
Reactive Contro l of Dynamic Progressive Processing 

Abstract 
Progressive processing is a model of computa­
tion that allows a system to tradeoff computa­
tional resources against the quality of results. 
This paper generalizes the'existing model to 
maice it suitable for dynamic composition of in­
formation retrieval techniques. The new frame-
work addresses effectively the uncertainty asso­
ciated with the duration and output quality of 
each component. We show how to construct an 
optimal meta-level controller for a single task 
based on solving a corresponding Markov deci­
sion problem, and how to extend the solution 
to the case of multiple and dynamic tasks using 
the notion of an opportunity cost. 

1 In t roduct ion 
This paper is concerned with the design and implementa­
tion of an effective computational model for information 
retrieval search engines that can tradeoff computational 
resources against the quality of the result. Our approach 
is based on run-time monitoring of the information re­
trieval process and on dynamic selection of information 
retrieval techniques so as to maximize the quality of the 
answer produced with limited computational resources. 
Information retrieval from a large collection involves un­
certainty regarding the duration of the process and the 
quality of the result. In addition, there may be large 
variability in the number of requests that require a re­
sponse at any given time. By taking a context depen­
dent, dynamic approach to the problem we can signif­
icantly improve the average quality of service provided 
by such systems. 

A typical search engine is composed of several informa­
tion retrieval modules that perform such tasks as query 
formation, query optimization, query evaluation, preci­
sion improvement, recall improvement, clustering, and 
results visualization. For each one of these phases, there 
are a wide variety of techniques that have been devel­
oped in recent years [Jones and Willett, 1997]. Cur­
rently, search engines are built by choosing and integrat­
ing a fixed set of modules and techniques. The choices 
are made off-line by the designer of the system. This 

Figure 1: Illustration of a progressive processing task for 
an information retrieval search engine 

static approach excludes techniques that work well in 
special situations. In addition, current information re­
trieval systems are optimized for a particular load; they 
cannot respond dynamically to varying load, availability 
of computational resources, and to the specific charac­
teristics of a given query. 

The ability to dynamically adjust computational ef­
fort based on the availability of computational resources 
has been studied extensively by the AI community since 
the mid 1980's. These efforts have led to the develop­
ment of a variety of techniques such as anytime algo­
rithms [Dean and Boddy, 1988; Zilberstein and Russell, 
1996], design-to-time [Gravey and Lesser, 1993], flexible 
computation [Horvitz, 1988], imprecise computation [Liu 
et a/., 1991], and progressive reasoning [Mouaddib, 1993; 
Mouaddib and Zilberstein, 1997]. 

We adopt the progressive processing framework to for­
malize and solve the meta-level control problem of a real-
time information retrieval application. The technique 
maps each task to a progressive processing unit (PRU). 
Each PRU is composed of a set of modules that can con­
tribute to the quality of the result. This offers a natural 
framework to describe the set of information retrieval 
techniques available to the system. Figure 1 shows a 
simple task structure whose input is a query composed of 
a list of keywords. The task structure has three process­
ing levels. The first level includes three alternative tech­
niques to improve the initial query: (a) scan the query 

1268 UNCERTAINTY AND PROBABILISTIC REASONING 

Abdel-I l lah Mouaddib 
CRJL-IUT de Lens-Universite d'Artois 

Rue de l'universite, S. P. 16 
62307 Lens Cedex France 

mouaddib@cril.univ-artoisir 

Shlomo Zilberstein 
Computer Science Department 

University of Massachusetts 
Amherst, MA 01003 U.S.A. 

zilberstein@cs.umass.edu 



using concept recognizers to identify company names, 
dates, locations, personal names, and soon; (b) examine 
the query for pairs of words that have high statistical 
likelihood of being related and enhance the query with 
that information; (c) perform part-of-speech analysis to 
identify noun phrases within the query. The second level 
includes two alternative techniques that can improve the 
query's recall ability by expanding it to include related 
words and phrases; (d) use of Local Context Analysis 
(LCA), a statistical method for expanding queries that 
relies upon in-context analysis of word co-occurrence; (e) 
use of InFinder, an association thesaurus that is faster 
than LCA and does not capture context as well. Finally, 
the third level performs the actual query evaluation and 
returns the results. Quality in this application is mea­
sured by the number of relevant documents within the 
top n documents retrieved (i.e., precision in the retrieved 
set). 

