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Abstract 
Many large Markov decision processes (MDPs) can 
be represented compactly using a structured rep­
resentation such as a dynamic Bayesian network. 
Unfortunately, the compact representation does not 
help standard MDP algorithms, because the value 
function for the MDP does not retain the struc­
ture of the process description. We argue that in 
many such MDPs, structure is approximately re­
tained. That is, the value functions are nearly addi­
tive: closely approximated by a linear function over 
factors associated with small subsets of problem 
features. Based on this idea, we present a conver­
gent, approximate value determination algorithm 
for structured MDPs. The algorithm maintains an 
additive value function, alternating dynamic pro­
gramming steps with steps that project the result 
back into the restricted space of additive functions. 
We show that both the dynamic programming and 
the projection steps can be computed efficiently, de­
spite the fact that the number of states is exponen­
tial in the number of state variables. 

1 Introduction 
Over the past few years, there has been a growing interest in 
the problem of planning under uncertainty. Markov decision 
processes (MDPs) have received much attention as a basic 
semantics for this problem. An MDP represents the domain 
via a set of states, with actions inducing stochastic transitions 
from one state to another. The key problem with this type 
of representation is that, in virtually any real-life domain, the 
state space is quite large. However, many large MDPs have 
significant internal structure, and can be modeled very com­
pactly if that structure is exploited by the representation. In 
factored MDPs, a state is described implicitly as an assign­
ment of values to some set of state variables. A dynamic 
Bayesian network can then allow a compact representation 
of the transition model by exploiting the fact that the transi­
tion of a variable usually depends only on a small number of 
other variables. In a simple robotics example, the location of 
the robot at time t + 1 may depend on its position, velocity, 
and orientation at time t, but not on what it is carrying. The 
momentary rewards can often also be decomposed: as a sum 
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of rewards related to individual variables or small clusters of 
variables. In our robot example, our reward might be a sum 
of two subrewards: one associated with location (for getting 
too close to a wall) and one associated with the printer status 
(for letting paper run out). 

While these representations allow very large, complex 
MDPs to be represented compactly, they do not help address 
the planning problem. Standard algorithms for solving MDPs 
require the representation and manipulation of value func-
tions — functions from states to values. Since a state is a 
full instantiation of all state variables, the representation of 
the full value function is exponential in the number of state 
variables. Unfortunately, structure in a factored MDP does 
not, in general, guarantee any type of structure in the value 
function. Even some very simple MDPs with very compact 
transition models and fully decomposed rewards lead to value 
functions that have no usable structure whatsoever (see Sec­
tion 2). Thus, algorithms that represent the value function 
exactly will be impractical for dealing with many large, struc­
tured domains. 

One approach to controlling the size of the value function 
representation is to use a truncated value function that ignores 
some state variables. Several methods exist for detecting ir­
relevant state variables. A closely related approach uses ap­
proximate or abstract model that eliminates some state vari­
ables. (See Boutilier et ai [1999] for a survey of these ap­
proaches.) These methods have the common limitation that 
they can force different states to have the same value, pro­
ducing a coarse-grained approximation to the value function 
with large plateaus of indistinguishable states. 

Our work is based on the intuition that, while value func­
tions might not be structured, there are many domains where 
they are "close" to having exploitable additive structure. Con­
sider, for example, a stochastic version of a traditional plan­
ning task, where several subgoals can contribute to the over­
all success of the plan. Here, it is quite plausible that the 
value of a state is approximately linear in the set of subgoals 
achieved at that state (with more important subgoals having, 
perhaps, a higher weight). Clearly, this is only an approxi­
mation, as subgoals might interact in various ways; however, 
it may be a fairiy good approximation. Furthermore, if some 
subgoals interact strongly, we can have value function com­
ponents that depend on the status of several subgoals. Such 
value functions have a long history in multi-attribute utility 
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theory [keeney and Raiffa; 1976]; they also play a central 
rote in influence diagrams [H iya rd and Matheson; 1984]. 

