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Abstract 

The success of evolutionary methods on standard 
control learning tasks has created a need for new 
benchmarks. The classic pole balancing problem is 
no longer difficult enough to serve as a viable yard­
stick for measuring the learning efficiency of these 
systems. The double pole case, where two poles 
connected to the cart must be balanced simultane-
ously is much more difficult, especially when ve­
locity information is not available. In this article, 
we demonstrate a neuroevolution system, Enforced 
Sub-populations (ESP), that is used to evolve a con­
troller for the standard double pole task and a much 
harder, non-Markovian version. In both cases, our 
results show that ESP is faster than other neuroevo-
lution methods. In addition, we introduce an in­
cremental method that evolves on a sequence of 
tasks, and utilizes a local search technique (Delta-
Coding) to sustain diversity. This method enables 
the system to solve even more difficult versions of 
the task where direct evolution cannot. 

1 Introduction 
The pole-balancing or inverted pendulum problem has been 
established as a standard benchmark for artificial learning 
systems. For over 30 years researchers in fields rang­
ing from control engineering to reinforcement learning have 
tested their systems on this task [Schaffer and Cannon, 1966; 
Michie and Chambers, 1968; Anderson, 1989], There are two 
primary reasons for this longevity: (1) Pole balancing has in­
tuitive appeal. It is a real-world task that is easy to understand 
and visualize. It can be performed manually by humans and 
implemented on a physical robot. (2) It embodies many es­
sential aspects of a whole class of learning tasks that involve 
temporal credit assignment [Sutton, 1984]. In short, it is an 
elegant environment that is a good surrogate for more general 
problems. 

Despite this long history, the relatively recent success of 
modern reinforcement learning methods on control learning 
tasks has rendered the basic pole balancing problem obso­
lete. It can now be solved so easily that it provides little 
or no insight about a system's ability. Neuroevolution (NE) 

systems (i.e. systems that evolve neural networks using ge­
netic algorithms), for example, often find solutions in the ini­
tial random population [Moriarty and Miikkulainen, 1996; 
Gomez and Miikkulainen, 1997]. In response to this need 
for a new benchmark, the basic pole-balancing task has been 
extended in a variety of ways. 

Wieland[1991] presented several variations to the standard 
single pole task that can be grouped into two categories: (1) 
modifications to the mechanical system itself such as adding 
a second pole either next to or on top of the other. (2) re­
stricting the amount of state information that is given to the 
controller; for example, only providing the cart position and 
the pole angle. The most challenging of these is a double pole 
configuration where two poles of unequal length must be bal­
anced simultaneously. Even with complete state information 
this problem is very difficult requiring extremely precise con­
trol to solve. In this paper, we demonstrate a neuroevolution 
method, Enforced Sub-populations (ESP;Gomez and Miikku­
lainen 1997), on an even harder version of this task in which 
the two poles must be balanced without velocity information. 
This task represents a significant leap in terms of difficulty. 
We show that ESP can solve this task, and can do so more 
efficiently than other methods have been able to solve it even 
with velocity information. 

An interesting aspect of the double pole system is that it is 
more difficult to control as the poles assume similar lengths. 
When the poles are very close in length, solutions to this sys­
tem cannot be evolved directly by current methods. In order 
to control the system under these conditions, shaping (or in­
cremental learning) techniques can be employed that increase 
the length of the shorter pole very gradually [Wieland, 1991; 
Saravanan and Fogel, 1995]. This kind of approach is effec­
tive but can be extremely slow due to the limitations of the un­
derlying evolutionary search method—many generations are 
required to recover from minute changes to the environment 
Using an incremental approach in conjunction with a local 
search technique (Delta-Coding; Whitley et al. 1991) to sus­
tain diversity, we demonstrate that ESP can cope with more 
significant changes to the environment. Instead of evolving 
on the goal task directly, ESP evolves on a sequence of in­
creasingly difficult tasks. 