The information retrieval application and the resulting 
task structure raise several fundamental issues that have 
not been previously addressed. 

1. Handling the duration uncertainty and quality un-
certainty associated with each technique. 

2. Handling the dependency of quality and duration on 
the quality of intermediate results. 

3. Handling a rich task structure in which some lev­
els include several alternatives or optional compu­
tational steps; optional steps can be skipped under 
time pressure, leading to direct evaluation of the 
input query. 

4. Selecting the "best" set of retrieval techniques in a 
dynamic environment taking into account the entire 
set of queries waiting for execution. 

The rest of this paper offers an efficient solution to 
the meta-levei control problem. Section 2 gives a formal 
definition of the problem. We then solve the problem 
in two steps. In Section 3, we develop an optimal solu­
tion for a single PRU, ignoring the fact that additional 
tasks are waiting for processing. Section 4 shows how 
to handle multiple PRUs using the approach developed 
in Section 3 and summarizing the effect of the waiting 
requests using the notion of an opportunity cost. In 
section 5 we address the issue of reactive control in a 
highly dynamic environment by estimating the oppor­
tunity cost and pre-compiling the control policies. We 
conclude with a summary of the results and a brief de­
scription of related work. 

2 The meta-level control problem 
This section describes more formally the problem of 
meta-level control of the (enhanced) progressive process­
ing model. Each information retrieval request is mapped 
to a task structure described below. 
Def in i t ion 1 A progressive processing un i t (PRU) 
is composed of a sequence of processing levels, 
(Ji»fa» • ' - • * ! ) • The first level receives the input query 
and the last one produces the result. 

Defin i t ion 2 Each processing level, li} is composed of a 
set of al ternative modules, 

Each module can perform the logical function of level U, 
but it has different computational characteristics defined 
below. 

Defin i t ion 3 The module descriptor, 
of module is the probability distribution of output 
quality and duration for a given input quality. 

Note that q is a discrete variable representing quality 
and is a discrete variable representing duration. The 
module descriptor specifies the probability that module 

takes time units and returns a result of quality 
when the quality of the previously executed module 

is Module descriptors are similar to conditional per­
formance profiles of anytime algorithms [Zilberstein and 
Russell, 1996]. They are constructed empirically by col­
lecting performance data for a sample set of inputs. 

When the search engine responds to a particular re­
quest , it receives an immediate reward defined as follows. 
Def ini t ion 4 A t ime-dependent u t i l i t y function, 

measures the utility of a solution of quality q 
if it is returned t time units after the arrival time of the 
request. 

We assume that there is a given constant T such that 
That is, responding to a 

request more than T time units after its arrival has no 
value. 

Suppose that a system maintains a set of information 
retrieval requests, W, with arrival times 
The set of requests is updated dynamically as new re­
quests arrive. The system processes the requests in a 
first-in-first-out order using a progressive processing unit 
to handle each request. 

Given a set of requests, the module descriptors of all 
the components of the progressive processing unit, and a 
time-dependent utility function, we define the following 
control problem. 

Def in i t ion 5 The reactive control problem is the 
problem of selecting a set of alternative modules so as to 
maximize the expected utility over the set of information 
retrieval requests. 

The meta-level control is "reactive" in the sense that we 
assume that the module selection mechanism is very fast, 
largely based on off-line analysis of the problem. The 
rest of the paper provides a solution to this problem. 