Based on this intuition, we propose a new approach to com-
puting approximate value functions for structured MDPs. We 
restrict attention to value functions that are a linear combi­
nation of local basis functions, each of which depends only 
on a small subset of the state variables. As discussed above, 
we believe that, in many cases, such a value function can be 
a good approximation to the correct value function. In par­
ticular, unlike the coarse-grained approximations discussed 
above, this approximation can assign a distinct value to every 
state. However, it can still be represented compactly using 
a small number of parameters (the coefficients of the basis 
functions). We propose to use algorithms whose entire com­
putation is restricted to value functions that are compactly 
represented in this form. 

Our focus in this paper wi l l be on the value determination 
task: computing the value function associated with a particu­
lar policy. This task can be solved using a simple algorithm 
that iterates through a dynamic programming step, gradually 
converging to the correct value function. Our algorithm aug­
ments this basic iteration with an additional projection step, 
where the value function resulting from each dynamic pro­
gramming step is projected back down into the "allowable" 
space of value functions. 

There are several key issues that arise in such an algorithm. 
First, we must show how the operations required by such an 
algorithm — dynamic programming and projection — can be 
executed efficiently. One of our main contributions is that we 
provide, for both of these steps, an efficient algorithm that de­
pends upon the size and structure of the model and basis func­
tion representations, not upon the exponentially sized state 
space. We note that we can accomplish these operations ef­
ficiently despite the fact that each of the exponentially many 
states may have a distinct value. Second, we must show that 
the algorithm behaves reasonably: that it converges to a sta­
ble fixed point, hopefully one which is close to the true value 
function. By a careful choice of distance metric, we can show 
conditions under which the algorithm wil l converge to a solu­
tion which is not too far away from the best value function de-
scribable in the restricted space. Finally, we must show how 
to apply this algorithm to the task of evaluating policies in a 
factored MDP. This application is far from trivial, as policies 
in a large MDP may be very complex. We show that our al­
gorithm allows effective policy evaluation for policies repre­
sented as a small set of conjunctive decision rules (e.g., deci­
sion trees); this class is arguably the most widely used class of 
compactly represented policies [Boutilier and Dearden, 1996; 
Dean et al., 1997]. 

2 Preliminaries 
We begin by introducing some of the basic concepts that we 
will be using. Our primary focus is on the value determination 
problem. Thus, for the time being, we will restrict attention to 
processes without a decision component. A Markov Process 
(MP) is defined as a triple (5, R, P) where: is a set of 
states; is a reward function such that R(s) 
represents the reward obtained by the agent in state P is a 

transition model, so that represents the probability 
of going from state to state  

A Markov process is associated with a value function 
where is the total cumulative value 

that the agent gets if it starts at state We wil l be as-
suming that the MP has an infinite horizon and that future 
rewards are discounted exponentially with a discount fac­
tor Thus, is defined using the fixed point equation 

A simple iterative pro-
cess can be used to perform value determination. We choose 

We then repeatedly execute a dynamic program-
ming step: 

0) 

We use to denote the operator that takes a value function 
and returns We call the backprojection 

of Repeated applications of T are known to converge 
to the true value function  

In a factored MP, the set of states is described via a set 
of random variables where each  
takes on values in some finite domain A state x 
defines a value for each variable The 
transition model is described as a dynamic Bayesian net-
work (DBN). Let denote the variable at the current 
time and the variable at the next step. The transition 
graph is a two-layer directed acyclic graph whose nodes 
are In this paper, we will as­
sume that all edges in this graph are directed from nodes in 

to nodes in (This assumption 
can be relaxed, but the resulting algorithm becomes some­
what more complex. We defer details to a longer paper.) We 
denote the parents of in the graph by Each node 

is associated with a conditional probability table (CPT) 
The transition probability is then 

defined to be where ui is the value in x of the 
variables in  

We also need to provide a compact representation of the 
reward function. As discussed in the introduction, we assume 
that the reward function is factored additively into a set of 
localized reward functions, each of which only depends on a 
small set of variables. In general, we say that a function / is 
restricted to a set of variables C if Let 

be a set of functions, where each is restricted 
to a cluster of variables such that : 
Val The reward function associated with the 
state x is then defined to be We note that, 
here and in the future, we use the following shorthand: if is 
a function over some set of variables Y, and we wil l 
use to denote the value that takes over the part of the 
vector z that corresponds to variables in Y. 

