mechanical system itself such as adding
a second pole either next to or on top of the other. (2) re­
stricting the amount of state information that is given to the
controller; for example, only providing the cart position and
the pole angle. The most challenging of these is a double pole
configuration where two poles of unequal length must be bal­
anced simultaneously. Even with complete state information
this problem is very difficult requiring extremely precise con­
trol to solve. In this paper, we demonstrate a neuroevolution
method, Enforced Sub-populations (ESP;Gomez and Miikku­
lainen 1997), on an even harder version of this task in which
the two poles must be balanced without velocity information.
This task represents a significant leap in terms of difficulty.
We show that ESP can solve this task, and can do so more
efficiently than other methods have been able to solve it even
with velocity information.

An interesting aspect of the double pole system is that it is
more difficult to control as the poles assume similar lengths.
When the poles are very close in length, solutions to this sys­
tem cannot be evolved directly by current methods. In order
to control the system under these conditions, shaping (or in­
cremental learning) techniques can be employed that increase
the length of the shorter pole very gradually [Wieland, 1991;
Saravanan and Fogel, 1995]. This kind of approach is effec­
tive but can be extremely slow due to the limitations of the un­
derlying evolutionary search method—many generations are
required to recover from minute changes to the environment
Using an incremental approach in conjunction with a local
search technique (Delta-Coding; Whitley et al. 1991) to sus­
tain diversity, we demonstrate that ESP can cope with more
significant changes to the environment. Instead of evolving
on the goal task directly, ESP evolves on a sequence of in­
creasingly difficult tasks.

The paper is organized as follows. Section 2 describes the
ESP and Delta-Coding algorithms. In section 3 we describe
incremental evolution in detail. In Section 4 we show the

13S6 UNCERTAINTY AND PROBABILISTIC REASONING

Figure 1: Symbiotic, Adaptive Neuro-Evolution (SANE).
The population consists of hidden neurons, each with its own
input and output connections. The networks are formed by
randomly choosing u neurons for the hidden layer. Networks
are evaluated in the task, and the fitness is distributed among
all the neurons that participated in the network. After all neu-
rons are evaluated this way, recombination is performed in
the neuron population.

results for three different tasks: (1) the double pole with ve­
locities, (2) double pole without velocities, and (3) double
pole without velocities demonstrating incremental evolution
to almost equal pole lengths. The last two sections contain a
discussion of the results and the conclusion.

2 Neuro-Evo lu t ion M e t h o d : Enforced
Sub-Populations + Delta-Coding.

The Neuroevolution method used is based on Symbiotic,
Adaptive Neuro-Evolution (SANE; Moriarty, 1997; Moriarty
and Miikkulainen, 1996). SANE has been shown to be a pow­
erful reinforcement learning method for tasks with sparse re­
inforcement.

2.1 SANE
SANE differs from other NE systems in that it evolves a pop­
ulation of neurons instead of complete networks (figure 1).
These neurons are combined to form hidden layers of feed-
forward networks that are then evaluated on a given problem.

Evolution in SANE proceeds as follows:
1. Initialization. The number of hidden units u in the net­

works that will be formed is specified and a population
of neuron chromosomes is created. Each chromosome
encodes the input and output connection weights of a
neuron with a random string of binary numbers.

2. Evaluation. A set of u neurons is selected randomly
from the population to form a hidden layer of a feed-
forward network. The network is submitted to a trial in
which it is evaluated on the task and awarded a fitness
score. The score is added to the cumulative fitness of
each neuron that participated in the network. This pro­
cess is repeated until each neuron has participated in an
average of e.g. 10 trials,

3. Recombination. The average fitness of each neuron is
calculated by dividing its cumulative fitness by the num­
ber of trials in which it participated. Neurons are then
ranked by average fitness. Each neuron in the top quar-
tile is recombined with a higher-ranking neuron using
1 -point crossover and mutation at low levels to create

Figure 2: The Enforced Sub-Populations Method (ESP).
The population of neurons is segregated into sub-populations
shown here as clusters of circles. The network is formed by
randomly selecting one neuron from each sub-population.

the offspring to replace the lowest-ranking half of the
population.

4. The Evaluation-Recombination cycle is repeated until
a network that performs sufficiently well in the task is
found.

In SANE, neurons compete on the basis of how well, on av­
erage, the networks in which they participate perform. A high
average fitness means that the neuron contributes to forming
successful networks and, consequently, suggests a good abil­
ity to cooperate with other neurons. Over time, neurons will
evolve that result in good networks.