The paper is organized as follows. Section 2 describes the 
ESP and Delta-Coding algorithms. In section 3 we describe 
incremental evolution in detail. In Section 4 we show the 
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Figure 1: Symbiotic, Adaptive Neuro-Evolution (SANE). 
The population consists of hidden neurons, each with its own 
input and output connections. The networks are formed by 
randomly choosing u neurons for the hidden layer. Networks 
are evaluated in the task, and the fitness is distributed among 
all the neurons that participated in the network. After all neu-
rons are evaluated this way, recombination is performed in 
the neuron population. 

results for three different tasks: (1) the double pole with ve­
locities, (2) double pole without velocities, and (3) double 
pole without velocities demonstrating incremental evolution 
to almost equal pole lengths. The last two sections contain a 
discussion of the results and the conclusion. 

2 Neuro-Evo lu t ion M e t h o d : Enforced 
Sub-Populations + Delta-Coding. 

The Neuroevolution method used is based on Symbiotic, 
Adaptive Neuro-Evolution (SANE; Moriarty, 1997; Moriarty 
and Miikkulainen, 1996). SANE has been shown to be a pow­
erful reinforcement learning method for tasks with sparse re­
inforcement. 

2.1 SANE 
SANE differs from other NE systems in that it evolves a pop­
ulation of neurons instead of complete networks (figure 1). 
These neurons are combined to form hidden layers of feed-
forward networks that are then evaluated on a given problem. 

Evolution in SANE proceeds as follows: 
1. Initialization. The number of hidden units u in the net­

works that will be formed is specified and a population 
of neuron chromosomes is created. Each chromosome 
encodes the input and output connection weights of a 
neuron with a random string of binary numbers. 

2. Evaluation. A set of u neurons is selected randomly 
from the population to form a hidden layer of a feed-
forward network. The network is submitted to a trial in 
which it is evaluated on the task and awarded a fitness 
score. The score is added to the cumulative fitness of 
each neuron that participated in the network. This pro­
cess is repeated until each neuron has participated in an 
average of e.g. 10 trials, 

3. Recombination. The average fitness of each neuron is 
calculated by dividing its cumulative fitness by the num­
ber of trials in which it participated. Neurons are then 
ranked by average fitness. Each neuron in the top quar-
tile is recombined with a higher-ranking neuron using 
1 -point crossover and mutation at low levels to create 

Figure 2: The Enforced Sub-Populations Method (ESP). 
The population of neurons is segregated into sub-populations 
shown here as clusters of circles. The network is formed by 
randomly selecting one neuron from each sub-population. 

the offspring to replace the lowest-ranking half of the 
population. 

4. The Evaluation-Recombination cycle is repeated until 
a network that performs sufficiently well in the task is 
found. 

In SANE, neurons compete on the basis of how well, on av­
erage, the networks in which they participate perform. A high 
average fitness means that the neuron contributes to forming 
successful networks and, consequently, suggests a good abil­
ity to cooperate with other neurons. Over time, neurons will 
evolve that result in good networks. 

The SANE approach has proven faster and more efficient 
than other reinforcement learning methods such as Adaptive 
Heuristic Critic, Q-Learning, and standard neuroevolution, 
in, for example, the basic pole balancing task and in the robot 
arm control task [Moriarty, 1997; Moriarty and Miikkulainen, 
1996]. 

2.2 Enforced Sub-Populations (ESP) 
In Enforced Sub-Populations, as in SANE, the population 
consists of individual neurons instead of full networks, and 
a subset of neurons are put together to form a complete net­
work. However, ESP allocates a separate population for each 
of the u units in the network, and a neuron can only be re-
combined with members of its own sub-population (figure 2). 

ESP speeds up SANE evolution for two reasons: The sub-
populations that gradually form in SANE are already circum­
scribed by design in ESP. The "species" do not have to or­
ganize themselves out of a single large population, and their 
progressive specialization is not hindered by recombination 
across specializations that usually fulfill relatively orthogonal 
roles in the network. Second, because the networks formed 
by ESP always consist of a representative from each evolv­
ing specialization, a neuron is always evaluated on how well 
it performs its role in the context of all the other players. In 
SANE, networks can contain multiple members of some spe­
cializations and omit members of others, and its evaluations 
are therefore less consistent. 

The main contribution of ESP, however, is that it allows 
evolution of recurrent networks. Since SANE forms networks 
by randomly selecting neurons from a single population, a 
neuron cannot rely on being combined with similar neurons 
in any two trials. A neuron that behaves one way in one trial 
may behave very differently in another, resulting in evalua­
tions of neuron fitness that are very noisy. The sup-population 
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architecture of ESP makes the evaluation of the neurons more 
consistent. A neuron's recurrent connection weight ri wil l al­
ways be associated with neurons from sub-population Si. As 
the sub-populations specialize, neurons evolve to expect, with 
increasing certainty, the kinds of neurons to which they will 
be connected. Therefore, the recurrent connections to those 
neurons can be adapted reliably. 