One might be led to believe that factored transition dynam­
ics and rewards would result in a structured value function. 
Unfortunately, this usually is not the case. As we execute DP 
steps, the value function typically becomes more complex. 

1We begin with by convention. Any choice for will 
converge to the same fixed point. 
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Example 2.1: Assume that we have only a single-reward 
function R that depends only on so it also 
depends only on Consider the summation in the DP step 
for  

where u is the instantiation of in x. Thus, de­
pends on and on the entire parent set of X1. Similarly, 

depends on the union of all of their parents, etc.  
In general, the value function will eventually depend on all 
of the variables that have any influence whatsoever, direct or 
indirect, on a reward. In practice, this set will typically be all 
of the state variables, as it is somewhat superfluous to intro­
duce into the process description variables whose value never 
matters to the agent's utility. 

3 Constrained value determination 
As we described in the introduction, the key idea behind our 
approach is the restriction of our algorithms to the use of 
value functions in a limited class. This idea is best known 
under the name value function approximation, which is used 
frequently in the context or reinforcement learning [Tade-
palli and Ok, 1996; Van Roy, 1998]. We use this idea in 
the context of maintaining full value functions and propa­
gating them through the DP equation (1) [Gordon, 1995; 
Tsitsiklis and Van Roy, 1996]. However, unlike other meth­
ods, which deal with large state spaces by considering only a 
restricted set of "representative" states, our method efficiently 
finds a least squares approximation for the entire state space. 

More precisely, let be a restricted set of value 
functions. We will define via a set of basis functions 

That is, we have that H is a basis for 
if every function can be written as 

for some weights  
Our algorithm repeatedly executes the following steps. It 

begins with a value function It then backprojects 
it via (1), resulting in a value function . In general, the 
DP step does not maintain the property of being in a restricted 
class Therefore, we typically have that We 
then project into i.e., find the "closest" value func­
tion in The result is our new value function  

We must decide what it means for a value function 
to be "close" to some other value function by choosing 
a suitable distance measure. Several constraints combine to 
make this choice difficult. On the one hand, we need a con-
traction property: exact value determination converges be­
cause (1) is a contraction — each iteration decreases the error 

of by a constant factor. In order to get convergence for 
approximate value determination, we need a similar contrac­
tion property. We also need an effective algorithm for pro-
jecting into relative to this distance. Finally, we need this 
projection operation to be a non-expansion under the same 
distance, otherwise we are not guaranteed the desired conver­
gence property. Tsitsiklis and Van Roy [1996] underscore the 
importance of this point by demonstrating a two-state MDP 
for which this type of approximate value determination di­
verges if we use standard least-squares approximation. Un­
fortunately, it turns out to be nontrivial to find a distance met­
ric that satisfies all criteria. For example, (1) is not a con­
traction in Euclidean distance. It is a contraction in Loo and 

norms2, but we have no efficient projection algorithm for 
these distances. 

One choice that turns out to satisfy both desiderata is the 
weighted Euclidean distance. Let be the occupancy 
probability ofthe state 8 in the stationary (steady-state) dis-
tribution We define the weighted Euclidean distance 

We say that is the 
least projection of into is the function in  
that is closest to in terms of Intuitively, unweighted Eu­
clidean distance places equal emphasis on getting each 
as close as possible to whereas the weighted distance 
places more emphasis on getting correct values for states that 
are visited more often. 