The SANE approach has proven faster and more efficient
than other reinforcement learning methods such as Adaptive
Heuristic Critic, Q-Learning, and standard neuroevolution,
in, for example, the basic pole balancing task and in the robot
arm control task [Moriarty, 1997; Moriarty and Miikkulainen,
1996].

2.2 Enforced Sub-Populations (ESP)
In Enforced Sub-Populations, as in SANE, the population
consists of individual neurons instead of full networks, and
a subset of neurons are put together to form a complete net­
work. However, ESP allocates a separate population for each
of the u units in the network, and a neuron can only be re-
combined with members of its own sub-population (figure 2).

ESP speeds up SANE evolution for two reasons: The sub-
populations that gradually form in SANE are already circum­
scribed by design in ESP. The "species" do not have to or­
ganize themselves out of a single large population, and their
progressive specialization is not hindered by recombination
across specializations that usually fulfill relatively orthogonal
roles in the network. Second, because the networks formed
by ESP always consist of a representative from each evolv­
ing specialization, a neuron is always evaluated on how well
it performs its role in the context of all the other players. In
SANE, networks can contain multiple members of some spe­
cializations and omit members of others, and its evaluations
are therefore less consistent.

The main contribution of ESP, however, is that it allows
evolution of recurrent networks. Since SANE forms networks
by randomly selecting neurons from a single population, a
neuron cannot rely on being combined with similar neurons
in any two trials. A neuron that behaves one way in one trial
may behave very differently in another, resulting in evalua­
tions of neuron fitness that are very noisy. The sup-population

GOMEZ AND MIIKKULAINEN 1357

architecture of ESP makes the evaluation of the neurons more
consistent. A neuron's recurrent connection weight ri wil l al­
ways be associated with neurons from sub-population Si. As
the sub-populations specialize, neurons evolve to expect, with
increasing certainty, the kinds of neurons to which they will
be connected. Therefore, the recurrent connections to those
neurons can be adapted reliably.

As evolution progresses, each sub-population will decline
in diversity. This is a problem, especially in incremental evo­
lution, because a converged population cannot easily adapt to
a new task. To accomplish task transfer despite convergence,
ESP is combined with an iterative search technique known as
Delta-Coding.

2.3 Delta-Coding
The idea of Delta-Coding [Whitley et al., 1991] is to search
for optimal modifications of the current best solution. In a
conventional single-population GA, when the population of
candidate solutions has converged, Delta-Coding is invoked
by first saving the best solution and then initializing a pop­
ulation of new individuals called -chromosomes. The
chromosomes have the same length (number of genes) as the
best solution and they consist of values that rep-
resent differences from the best solution. The new popula­
tion is evolved by selecting -chromosomes, adding their
values to the best solution, and evaluating the result. Those

-chromosomes that improve the solution are selected for
reproduction. Therefore, Delta-Coding explores the hyper-
space in a "neighborhood'* around the best previous solution.
Delta-Coding can be applied multiple times, with successive

-populations representing differences to the previous best
solution.

In the experiments presented in this paper, Delta-Coding
is implemented with the ESP sub-population architecture.
Once the neuron sub-populations have reached minimal di­
versity, the best solution (i.e. the best network specifica­
tion) is saved. New sub-populations are then initialized
with -chromosomes so that each neuron in the best solu­
tion has a dedicated sub-population of -chromosomes that
will be evolved to improve it specifically. ESP selects a

-chromosome from each sub-population and adds the -
values to the connection weights of the neurons in the best-
solution. When these sub-populations converge the best -
chromosomes are added to the best solution to form the new
best solution for the next iteration of the Delta phase.

Delta-Coding was originally developed to enhance the fine
local tuning capability of Genetic Algorithms for numerical
optimization by Whitley et al. [1991]. Gomez and Miik-
kulainen [1997], showed how Delta-Coding can be used to
facilitate incremental evolution. When a task was completed
the best solution was saved and -populations initialized be­
fore evolution was begun on the next task. A more general
approach has been taken in the experiments described in this
paper. Delta-Coding is activated whenever the system's per­
formance ceases to improve over a predefined number of gen­
erations. This strategy limits the disruption of genetic build­
ing blocks when the population is still adjusting well to task
changes by only introducing additional variation when neces­
sary.

Figure 3: The double pole system. Snap-
shot of 3D real-time display available at
http://www.cs.utexas.edu/users/inaki/esp/two-
pole-demo.