3 Opt imal control of a single P R U 
We begin with the problem of meta-level control of a 
single progressive processing unit corresponding to a sin­
gle task. This problem can be formulated as a simple 
Markov decision process (MDP) with states representing 
the current state of the computation. The state includes 
the current level of the PRU, the quality produced so far, 
and the elapsed time since the arrival of the request. The 
rewards are defined by the utility of the solution which 

ZILBERSTEIN AND MOUADDIB 1269 



depends on both quality and time. The possible actions 
are to execute a module of the next processing level or 
to skip that processing level. The transition model is 
defined by the descriptor of the module selected for exe­
cution. The rest of this section gives a formal definition 
of the MDP and the reactive controller produced by solv­
ing it. 

3 .1 S ta te r e p r e s e n t a t i o n 

The execution of a single progressive processing unit, 
can be seen as an MDP with a finite set of states 

where in­
dicates the last executed (or skipped) level, is 
the quality produced by the last executed module, and 

is the elapsed time since the arrival time, au, 
of the request. Note that quality is discretized and nor­
malized to be in the range All the intermediate 
modules use a uniform representation of input and out­
put (a "query" in our application). Note also that T is 
the maximum delay after which we consider the response 
to be useless. When the system is in state one 
module of the t-th level has been executed. (The first 
level is is used to indicate the fact that no 
level has been executed.) The states [failure, t] represent 
termination at time without any useful result. We dis­
tinguish between different failure states because failure 
can occur before the deadline leaving some remaining 
time for the execution of other requests in the queue. 

3.2 T r a n s i t i o n m o d e l 

The initial state of the MDP where t is 
the elapsed time since the arrival of the request 
current time - and q init is the initial quality of the 
request (0 in our application). The initial state indicates 
that the system is ready to start executing a module of 
the first level of the PRU. The terminal states are all 
the states of the form or [fallure, t). The for­
mer set represents finishing execution of the last level 
and the latter set represents failure. Other states such 
as (reaching maximal intermediate quality) 
or (reaching the deadline before the execution 
of the last level) are not considered terminal states. A 
terminal state can be readied from state by ex­
ecuting a series of skip actions until a failure state is 
reached. Similarly skip actions take the automaton from 
state to the last level because no execute ac­
tion can improve the intermediate quality. 

In every nonterminal state the possible actions are: 
(execute the jnodule of the next level) and S 

(skip the next level). To complete the transition model, 
we need to specify the probabilistic outcome of these 
actions. Equations 1-4 define the transition probabilities 
for a given nonterminal state 

The S action is deterministic. It skips the next level 
without affecting the quality or elapsed time. (It can be 
implemented as an additional "dummy" module whose 
execution takes no time and has no effect on quality.) 

a) 
Skipping the last level results in failure. 

(2) 

The action is probabilistic. Duration and qual­
ity uncertainties define the new state. Equation 3 deter­
mines the transitions following successful execution and 
Equation 4 determines the transition to the failure state 
when the deadline, T, is reached. 

(3) 

(4) 

3.3 R e w a r d s a n d t h e va lue f u n c t i o n 
Rewards are determined by the given time-dependent 
utility function applied to the final result (produced by 
the last level of the PRU). The util ity depends on the 
quality of the result and the elapsed time. Keep in mind 
that in our application the intermediate results are use­
less and therefore have no direct rewards associated with 
them. We now define a value function (expected reward-
to-go) over all states. The value of terminal states is 
defined as follows. 

(5) 

The value of nonterminal states of the MDP is defined 
as follows. 

The value function is defined as maximum over all ac­
tions with the top expression representing the value of a 
skip action for any level such that the 
middle expression representing the value of a skip action 
for level and the bottom expression representing 
the value of an execute action. 

This concludes the definition of an MDP. This MDP 
is a finite-horizon MDP with no cycles. It can be solved 
easily using standard dynamic programming algorithms 
or using search algorithms such as AO*. 

1278 UNCERTAINTY AND PROBABILISTIC REASONING 

(6) 



Figure 2: Illustration of the execution paths with multi­
ple PRUs 

Theorem 1 Given one progressive processing unit u 
and a time-dependent utility function the optimal 
policy for the corresponding MDP is an optimal reactive 
control for 

Proof: Because there is a one-to-one correspondence 
between the reactive control problem and the MDP (in­
cluding the fact that the PRU transition model satisfies 
the Markov assumption), and because of the optimal­
ly of the resulting policy, we conclude that it provides 
optimal reactive control for the progressive processing 
problem. 