Fortunately, there exists a fairly straightforward algorithm 
for doing projection relative to weighted Euclidean distance. 
The key operation is the weighted dot product. For two func­
tions we define  
We define the length To project 
a function into we first compute each coefficient 

This intermediate weight vector 
has to be transformed, in order to ac­

commodate for any (linear) dependencies between our basis 
vectors. We define and define A to be the 
matrix If we now define a weight vector  
we know that is the least projection of  
into [Strang, 1980]. We define Vp to be the operator that 
projects into  

The contraction of the operator in distance is estab­
lished in Nelson [1958] and is combined with projection in 
Van Roy [1998], yielding: 
Theorem 3.1: (a) The operator is a contraction in dp dis-
tance with rate hence, has a unique fixed point 

Then is a contraction in dp dis-
tance with rate hence,has a unique fixed point V*. 
Furthermore, satisfies: 

In other words, the alternating DP and projection algorithm 
converges to a fixed point; the value function at that point is 

2The norm contraction requires stronger assumptions than we 
have made here. For example, positive rewards and a pessimistic V° 
will suffice. 

3 We assume, for simplicity, that the process is mixing. 
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at most a constant factor worse than the optimal value func­
tion within i.e., the one closest to the true optimal value 
function, Thus, if we assume that our true value function 
is well-approximate by some function within we have 
strong bounds on the performance of the algorithm. 

4 Factored value functions 
The ideas described in the previous section are well-known. 
They allow a compact representation of very complex value 
functions: we only need to maintain the coefficients (the 's) 
for the limited number of basis functions that we choose to 
use. Why have these methods not already been used to ad­
dress the problem of value determination in factored Markov 
processes? Unfortunately, a compact representation of the 
value function is not enough. The representation has to sup­
port efficient execution of our two main computational steps: 
the DP step, and the dot product step required for  

We thus turn our attention to the specific properties of fac­
tored processes. As we discussed in the introduction, we 
propose restricting our algorithm to factored value functions, 
ones that are linear in functions over small clusters of vari­
ables. More precisely, we define a cluster C of variables to 
be a subset of X. The key idea behind our result is that we 
can efficiently perform approximate value determination with 
any basis whose functions are restricted to small clusters. In 
decision-analytic terminology, we say that a function is gen­
eralized additive [Bacchus and Grove, 1995] over a set of 
clusters if it can be written as a where each is 
restricted to some The function is said to be additive 
if the clusters in are disjoint. Now, let 
and assume that each is restricted to some small cluster 

Clearly, the functions in are generalized additive 
in In fact, it is easy to construct a basis that 
allows us to have represent exactly the set of all general­
ized additive functions over a particular set of clusters. In the 
remainder of the analysis, we assume that we have restricted 
attention to a specific basis and use to denote  

As we now show, restricted basis functions allow an effi­
cient implementation of the DP and projection steps. Assume 
that we are restricting to value functions in so that (as a 
result of the algorithm so far) is in this space. Thus, 
as we argued, can be represented as for some 
set of functions each restricted to some small cluster 
(Specifically, we have Let us examine the result 
of the DP step: 

(2) 

Consider one of the terms in (2) that corresponds to some 
function As we saw in Example 2.1, if the domain of a 
value function is restricted to a single variable its back-
projection through (1) depends on all of parents. The 
same principle holds here. Thus, let be the variables in 

be the instantiation of these variables 

in the state x. It is easy to show that 

Thus, the term for in (2) simplifies to an expression in (3) 
that depends only on the value of the variables in in the 
preceding state x. We denote the function in (3) by , To 
compute it, we must (at worst) generate the entire conditional 
probability this can take  

operations. The locality of influence that is char­
acteristic of DBNs typically implies that is small, allow­
ing this computation to be done efficiently. 

To compute the unweighted projection of we 
simply need to compute its dot product with each basis func­
tion As the dot product is a linear operation, it can be 
decomposed into a separate dot product of with each of 
the terms in (2): for and for It 
is straightforward to verify that computing the dot product of 

with a function restricted to a set Y requires time which is 
linear in  

Unfortunately, the unweighted projection is not the opera­
tion we need; rather, we need to compute the weighted projec­
tion in order to get a least projection. There are two major 
obstacles preventing us from using a weighted dot product 
in our context. First, the stationary distribution of our cur­
rent policy is not known. More importantly, the stationary 
distribution has no structure that can be exploited to allow a 
compact representation [Boyen and Roller, 1998]. In other 
words, we can represent this distribution only explicitly, as 
an exponentially-sized probability function. This problem 
makes it impractical to compute the stationary distribution; 
it also prevents us from doing the projection step efficiently, 
as discussed above. 