As evolution progresses, each sub-population will decline 
in diversity. This is a problem, especially in incremental evo­
lution, because a converged population cannot easily adapt to 
a new task. To accomplish task transfer despite convergence, 
ESP is combined with an iterative search technique known as 
Delta-Coding. 

2.3 Delta-Coding 
The idea of Delta-Coding [Whitley et al., 1991] is to search 
for optimal modifications of the current best solution. In a 
conventional single-population GA, when the population of 
candidate solutions has converged, Delta-Coding is invoked 
by first saving the best solution and then initializing a pop­
ulation of new individuals called -chromosomes. The 
chromosomes have the same length (number of genes) as the 
best solution and they consist of values that rep-
resent differences from the best solution. The new popula­
tion is evolved by selecting -chromosomes, adding their 
values to the best solution, and evaluating the result. Those 

-chromosomes that improve the solution are selected for 
reproduction. Therefore, Delta-Coding explores the hyper-
space in a "neighborhood'* around the best previous solution. 
Delta-Coding can be applied multiple times, with successive 

-populations representing differences to the previous best 
solution. 

In the experiments presented in this paper, Delta-Coding 
is implemented with the ESP sub-population architecture. 
Once the neuron sub-populations have reached minimal di­
versity, the best solution (i.e. the best network specifica­
tion) is saved. New sub-populations are then initialized 
with -chromosomes so that each neuron in the best solu­
tion has a dedicated sub-population of -chromosomes that 
will be evolved to improve it specifically. ESP selects a 

-chromosome from each sub-population and adds the -
values to the connection weights of the neurons in the best-
solution. When these sub-populations converge the best -
chromosomes are added to the best solution to form the new 
best solution for the next iteration of the Delta phase. 

Delta-Coding was originally developed to enhance the fine 
local tuning capability of Genetic Algorithms for numerical 
optimization by Whitley et al. [1991]. Gomez and Miik-
kulainen [1997], showed how Delta-Coding can be used to 
facilitate incremental evolution. When a task was completed 
the best solution was saved and -populations initialized be­
fore evolution was begun on the next task. A more general 
approach has been taken in the experiments described in this 
paper. Delta-Coding is activated whenever the system's per­
formance ceases to improve over a predefined number of gen­
erations. This strategy limits the disruption of genetic build­
ing blocks when the population is still adjusting well to task 
changes by only introducing additional variation when neces­
sary. 

Figure 3: The double pole system. Snap-
shot of 3D real-time display available at 
http://www.cs.utexas.edu/users/inaki/esp/two-
pole-demo. 

3 Incremental Evolution 
Evolutionary search methods can be ineffective if the task is 
too demanding to exert significant selective pressure on the 
population during the early stages of evolution. In such a 
case, all individuals perform poorly and the OA gets trapped 
in an unfruitful region of the solution space. One remedy is to 
enlarge the population size so that a more diverse set of phe-
notypes is sampled. However, prohibitively large populations 
may be required to discover individuals with sufficient com­
petence to direct the search. Another approach is to view the 
goal task as one of many possible instances of a more general 
parameterized task. The system then learns by evolving on a 
sequence of increasingly difficult evaluation tasks culminat­
ing in the intended goal task. 

A number of researchers have applied task decomposi­
tion, or shaping, to make learning complex tasks tractable 
[Colombetti and Dorigo, 1992; Perkins and Hayes, 1996; 
Singh, 1992]. Typically, in these approaches the complex task 
is broken into simpler components or subtasks that are each 
learned by separate systems (e.g. GAs or rule-bases) and then 
combined to achieve the goal task. In contrast, in incremental 
evolution as proposed in this paper (and also used by Wieland 
[1991] and Saravanan and Fogel [1995]), a single system 
learns a succession of tasks. Such an adaptation process 
is similar to continual (or lifelong) learning [Elman, 1991; 
Ring, 1994], and motivated by staged learning in real life. 