3 Incremental Evolution
Evolutionary search methods can be ineffective if the task is
too demanding to exert significant selective pressure on the
population during the early stages of evolution. In such a
case, all individuals perform poorly and the OA gets trapped
in an unfruitful region of the solution space. One remedy is to
enlarge the population size so that a more diverse set of phe-
notypes is sampled. However, prohibitively large populations
may be required to discover individuals with sufficient com­
petence to direct the search. Another approach is to view the
goal task as one of many possible instances of a more general
parameterized task. The system then learns by evolving on a
sequence of increasingly difficult evaluation tasks culminat­
ing in the intended goal task.

A number of researchers have applied task decomposi­
tion, or shaping, to make learning complex tasks tractable
[Colombetti and Dorigo, 1992; Perkins and Hayes, 1996;
Singh, 1992]. Typically, in these approaches the complex task
is broken into simpler components or subtasks that are each
learned by separate systems (e.g. GAs or rule-bases) and then
combined to achieve the goal task. In contrast, in incremental
evolution as proposed in this paper (and also used by Wieland
[1991] and Saravanan and Fogel [1995]), a single system
learns a succession of tasks. Such an adaptation process
is similar to continual (or lifelong) learning [Elman, 1991;
Ring, 1994], and motivated by staged learning in real life.

4 Pole Balancing Experiments
The starting point for our experiments is the more challenging
double pole problem in which a second pole is placed next to
the first (figure 3). The objective is to apply force to the cart
at regular time intervals such that the poles are balanced in­
definitely and the cart stays within the track boundaries. The
state of this system is defined by six state variables: the an­
gle of each pole from vertical the angular velocity of each
pole the position of the cart on the track x, and the ve­
locity of the cart where (see Wieland[1991] for
the equations of motion and parameters used in this task). We
adopt the notation to denote the evaluation-task where is
the length of the short pole in meters. The long pole is always
set to 1 meter. Three different experiments were conducted
using this configuration with the following three goal tasks:

1358 UNCERTAINTY AND PROBABILISTIC REASONING

1. e0.1 with velocity information.
2. e0.1 without velocity information.
3. e0.8 without velocity information.
A l l of the pole balancing experiments were implemented

using the Runge-Kutta fourth-order method with a step size
of 0.01s. The state variables were scaled to before
being input to the network. During simulation the networks
output a force value every 0.02 seconds (i.e. time step) in
the range For tasks 1 and 3, the initial angle for
the long pole was set to (so that the networks could not
control the system by simply outputting values close to zero),
and fitness was determined by the number of time steps a net-
work could keep both poles within degrees from vertical
and keep the cart between ends of a 4.8 meter track. A task
was considered solved if a network could balance the poles
for 100,000 time steps, which is equal to over 30 minutes
in simulated time. For task 2, the fitness function and start­
ing state are described in section 4.3. Neuron chromosomes
were encoded as strings of floating point numbers. Arithmetic
crossover was used to generate new neurons. Each chromo­
some was mutated with probability 0.2, replacing a randomly
chosen weight value with a random value within the range [-
6.0,6.0]. The techniques and parameters were found effective
experimentally; small deviations from them produce roughly
equivalent results.

4.1 Related W o r k

We compared the performance of ESP with SANE and the
published results of three other evolutionary methods. The
first two [Wieland, 1991; Saravanan and Fogel, 1995] have
been applied to the double pole problem with velocities.
Wieland used an NE approach which we have termed Con­
ventional NE. This is a single population method for evolving
neural networks in which each individual represents a com­
plete network. Fogel and Saravanan use Evolutionary Pro­
gramming, a general mutation-based approach that generates
offspring by perturbing the best individuals with Gaussian
noise. For the case without velocities, Gruau et al. [1996] is
the only study we know that has addressed this problem with
some success. Therefore, for this task, we compare ESP only
to the Cellular Encoding (CE) method. CE uses a graph trans­
formation language to evolve the network topology as well as
its weights. We did not compare ESP with conventional Rein­
forcement Learning methods (e.g. Q-leaming, TD(A)) in this
study, because NE methods have already been shown more
efficient on easier versions of these tasks [Moriarty and Miik-
kulainen, 1996].