We solve both problems at once by building on the work 
of Boyen and Koller [1998] (BK from here on). They show 
how a process very similar to our iterated DP & project al­
gorithm can be used to maintain and propagate a compactly 
represented approximate belief state — a distribution over the 
states at a given point in time. Most simply, they partition 
X into a set of disjoint clusters The distribu­
tion over the states is represented implicitly as a product 
of distributions over these clusters. The step of 
propagating to the next time step results in a distribu­
tion that is not of the right form; the algorithm gener­
ates by computing the marginal distributions over each 

BK show that, if the marginalization introduces an error 
of then, for all away (in relative entropy) 
from the distribution that would have been maintained by a 
similar process without the approximation. Here, is the mix-
ing rate of the process, which can be shown to depend on the 
sizes of the CPTs in the DBN, and not on the size of the pro­
cess. Thus, we have that  
Hence, the number of iterations required to get close to the 
stationary distribution is very small — logarithmic in 
The benefits of this approximate computation are twofold: (1) 
The complexity of the algorithm is not prohibitive; its com­
plexity depends on the sizes of the clusters and 
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on the interconnectivity of the DBN. (2) The result is a fac­
tored distribution, which can be used in an efficient weighted 
projection algorithm. 

Let us see how a factored distribution can be used in the 
context of a weighted projection. The key procedure used in 
the algorithm is that of computing 
for some function restricted to a set Y. It is easily verified 
that We note that we can 
easily compute Let yk denote the part of y that over­
laps with variables in the cluster We compute by 
a simple marginalization process over the pk component of 
p, and then multiply the results for all 2= 1 , . . . , Note 
that this operation requires time which is linear in 
and in for the relevant clusters Qk. We can use 
this subroutine for doing the weighted projection, simply by 
noting that and that if is restricted 
to Y and to Z, then • is restricted to 

The full algorithm is as follows: 

1. Compute a factored approximation to the stationary 
distribution. 

2. Precompute for each 
and set Invert the matrix A. 

3. Precompute for each and  

4. Set all which defines Iterate the follow­
ing computation over t: 

(a) For each component compute  

(b) 
(c)  

(d) which in turn defines  

The number of operations required by an iteration of this al­
gorithm grows linearly with the number of basis functions, 
and exponentially with the sizes of the clusters and their back-
projections. It also depends (in step 4b) on the extent to which 
backprojected clusters overlap with other clusters 
Thus, the complexity is determined by the interconnectivity 
of the DBN, by the amount of interaction in our restricted set 
of value functions, and by the extent to which the structure of 
the value functions matches the structure of the process. 

The main remaining question involves the performance of 
this algorithm. Ideally, we would like to state a theorem along 
the lines of Theorem 3.1. The problem is that our projec­
tion step no longer uses the exact stationary distribution as 
weights. However, one would hope that if the approxima­
tion is a good one (as suggested by the results of BK), the 
error introduced by using projection relative to the approxi­
mate weights would not prevent the process from converging. 
Indeed, we can show that such a result holds (albeit only for 
relative error approximation, a slightly stronger notion than 
the one guaranteed by BK): 

Theorem 4.1: Assume that is an relative approx­
imation to the true stationary distribution i.e., for all x, 

be the contraction 
then our approx-

imate value determination algorithm is a contraction in 

Figure 1: A factory with six machines. A reward of 1.0 is 
given for each time step in which machine is functioning. 