4 Pole Balancing Experiments 
The starting point for our experiments is the more challenging 
double pole problem in which a second pole is placed next to 
the first (figure 3). The objective is to apply force to the cart 
at regular time intervals such that the poles are balanced in­
definitely and the cart stays within the track boundaries. The 
state of this system is defined by six state variables: the an­
gle of each pole from vertical the angular velocity of each 
pole the position of the cart on the track x, and the ve­
locity of the cart where (see Wieland[1991] for 
the equations of motion and parameters used in this task). We 
adopt the notation to denote the evaluation-task where is 
the length of the short pole in meters. The long pole is always 
set to 1 meter. Three different experiments were conducted 
using this configuration with the following three goal tasks: 
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1. e0.1 with velocity information. 
2. e0.1 without velocity information. 
3. e0.8 without velocity information. 
A l l of the pole balancing experiments were implemented 

using the Runge-Kutta fourth-order method with a step size 
of 0.01s. The state variables were scaled to before 
being input to the network. During simulation the networks 
output a force value every 0.02 seconds (i.e. time step) in 
the range For tasks 1 and 3, the initial angle for 
the long pole was set to (so that the networks could not 
control the system by simply outputting values close to zero), 
and fitness was determined by the number of time steps a net-
work could keep both poles within degrees from vertical 
and keep the cart between ends of a 4.8 meter track. A task 
was considered solved if a network could balance the poles 
for 100,000 time steps, which is equal to over 30 minutes 
in simulated time. For task 2, the fitness function and start­
ing state are described in section 4.3. Neuron chromosomes 
were encoded as strings of floating point numbers. Arithmetic 
crossover was used to generate new neurons. Each chromo­
some was mutated with probability 0.2, replacing a randomly 
chosen weight value with a random value within the range [-
6.0,6.0]. The techniques and parameters were found effective 
experimentally; small deviations from them produce roughly 
equivalent results. 

4.1 Related W o r k 

We compared the performance of ESP with SANE and the 
published results of three other evolutionary methods. The 
first two [Wieland, 1991; Saravanan and Fogel, 1995] have 
been applied to the double pole problem with velocities. 
Wieland used an NE approach which we have termed Con­
ventional NE. This is a single population method for evolving 
neural networks in which each individual represents a com­
plete network. Fogel and Saravanan use Evolutionary Pro­
gramming, a general mutation-based approach that generates 
offspring by perturbing the best individuals with Gaussian 
noise. For the case without velocities, Gruau et al. [1996] is 
the only study we know that has addressed this problem with 
some success. Therefore, for this task, we compare ESP only 
to the Cellular Encoding (CE) method. CE uses a graph trans­
formation language to evolve the network topology as well as 
its weights. We did not compare ESP with conventional Rein­
forcement Learning methods (e.g. Q-leaming, TD(A)) in this 
study, because NE methods have already been shown more 
efficient on easier versions of these tasks [Moriarty and Miik-
kulainen, 1996]. 

4.2 2 Poles w i t h Velocities(e0.1) 
Table 1 shows the results for the 2 pole configuration with 
velocities. As in Wieland [1991] and Saravanan and Fogel 
[1995], the networks were composed of 10 hidden units. Fo­
gel and Saravanan used feed-forward networks, and Wieland 
used a fully recurrent architecture. It is clear that NE methods 
based on partial solutions are superior to other neuroevolution 
methods in terms of learning speed. Although CPU time was 
unavailable for the other methods, it can be estimated from 
the number of evaluations required  

Method CPU Generations No. Nets 
Conventional NE 100 
Ev. Programming 150 2048 

SANE 37 63 200 
ESP 22 19 200 

Table 1: Comparison of results for the double pole simula­
tions with velocities (Long pole = 1m; Short pole = 0.1m). 
Evolutionary Programming data is taken from Saravanan and 
Fogel 11995], and Conventional NE from Wieland [1991]. 
SANE and ESP data are average of 50 simulations. 

Method Noise CPU Generations Failures 
SANE 38 96 45 

ESP 22 20 0 
SANE 50 

ESP 25 36 0 

Table 2: Comparison between SANE and ESP on the double 
pole problem with evaluation noise. The starting angle of the 
long pole was chosen randomly from a uniform distribution 
within the specified range of degrees from vertical (Long pole 
= l m ; Short pole = 0.1m). Each entry is the average of 50 
simulations. 

that they are considerably slower. Also, ESP is faster than 
SANE by a factor of 2. 