4.2 2 Poles w i t h Velocities(e0.1)
Table 1 shows the results for the 2 pole configuration with
velocities. As in Wieland [1991] and Saravanan and Fogel
[1995], the networks were composed of 10 hidden units. Fo­
gel and Saravanan used feed-forward networks, and Wieland
used a fully recurrent architecture. It is clear that NE methods
based on partial solutions are superior to other neuroevolution
methods in terms of learning speed. Although CPU time was
unavailable for the other methods, it can be estimated from
the number of evaluations required

Method CPU Generations No. Nets
Conventional NE 100
Ev. Programming 150 2048

SANE 37 63 200
ESP 22 19 200

Table 1: Comparison of results for the double pole simula­
tions with velocities (Long pole = 1m; Short pole = 0.1m).
Evolutionary Programming data is taken from Saravanan and
Fogel 11995], and Conventional NE from Wieland [1991].
SANE and ESP data are average of 50 simulations.

Method Noise CPU Generations Failures
SANE 38 96 45

ESP 22 20 0
SANE 50

ESP 25 36 0

Table 2: Comparison between SANE and ESP on the double
pole problem with evaluation noise. The starting angle of the
long pole was chosen randomly from a uniform distribution
within the specified range of degrees from vertical (Long pole
= l m ; Short pole = 0.1m). Each entry is the average of 50
simulations.

that they are considerably slower. Also, ESP is faster than
SANE by a factor of 2.

To verify the robustness of SANE and ESP we also per­
formed experiments in which the long pole was started with
an angle chosen randomly from a fixed range. Table 2 shows
the results for two ranges, one of degrees and the other

degrees. This has the effect of varying the difficulty
of the task from trial to trial thereby introducing noise into
the fitness evaluation. Evaluation noise is a real problem
in non-deterministic domains because it limits a GAs abil­
ity to determine the underlying fitness of a population. Even
though SANE has been shown robust against noisy evalua­
tions in general [Moriarty, 1997], it could not handle it in this
more difficult task, most of the time failing to find a solution
at all. In contrast, ESP was largely unaffected by such vari­
ation solving this task every time even when the range was
extended degrees. These results demonstrate that ESP is
highly resistant to evaluation noise.

4.3 2 Poles wi thout Velocities

This task is identical to the one in the previous section ex­
cept that the networks do not receive any velocity informa­
tion. Therefore, the networks need to be recurrent so that the
velocities can be computed internally using feedback connec­
tions. This makes the task significantly harder in two ways:
(1) It is simply more difficult to control such a delicate sys­
tem when the concomitant problem of velocity calculation
must also be solved. (2) The number of connections in the
networks is necessarily larger, thereby expanding the size of
the search space.

For these simulations we compare ESP to CE using the
same fitness function as Gruau et al [1996]. The function

is the weighted sum of two separate fitness measurements

GOMEZ AND MIIKKULAINEN 1359

taken over a simulation of 1000 time steps:

(1)

(2)
where t is the number of time steps the pole was balanced, K
is a constant (set to 0.75), and the denominator in (2) is the
sum of the absolute values of the cart and the large pole state
variables, summed over the last 100 time steps of the run.
This complex fitness is intended to force the network to com­
pute the pole velocities by penalizing swinging, and thereby
making the GA favor controllers with the ability to return the
poles to the upright position and damp oscillations. This kind
of fitness measure is necessary because otherwise networks
can balance the poles by merely swinging them back and
forth (i.e. without calculating the velocities) [Gruau et al.,
19961.

Gruau et at. claimed that the decidedly large number of
evaluations required by CE to solve this task, compared to
direct encoding (table 3), is offset by the number of evalua-
tions saved by not having to search for an effective network
architecture to solve the problem. Also, they were unable to
solve this problem using direct encoding. CE does not as­
sume an a priori network topology, and is therefore able to
optimize it to suit a particular problem. While such methods
are an important area of research, we found that they are not
necessary nor advantageous for this problem. To demonstrate
this we designed an e x t e n t that minimizes the amount of
human intervention in the determination of network topology
that ESP evolves. In this experiment, the number of hidden
units H is still fixed for each evolution, but instead of being
prescribed by the user it is chosen at random by the system
in a range from For each simulation, the system be­
gins evolving with the randomly selected H. If it does not
solve the task (for whatever reason), it will restart with a new
H. This occurs repeatedly until the task is solved. The total
number of evaluations over all of the restarts is then counted.

Table 3 compares the performance of ESP and CE in this
task. The ESP experiments are the aforementioned where H
is selected randomly. The initial angle for the long pole was
set to 4.5° for all simulations. To determine if the task had
been solved, we tested the most fit individual from each gen­
eration to see if it could balance the pole for 100,000 time
steps and score at least 200 on the generalization test describe
below. The latter was necessary because we found that fitness

did not correlate well with the ability to generalize to novel
initial states.