Added basis Unweighted Projection Weighted Projection 
functions 

0.368 0.326 0.169 0.160 
2.283 2.757 0.098 0.124 
0.632 0.683 0.130 0.111 
0.104 0.132 0.026 0.020 
0.075 0.092 0.023 0.019 
0.051 0.060 0.020 0.018 

Table 1: The change in the sum of squared errors (SSE) 
weighted by the uniform distribution, and by the true sta­
tionary distribution,  

distance with rate and therefore has a unique fixed point 
Furthermore, satisfies: 

5 Experimental Results 
We performed some simple experiments to demonstrate the 
convergent behavior of our algorithm and to verify our intu­
itions about the additive structure of MDP value functions. 
Figure 1 shows an abstracted factory with six machines, 

In this problem, a machine can be in two states, 
working and not-working. If a machine and all of its prede­
cessors were working in the previous time step, then the ma­
chine will work in the current time step with probability 0.8. 
There is a stochastic startup lag, which reduces this probabil­
ity to 0.5 if the machine was not working in the previous time 
step. No machine can operate if its predecessors were not 
both working in the previous time step. Note that a failure in 
any of will have a cascade effect, ultimately caus­
ing M6 to fail. It wil l take several time steps for the system to 
recover. A reward of 1.0 is received whenever machine 
is working. 

We evaluated this 64-state system using our constrained 
value determination algorithm with a discount factor of = 
0.90 and a series of six different bases. The basis functions 
are binary so that, for example, has value 1 when 
both and are working, and value 0 otherwise. We per­
formed both unweighted projection, which is not guaranteed 
to converge, and our weighted projection algorithm. For this 
problem, we achieved convergence in all cases. The second 
and third columns of Table 1 show the reduction in error as 
new basis functions are added. The first three additions allow 
the value function to depend on the status of more individual 
machines. The last three allow it to depend in a correlated 
way on the status of pairs of machines. In each case, we ap-
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Table 2: Results with modified to work if either of M4 or 
M5 are working. 

proximated the stationary distribution using a product of dis­
tributions over the individual machine states, Notice that the 
weighted projection outperforms unweighted projection in all 
cases, even in the unweighted norm. Also, the weighted 
error for the weighted projection is monotonically decreas­
ing, while the other errors fluctuate. The final value function 
for the weighted projection with all ten basis functions corre­
sponds to an unweighted RMS error of less than 0.141. The 
true value function for this problem assigns values between 
0.48 and 2.78, so that 0.141 is a very reasonable error bound. 
Hence, our final value function is a good 10 parameter ap­
proximation to the true, 64 parameter value function. 

To further verify our hypothesis about additive structure of 
value functions, we changed machine so that it would 
work if either of or were functioning. In this case, 
we would expect the value function to be less sensitive to 
correlations between the status of and The results, 
shown in the Table 2, support this hypothesis. We see that 
introducing the basis function provides no sig­
nificant reduction in the error. (The overall increase in error 
compared to the original problem is probably due to higher 
overall values in this model — between 2.30 and 5.74.) We 
observe a similar pattern in the comparison of weighted and 
unweighted projection: weighted projection provides more 
reliable approximations. 

Finally, we demonstrate how the value functions generated 
by our algorithm can be useful in decision making. Suppose 
that there are two types of workers, reliable and resilient. 
When a reliable worker is operating a working machine, it 
will continue to work properly with probability 0.9, but if 
the machine fails, the worker will restart the machine suc­
cessfully with probability 0.4. A resilient worker wil l keep a 
working machine functioning with a probability of only 0.8, 
but recovers from failures with probability 0.5. If the manager 
of our 6-machine factory has three of each type of worker, 
he may wish to compare different strategies for allocating 
workers to machines. One possibility would be a reliable-
first strategy that places the reliable workers on machines 

to avoid cascade failures. A resilient-first strategy 
would place the resilient workers on machines to 
recover quickly when failures occur. We consider the origi­
nal machine configuration, which requires both and 
to be working for machine to work properly. For this 
problem the reliable-first strategy completely dominates the 
the resiliant-first strategy. 

Figure 2 shows a graph of the true value function for the 
resilient-first strategy versus the approximation with all 10 
basis functions. The states are numbered 0 . . . 63. The status 

Figure 2: The resilient-first strategy. 

Figure 3: The reliable-first strategy. 

of the machines is used to identify the states, e.g., when ma­
chine M6 is working, the highest order bit of the state num­
ber has value 1; when machine is working the lowest or­
der bit of the state number has value 1. Figure 3 shows both 
value functions for the reliable-first strategy. The qualitative 
closeness of the these approximations is apparent from in­
spection — the shape of the approximations are quite close to 
the shape of the exact value functions. Moreover the approx­
imate value functions maintain the dominance of the reliable-
first strategy over the resiliant-first strategy. Thus, we see that 
our approximation closely matches the qualitative structure 
of the exact value functions for these domains. 