To verify the robustness of SANE and ESP we also per­
formed experiments in which the long pole was started with 
an angle chosen randomly from a fixed range. Table 2 shows 
the results for two ranges, one of degrees and the other 

degrees. This has the effect of varying the difficulty 
of the task from trial to trial thereby introducing noise into 
the fitness evaluation. Evaluation noise is a real problem 
in non-deterministic domains because it limits a GAs abil­
ity to determine the underlying fitness of a population. Even 
though SANE has been shown robust against noisy evalua­
tions in general [Moriarty, 1997], it could not handle it in this 
more difficult task, most of the time failing to find a solution 
at all. In contrast, ESP was largely unaffected by such vari­
ation solving this task every time even when the range was 
extended degrees. These results demonstrate that ESP is 
highly resistant to evaluation noise. 

4.3 2 Poles wi thout Velocities  

This task is identical to the one in the previous section ex­
cept that the networks do not receive any velocity informa­
tion. Therefore, the networks need to be recurrent so that the 
velocities can be computed internally using feedback connec­
tions. This makes the task significantly harder in two ways: 
(1) It is simply more difficult to control such a delicate sys­
tem when the concomitant problem of velocity calculation 
must also be solved. (2) The number of connections in the 
networks is necessarily larger, thereby expanding the size of 
the search space. 

For these simulations we compare ESP to CE using the 
same fitness function as Gruau et al [1996]. The function 

is the weighted sum of two separate fitness measurements 
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taken over a simulation of 1000 time steps: 

(1) 

(2) 
where t is the number of time steps the pole was balanced, K 
is a constant (set to 0.75), and the denominator in (2) is the 
sum of the absolute values of the cart and the large pole state 
variables, summed over the last 100 time steps of the run. 
This complex fitness is intended to force the network to com­
pute the pole velocities by penalizing swinging, and thereby 
making the GA favor controllers with the ability to return the 
poles to the upright position and damp oscillations. This kind 
of fitness measure is necessary because otherwise networks 
can balance the poles by merely swinging them back and 
forth (i.e. without calculating the velocities) [Gruau et al., 
19961. 

Gruau et at. claimed that the decidedly large number of 
evaluations required by CE to solve this task, compared to 
direct encoding (table 3), is offset by the number of evalua-
tions saved by not having to search for an effective network 
architecture to solve the problem. Also, they were unable to 
solve this problem using direct encoding. CE does not as­
sume an a priori network topology, and is therefore able to 
optimize it to suit a particular problem. While such methods 
are an important area of research, we found that they are not 
necessary nor advantageous for this problem. To demonstrate 
this we designed an e x t e n t that minimizes the amount of 
human intervention in the determination of network topology 
that ESP evolves. In this experiment, the number of hidden 
units H is still fixed for each evolution, but instead of being 
prescribed by the user it is chosen at random by the system 
in a range from For each simulation, the system be­
gins evolving with the randomly selected H. If it does not 
solve the task (for whatever reason), it will restart with a new 
H. This occurs repeatedly until the task is solved. The total 
number of evaluations over all of the restarts is then counted. 

Table 3 compares the performance of ESP and CE in this 
task. The ESP experiments are the aforementioned where H 
is selected randomly. The initial angle for the long pole was 
set to 4.5° for all simulations. To determine if the task had 
been solved, we tested the most fit individual from each gen­
eration to see if it could balance the pole for 100,000 time 
steps and score at least 200 on the generalization test describe 
below. The latter was necessary because we found that fitness 

did not correlate well with the ability to generalize to novel 
initial states. 

In addition to learning speed, the robustness of the solu­
tions was also tested. The column labeled "Generalization" 
refers to each method's average score on a test where a suc­
cessful controller is awarded a point for each of 625 different 
initial states from which it is able to control the system for 
1000 time steps. The test cases were generated by allowing 
the state variables and to take on the values:  

This test, first introduced in 
[Dominic et al., 1991], has become a standard for evaluating 

Method Evaluations Generalization No. Nets 
CE 840,000 300 16,384 ESP 69,466' 289 1,000 

Table 3: Results for double pole without velocities. Long 
pole = 1m; Short pole = 0.1m. Average of 20 simulations. 
Results for CE taken from Gruau et al [19961. 

the generality of solutions in pole balancing. A high score 
indicates that a solution has competence in a wide area of the 
state space. 