In addition to learning speed, the robustness of the solu­
tions was also tested. The column labeled "Generalization"
refers to each method's average score on a test where a suc­
cessful controller is awarded a point for each of 625 different
initial states from which it is able to control the system for
1000 time steps. The test cases were generated by allowing
the state variables and to take on the values:

This test, first introduced in
[Dominic et al., 1991], has become a standard for evaluating

Method Evaluations Generalization No. Nets
CE 840,000 300 16,384 ESP 69,466' 289 1,000

Table 3: Results for double pole without velocities. Long
pole = 1m; Short pole = 0.1m. Average of 20 simulations.
Results for CE taken from Gruau et al [19961.

the generality of solutions in pole balancing. A high score
indicates that a solution has competence in a wide area of the
state space.

The main result is that ESP is roughly 5 times faster than
CE without significantly compromising generalization, show-
ing that the search for an appropriate architecture for this task
can be automated by a simple stochastic mechanism. The
ESP simulations had a restart rate of 4.06. That means that,
on average, the system had to start over with a new random
H about 4 times per run.

4.4 Incremental Evolution of 2 Poles without
Velocities

This section compares the results of incremental versus direct
evolution. For the incremental experiments, the following
method was used the determine the sequence of tasks: The
evolution begins with the pole balancing system described
in the previous section as the initial evaluation task
When this task is solved, the shorter pole is lengthened by a
predefined increment (P). P can change from task to task
according to a simple rule. If ESP is unable to solve the next
task after two Delta phases, P is halved and ESP then tries to
solve the problem where the shorter pole has a length halfway
between and the new, "unachieved" task Once this in­
termediate task is solved, ESP will move on to the next task

So instead going from to in a single step, the system
does it in two steps If after completing
task can still not be achieved, P is halved again and added
to yielding which is halfway between and Tasks
are therefore repeatedly simplified, with P decreasing mono-
tonically, until either a transition occurs or a lower bound on
P is reached.

The incremental evolution can be illustrated best with an
example. Normally with this method the task differences are
quite large at first. As the networks move on to harder tasks,
P tends to shrink, and more task transitions are required for
a given increase in the length of the short pole. For the initial
value of P used in these experiments (0.1), a typical evolution
schedule might look like:

In each of the direct evolution simulations, the evaluation
task was fixed. Four different tasks were chosen to test this
approach: Each task was attempted 50
times evaluating 1000 networks per generation. Note that
the direct simulations were given a population size over two
times larger than that of the incremental (1000 vs.400). This
was done to see if the harder tasks could be solved by simply
increasing the number of search points.

Table 4 compares the two methods on different tasks,
was started with a value of 0.1. This means that after solv-

1360 UNCERTAINTY AND PROBABILISTIC REASONING

Pole Length Direct Incremental
0.3 17 100
0.5 0 100
0.7 0 98
0.8 0 80

Table 4: Incremental vs. Direct evolution on the double pole
problem without velocities. The table shows the percentage
of simulations that were able to achieve each task for the two
approaches. The tasks are denoted by the length of the shorter
pole (first column).

ing the initial task the short pole wi l l be increased by
100% to This is a significant change to the environ­
ment. Other approaches that have applied shaping to the eas­
ier double pole task (with velocities) have incremented the
short pole by only 1% [Wieland, 1991; Saravanan and Fo-
gcl, 1995]. ESP was almost always able to complete the first
three tasks without having to decrement P,
and the first two tasks were always achieved in less than 70
generations.

Even with a larger population, Direct evolution was inca­
pable of solving When the task is this hard ESP cannot
discover a good region of the search space before converg­
ing. No individual does well enough to guide the search. ESP
selects genotypes that are slightly better than others in terms
of the fitness scalar but are not necessarily any closer to the
goal. The incremental approach, on the other hand, was able
to solve the hardest task within 3000 generations 80%
of the time, making an average of 30 task transitions per run.

5 Conclusions
The results show that ESP with Delta-Coding can be an ef­
ficient method for controlling unstable systems. It was able
to solve a Markovian version of the double pole balancing
problem much faster than other methods, and also a much
more difficult non-Markovian version. Incremental evolution
was found to be an effective way to scale up the approach to
even more difficult tasks. The non-Markovian control task is
an important benchmark not only because is it presents non­
linear dynamical environment, but also because it requires
memory. Many tasks in varied domains from game-playing
to robotics require memory to overcome perceptual aliasing.