6 Policy evaluation 
We now address the issue of using our value determination al­
gorithm to evaluate a policy in an MDP, where we extend the 
definition of our process to incorporate actions. Most impor­
tantly, the transition probability P and the reward R now also 
depend on a. In the context of factored MDPs, this extension 
is usually done by defining a separate transition graph and as­
sociated set of CPTs for each action the resulting transition 
probability is thereby factored (perhaps in a dif­
ferent way) for every action The reward function can also 
vary over actions in a similar way. 

Our goal now is to compute an approximate value function 
for a particular policy Intuitively, there seems to be no 
problem. A policy in an MDP specifies a transition model 

and a reward function We might simply 
apply our algorithm to these. Unfortunately, the problem is 
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Added basis Unweighted Projection Weighted Projection 
functions 

1.449 1.663 0.260 0.303 
•  0.319 0.385 0.207 0.174 

0.175 0,225 0.132 0.121 

t  

0.175 0.225 0.132 0.121 
t  0.210 0.277 0.120 0.115 

0.210 0.277 0.120 0.115 



somewhat more subtle. The most obvious difficulty is* that 
the naive representation of a policy in an MDP with expo­
nentially many states is also exponentially large. Therefore, 
we might not even be able to construct a compact transition 
model and reward function for Clearly, we must restrict the 
set of policies that we consider to ones that can be efficiently 
manipulated by our algorithm. 

To understand this issue, assume that we have constructed 
a value function and are now trying to perform our DP 
and projection steps. We do not have a single transition model 
to use for the next step of backprojection, because the action 
depends on the state. However, we can use our algorithm to 
compute a factored approximation to the function 

we simply back-
project through the transition model and then project 
into We now have to combine the different functions to 
get a complete value function. For each action let be 
the subset of states in which a is taken, and let be the in­
dicator function which takes value 1 at x when and 
value 0 otherwise. Then, 

We see that, depending upon the policy, can be com­
posed of an arbitrary combination of pieces of the 
functions. In particular, if the indicator functions Isa depend 
on variables in many different clusters, the combination will 
no longer be in even if each of the is in Thus, 
we need to project back into  

As before, we need to compute to 
perform the projection. This reduces to the problem of com­
puting for each action and summing the 
results. Since is in it can be represented as  
where each is restricted to some small cluster Again, 
we need only compute Let Y be the set of 
variables appearing in Then: 

(4) 

where : x is consistent with Thus, 
in order to perform this weighted dot product operation, we 
must be able to compute the total probability, according to the 
approximate stationary distribution, of In many cases, 
this computation is far from trivial, even if the set has a 
simple and compact description (e.g., as a linear separator 
defined over the variables  

However, for what is arguably the most often-used class 
of compactly represented policies, this computation can be 
done easily. A region-based policy is one represented as a 
set where each is an assignment of values 
to some subset of the variables in X. (Different can refer 
to different sets of variables.) Each thereby specifies a 

4For other classes of policies, Monte Carlo sampling may suc­
ceed in providing good estimates for We defer discussion 
to a longer paper. 

region in the state space, such that action is taken in this 
region. The assumption is that the regions corresponding to 
the different are mutually exclusive and exhaustive. Note 
that a decision tree representation of the policy {Boutilier and 
Dearden, 1996], falls into this category, as do the policies 
for the aggregated state spaces [Dean et al., 1997]. Given the 
factored representation of can be computed simply 
and efficiently, in the obvious way. 