We note that the number of states of the MDP is 
bounded by the product of the number of levels L, 
the maximum number of alternative modules per level 
maxi pi, the number of discrete quality levels, and the 
maximum execution time. While the maximum execu­
tion time can be quite large, the time unit used for the 
purpose of meta-level control is an arbitrary system pa­
rameter. A small time unit leads to a more effective con­
trol at the expense of a larger state-space. The choice 
of a unit of quality has a similar effect. These units in­
troduce a tradeoff between the size of the policy and its 
effectiveness. Further empirical evaluation is needed to 
determine the best choice of time and quality units in 
practice. 

4 Opt imal Contro l of mul t ip le PRUs 
using oppor tun i ty cost 

Suppose now that we need to schedule the execution of 
multiple PRUs. We assume that there are n-f 1 requests 
whose arrival times are One ap­
proach to construct an optimal schedule is to generalize 
the solution presented in the previous section. We can 
construct a larger MDP for the combined sequential de­
cision problem including the entire set of PRUs (as 
illustrated in Figure 2). To do that, each state must also 
include the request number, leading to a general state 
represented as Note that t is the elapsed time 
since the arrival of the first request. 

This rather complex MDP is still a finite-horizon MDP 
with no loops. Moreover, the only possible transitions 
between different PRUs are from a terminal state of one 
PRU to an initial state of a succeeding PRU. Therefore, 
we can solve this MDP by computing an optimal policy 
for the last PRU for my starting time between 0 and 

then use the value of its initial states to 

compute an optimal policy for the previous PRU and so 
on. 

Theorem 2 Given a set, W, of progressive processing 
units and a time-dependent utility function the 
optimal policy for the corresponding MDP is an optimal 
reactive control for W. 

This is an obvious generalization of Theorem 1. The 
complete proof, by induction on the number of PRUs, is 
omitted. 

We now show how to reformulate the effect of the re­
maining requests on the execution of the first task. 
This reformulation preserves the optimality of the solu­
tion, but it suggests a more efficient control structure 
developed in Section 5. 

Def in i t ion 8 denote the ex­
pected value of the optimal policy for the last 
PRUs. 

To compute the optimal policy for the i-th PRU, we can 
simply use the following reward function. 

(8) 

In other words, the reward for responding to the t-th 
request is composed of the immediate reward (defined 
by the time-dependent utility function) and the reward-
to-go (defined by the remaining PRUs). Alternatively, 
the reward can be represented as follows. 

0) 
Therefore, the best policy for the first PRU can be cal­
culated if we use the following reward function for final 
states: 

(10) 

Def in i t ion 7 be the oppor­
tun i t y cost at time t. 

The opportunity cost measures the loss of expected value 
due to delay in the starting point of executing the last n 
tasks (all the tasks except the first one). 

Def in i t ion 8 Let the OC-pol icy for the first PRU be 
the policy computed with the following reward function: 

The OC-policy is the policy computed by deducting from 
the actual reward for the first task the opportunity cost 
of its execution time. 

Theorem 3 Controlling the first PRU using the OC-
policy is optimal 

Proof: FVom the definition of we get: 

(11) 

To compute the optimal schedule we need to use the re­
ward function defined in Equation 9 that can be rewrit­
ten as follows. 

(12) 

ZILBERSTEIN AND M0UA0DIB 1271 



But this reward function is the same as the one used to 
construct the OC-policy, except for the added constant 

Because adding a constant to a reward function 
does not affect the policy, the conditions of Theorem 2 
are met and the resulting policy is optimal. 

Theorem 3 suggests an optimal approach to scheduling 
the entire requests by first using an OC-policy for 
the first request that takes into account the opportunity 
cost of the remaining n requests. Then the OC-policy 
for the second request is used taking into account the 
opportunity cost of the remaining tasks and so 
on. lb be able to implement this approach we need to 
have the control policies readily available. This issue is 
addressed in the following section. 