The main result is that ESP is roughly 5 times faster than 
CE without significantly compromising generalization, show-
ing that the search for an appropriate architecture for this task 
can be automated by a simple stochastic mechanism. The 
ESP simulations had a restart rate of 4.06. That means that, 
on average, the system had to start over with a new random 
H about 4 times per run. 

4.4 Incremental Evolution of 2 Poles without 
Velocities  

This section compares the results of incremental versus direct 
evolution. For the incremental experiments, the following 
method was used the determine the sequence of tasks: The 
evolution begins with the pole balancing system described 
in the previous section as the initial evaluation task 
When this task is solved, the shorter pole is lengthened by a 
predefined increment (P). P can change from task to task 
according to a simple rule. If ESP is unable to solve the next 
task after two Delta phases, P is halved and ESP then tries to 
solve the problem where the shorter pole has a length halfway 
between and the new, "unachieved" task Once this in­
termediate task is solved, ESP will move on to the next task 

So instead going from to in a single step, the system 
does it in two steps If after completing  
task can still not be achieved, P is halved again and added 
to yielding which is halfway between and Tasks 
are therefore repeatedly simplified, with P decreasing mono-
tonically, until either a transition occurs or a lower bound on 
P is reached. 

The incremental evolution can be illustrated best with an 
example. Normally with this method the task differences are 
quite large at first. As the networks move on to harder tasks, 
P tends to shrink, and more task transitions are required for 
a given increase in the length of the short pole. For the initial 
value of P used in these experiments (0.1), a typical evolution 
schedule might look like: 

In each of the direct evolution simulations, the evaluation 
task was fixed. Four different tasks were chosen to test this 
approach: Each task was attempted 50 
times evaluating 1000 networks per generation. Note that 
the direct simulations were given a population size over two 
times larger than that of the incremental (1000 vs.400). This 
was done to see if the harder tasks could be solved by simply 
increasing the number of search points. 

Table 4 compares the two methods on different tasks, 
was started with a value of 0.1. This means that after solv-
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Pole Length Direct Incremental 
0.3 17 100 
0.5 0 100 
0.7 0 98 
0.8 0 80 

Table 4: Incremental vs. Direct evolution on the double pole 
problem without velocities. The table shows the percentage 
of simulations that were able to achieve each task for the two 
approaches. The tasks are denoted by the length of the shorter 
pole (first column). 

ing the initial task the short pole wi l l be increased by 
100% to This is a significant change to the environ­
ment. Other approaches that have applied shaping to the eas­
ier double pole task (with velocities) have incremented the 
short pole by only 1% [Wieland, 1991; Saravanan and Fo-
gcl, 1995]. ESP was almost always able to complete the first 
three tasks without having to decrement P, 
and the first two tasks were always achieved in less than 70 
generations. 

Even with a larger population, Direct evolution was inca­
pable of solving When the task is this hard ESP cannot 
discover a good region of the search space before converg­
ing. No individual does well enough to guide the search. ESP 
selects genotypes that are slightly better than others in terms 
of the fitness scalar but are not necessarily any closer to the 
goal. The incremental approach, on the other hand, was able 
to solve the hardest task within 3000 generations 80% 
of the time, making an average of 30 task transitions per run. 

5 Conclusions 
The results show that ESP with Delta-Coding can be an ef­
ficient method for controlling unstable systems. It was able 
to solve a Markovian version of the double pole balancing 
problem much faster than other methods, and also a much 
more difficult non-Markovian version. Incremental evolution 
was found to be an effective way to scale up the approach to 
even more difficult tasks. The non-Markovian control task is 
an important benchmark not only because is it presents non­
linear dynamical environment, but also because it requires 
memory. Many tasks in varied domains from game-playing 
to robotics require memory to overcome perceptual aliasing. 

In the future, we plan to apply ESP to real-world robot nav­
igation tasks. Tasks of this kind are often naturally decompos­
able into a hierarchy of subtasks amenable to the incremental 
paradigm. They also pose the challenge of changing environ­
ments, which we believe can also be solved effectively by the 
same approach. 
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