It remains only to extend the algorithm of BK to the task 
of computing the approximate stationary distribution, for a 
region-based policy, Recall that their algorithm was based 
on repeatedly computing a factored belief state from a 
factored belief state where 

Here, we have a potentially different transition model for 
each Therefore, we must do a separate computation for 
each of them: 

Fortunately, the algorithm of BK can easily be adapted 
to this task. We simply instantiate as evidence into the 
Bayesian network that they use for doing the one step propa­
gation, and then compute the internal summation. The prob­
abilities can be computed easily, as described above. 
This algorithm provides a factored representation of the sta­
tionary distribution, which can be used in Equation 4. Thus, 
we can efficiently compute an approximate value function for 
any region-based policy. 

7 Discussion and conclusions 
We have shown that we can efficiently compute factored ap­
proximations to value functions. We have also demonstrated, 
both theoretically and empirically, that the result of our ap­
proximate value determination algorithm can often be quite 
close to the true value function. Finally, we showed how to 
use our algorithm for evaluating policies in a restricted but 
interesting class. 

It is useful to compare our algorithm to other algorithms 
for factored MDPs [Boutilier et al. 1999]. Some algorithms 
for factored MDPs try to construct compact value functions 
by exploiting structured, usually tree-based, CPTs. When the 
value function representation becomes too large, the standard 
approach is to perform a type of state aggregation [Boutilier 
and Dearden, 1996; Dean et al. 1997]. Thus, their approxi­
mate value function is one that is piecewise constant over the 
state space. In other words, there are substantial blocks of 
states all of which take the same value. A main advantage 
of our approach is that it uses a richer class of value function 
approximations. It seems clear that, at least in some domains, 
a linear approximation is much more accurate. While the al­
gorithm presented in this paper does not exploit structured 
CPTs, this feature can be added easily to make both the dy­
namic programming steps and projection steps more efficient. 
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Other approaches [Meuleau et al., 1998; Boutilier et al., 
1998; Singh and Cohn, 1998] decompose the process into 
subprocesses, and compute a separate value function for each 
one. They then attempt to combine the different value func­
tions into a global one using some heuristic approximation. 
Generally speaking, the decoupling of the process is a much 
harsher approximation than the factorization of the value 
function. The latter still allows influence to flow between the 
different subprocesses, and thereby is likely to get more ac­
curate results. 

Of course, it is important to remember that these other ap­
proaches solve the planning problem whereas, at least for 
now, our algorithm is restricted to the value determination 
problem. The obvious question is how our value determina­
tion algorithm can be used for planning. The most obvious 
approach is to use our algorithm as a subroutine in an algo­
rithm such as policy iteration, where we compute the value 
function for some policy, and use it as guidance for locally 
improving the policy. Unfortunately, there are barriers to this 
application of our algorithm. The difficulty lies in the nature 
of our approximation. We measure our distance from the true 
value function in a norm that is weighted by the probability 
that the different states will be visited in the stationary dis­
tribution. Hence, states that are visited infrequently can have 
very poor value estimates. Changes to the policy based upon 
these estimates wil l not be guaranteed to improve the overall 
policy as in exact policy iteration, and could actually make 
the policy much worse. The issue of using our value func­
tions as guidance in policy search is an important direction 
for future work. 

There are, however, several other important uses for a value 
determination algorithm. Plan evaluation is an important 
problem in and of itself; our algorithm allows us to take poli­
cies generated by a user or some other tool, and produce a 
fairly good value function for them. Furthermore, it is known 
that simple policies can be improved significantly by the ad­
dition of a small lookahead search that uses the value function 
of the policy as a heuristic value at the leaves of the search. 
Indeed, the recent work of Sutton [ 1999] shows that even very 
simple policies can be quite powerful if a meta-level reasoner 
is allowed to choose which one to apply in different contexts. 
Our algorithm can readily be used to compute the value func­
tions necessary for making such a choice. 

Factored MDPs provide us with a compact and natural rep­
resentation for the type of complex problems that arise in real-
world settings. Unfortunately, the structure is not reflected in 
the value function for these processes. However, we believe 
that the value functions that arise are often approximately 
factored, i.e., approximated well by the generalized additive 
functions that we have discussed. The fact that such functions 
are often used by human decision makers supports this intu­
ition. We therefore believe that algorithms that exploit this 
structure can be very successful. This paper takes a first step 
towards this goal. 
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