5 Reactive control based on estimated 
oppor tun i ty cost 

In the previous section, we presented an optimal solu­
tion to the control problem of multiple progressive pro­
cessing units without accounting for its computational 
complexity. In particular, the opportunity cost must be 
computed and revised quickly each time a new request 
arrives. Once the opportunity cost is revised, a new pol­
icy for the current PRU must be constructed. Finding 
the exact opportunity cost requires the construction of 
an optimal policy for the entire set of tasks. In practice, 
this may slow down the operation of the information re­
trieval search engine. 

In order to provide an effective reactive controller for 
dynamic progressive processing, it is necessary to: 

1. use a fast approximation scheme to estimate the op­
portunity cost; and 

2. use pre-compiled policies for different opportunity 
cost functions. 

The rest of this section explains this method in more 
detail. 

5.1 E s t i m a t i n g t he O p p o r t u n i t y Cost 

The opportunity cost is defined in terms of the func­
tion V*1 which represents the value of an optimal policy 
for the remaining tasks in the queue. Thus, it can be 
estimated by approximating this function. One way to 
approximate the cumulative value of the remaining tasks 
is to add the value of each task without taking into ac­
count the opportunity cost. In this calculation, the start 
time of each task is the expected end time of the previ­
ous one. The following set of equations summarizes this 
approximation scheme. 

where is the value function defined in Section 3 
for a single PRU, Therefore, can be approximated as 
follows. 

(14) 

The expected duration of task depends on the du-
ration of the previous tasks. Let be the expected 
duration of the optimal single-FRU policy when start-
ing at time (relative to the arrival time of the request). 
Then is computed using with the expected starting 
time of task i relative to ita arrival time. 

(15) 

The function r (expected duration) can be computed for 
any finite-horizon MDP once the optimal policy is avail­
able by simply using durations as rewards. The function 
can be computed once off-line, making it easy to revise 
the opportunity cost when a new request is added. 

We are also examining an alternative learning tech­
nique to approximate the opportunity cost function 
based on such features as total queue size and total wait­
ing time. Standard function approximation techniques 
can be used resulting in a compact representation of the 
opportunity cost. It is not clear at this point which ap­
proximation technique works better in practice. This 
will be determined based on empirical evaluation. 

5.2 Pre -comp i led con t ro l pol ic ies 

To make the meta-level control truly reactive for large 
task structures, one may want to avoid computing a new 
policy (for a single PRU) each time the opportunity cost 
is revised. To avoid this, the space of opportunity cost 
can be divided into a small set of regions representing 
typical situations. For example, there could be just three 
regions that capture low, medium, and high loads. For 
each region, an optimal policy would be computed off-
line and stored in a library. At run-time, the system 
will first estimate the opportunity cost and then use the 
appropriate pre-compiled policy from the library. These 
policies remain valid as long as the overall task struc­
ture and the utility function are fixed. Because the de­
pendency of the control decisions on the opportunity 
cost is monotonic (higher costs imply less time for ex­
ecution), we anticipate that a small set of classes that 
correspond to qualitatively different action selection will 
be sufficient. 

Another advantage of the use of pre-compiled policies 
is the ability to react quickly to dynamic changes. Con­
trol policies can be switched during the execution of a 
single request if the opportunity cost changes. This is 
possible because the policies share the same state space. 

6 Conclusion 
We present an innovative approach to meta-level control 
of progressive processing based on reformulating it as a 

1272 UNCERTAINTY AND PROBABILISTIC REASONING 



Markov decision problem. it is shown that an optimal 
policy for a set of tasks can be constructed by controlling 
a single PRU, taking into account the opportunity cost 
of the remaining tasks. To apply this model to control 
the operation of an information retrieval search engine, a 
fast approximation of the opportunity cost is developed. 
Finally, a highly reactive controller is described that uses 
a library of precompiled control policies to operate in a 
dynamic environment. 