In the future, we plan to apply ESP to real-world robot nav­
igation tasks. Tasks of this kind are often naturally decompos­
able into a hierarchy of subtasks amenable to the incremental
paradigm. They also pose the challenge of changing environ­
ments, which we believe can also be solved effectively by the
same approach.

Acknowledgments
Special thanks to Oliver Gomez for help in preparing the i l ­
lustrations. This research was supported in part by National
Science Foundation under grant

References
[Anderson, 1989] Charles W. Anderson. Learning to control an in­

verted pendulum using neural networks. IEEE Control Systems
Magazine, 9:31-37, April 1989.

[Colombetti and Dorigo, 1992] Marco Colombetti and Marco
Dorigo. Robot shaping: Developing situated agents through
learning. Technical Report TR-92-040, International Computer
Science Institute, Berkeley, CA, 1992.

{Dominic etal, 1991] S. Dominic, R. Das. D. Whitley, and C. An­
derson. Genetic reinforcement learning for neural networks. In
Proceedings of the International Joint Conference on Neural Net­
works (Seattle, WA), volume I I , pages 71-76, Piscataway, NJ,
1991. IEEE.

lElman, 1991] Jeffrey L. Elman. Incremental learning, or The im­
portance of starting small. In Proceedings of the 13th Annual
Conference of the Cognitive Science Society, pages 443-448,
Hillsdale, NJ, 1991. Erlbaum.

[Gomez and Miikkulainen, 1997] Faustino Gomez and Risto Miik­
kulainen. Incremental evolution of complex general behavior.
Adaptive Behavior, 5:317-342, 1997.

[Gruau et al., 1996] Frederic Gruau, Darrell Whitley, and Larry
Pyeatt. A comparison between cellular encoding and direct en­
coding for genetic neural networks. Technical Report NC-TR-
96-048, NeuroCOLT, 1996.

[Michie and Chambers, 1968] Donald Michie and R. A. Chambers.
BOXES: An experiment in adaptive control. In E. Dale and
D. Michie, editors, Machine Intelligence. Oliver and Boyd, Edin­
burgh, UK, 1968.

[Moriarty and Miikkulainen, 1996] David E. Moriarty and Risto
Miikkulainen. Efficient reinforcement learning through symbi­
otic evolution. Machine Learning, 22:11-32, 1996.

[Moriarty, 1997] David E. Moriarty. Symbiotic Evolution of Neural
Networks in Sequential Decision Tasks. PhD thesis, Department
of Computer Sciences, The University of Texas at Austin, 1997.
Technical Report UT-AI97-257.

[Perkins and Hayes, 1996] Simon Perkins and Gillian Hayes.
Robot shaping-principles, methods, and architectures. Techni­
cal Report 795, Department of Artifical Intelligence, University
of Edinburgh, 1996.

[Ring, 1994] Mark B. Ring. Continual Learning in Reinforcement
Environments. PhD thesis, Department of Computer Sciences,
The University of Texas at Austin, Austin, Texas 78712, August
1994.

[Saravanan and Fogel, 1995] N. Saravanan and David B. Fogel.
Evolving neural control systems. IEEE Expert, pages 23-27,
June 1995.

[Schaffer and Cannon, 1966] J Schaffer and R Cannon. On the con­
trol of unstable mechanincal systems. In Automatic and Remote
Control III: Proceedings of the Third Congress of the Interna­
tional Federation of Automatic Control, 1966.

[Singh, 1992] S. Singh. Transfer of learning by composing solu­
tions of elemental sequential tasks. Machine Learning, 8:323-
339, 1992.

[Sutton, 1984] Richard Sutton. Temporal Credit Assignment in Re­
inforcement Learning. PhD thesis, University of Massachusetts,
Amherst, MA, 1984.

[Whitley et al., 1991] D. Whitley, K. Mathias, and P. Fitzhorn.
Delta-coding: An iterative search strategy for genetic algortihms.
In Proceedings of the Fourth International Conference on Ge­
netic Algorithms, Los Altos, CA, 1991. Morgan Kaufmann.

[Wieland, 1991] Alexis Wieland. Evolving neural network con­
trollers for unstable systems. In Proceedings of the International
Joint Conference on Neural Networks (Seattle, WA), volume II ,
pages 667-673, Piscataway, NJ, 1991. IEEE.

GOMEZ AND MIIKKULAINEN 1361