A less complex model of progressive processing that re-
lies on heuristic scheduling has been developed {Mouad-
dib and Zilberstein, 1997]. The task structure, however, 
is limited to a linear set of levels with one module per 
level and no quality uncertainty or quality dependency. 
The heuristic scheduler is fast, but it cannot solve the 
more complex task structure presented in this paper and 
it does not provide optimal control. Heuristic scheduling 
of computational tasks has also been studied by Garvey 
and Lesser [1993] for the design-to-time problem-solving 
framework. The latter framework represents explicitly 
non-local interactions between sub-tasks. 

The progressive processing framework relates to a 
large body of work within the systems community on 
imprecise computation [Liu et a/., 1991]. Each task in 
that model is decomposed into a mandatory subtask 
and an optional subtask. A variety of scheduling al­
gorithms have been developed for imprecise computa­
tion under different assumptions about the optional part. 
Our model allows for a richer representation of quality 
and duration uncertainty and quality dependency. Un-
like imprecise computation, the schedule constructed by 
the MDP scheduler is a conditional schedule; the selec­
tion of modules is conditioned on the actual execution 
time and outcome of previous modules. 

The application of dynamic programming to solve 
meta-level control problems have been previously used 
by Hansen and Zilberstein [1996] to control interruptible 
anytime algorithms. Optimal monitoring of progressive 
processing tasks using a corresponding MDP has been 
studied by Mouaddib and Zilberstein [1998] with respect 
to a simpler task structure and without the notion of 
quality uncertainty and quality dependency. 

The notion of opportunity cost is borrowed from eco­
nomics. It has been used previously in meta-level rea­
soning by Russell and Wefald [1991]. Horvitz [1997] uses 
a similar notion to develop a model of continual com­
putation in which idle time is used to solve anticipated 
future problems. 

The use of pre-compiled control policies to construct 
a highly reactive real-time system has been studied by 
several researchers. For example, Greenwald and Dean 
[1998] show how a real-time avionics control system can 
use a library of schedules that cover all possible situa­
tions. Each schedule is conditioned on the state of the 
flight operation. 

In collaboration with the Information Retrieval Cen­
ter at UMass we are currently developing the stochastic 
module descriptors for the components of the search en-
gine. By definition, IR tasks involve large collections 

and a substantial amount of test data allowing us to test 
the applicability and scalability of this resource-bounded 
reasoning technique. 

Acknowledgments 
We thank James Allan and Victor Lavrenko for their 
contribution to the problem formulation and to the con­
struction of the information retrieval testbed. 

This work was supported in part by the National Sci­
ence Foundation under grants No. IRI-9624992, IRI-
9634938, and INT-9612092, by the Ganymedell Project 
of Plan Etat/Nord-Pas-De-Calais, and by IUT de Lens. 

References 
[Dean and Boddy, 1988] Thomas Dean and Mark Boddy. An 

analysis of time-dependent planning. Seventh National 
Conference on Artificial Intelligence, 49-54, 1988. 

[Gravey and Lesser, 1993] Alan Garvey and Victor Lesser. 
Design-to-time real-time scheduling. IEEE Transactions 
on Systems, Man, and Cybernetics, 23(6):1491~1502, 1993. 

[Greenwald and Dean, 1998) Lloyd Greenwald and Thomas 
Dean. A conditional scheduling approach to designing real-
time systems. AI Planning systems, 1229-1234, 1998. 

[Hansen and Zilberstein, 1996] Eric A. Hansen and Shlomo 
Zilberstein. Monitoring the progress of anytime problem-
solving. Thirteenth National Conference on Artificial In­
telligence, 1229-1234, 1996. 

[Horvitz, 1988] Eric Horvitz. Reasoning under varying and 
uncertain resource constraints. Seventh National Confer-
ence on Artificial Intelligence, 111-116, 1988. 

[Horvitz, 1997] Eric Horvitz. Models of continual computa­
tion. Fourteenth National Conference on Artificial Intelli­
gence, 286-293, 1997. 

[Liu et al, 1991] J. Liu, K. Lin, W. Shih, A. Yu, J. Chung, 
and W. Zao. Algorithms for scheduling imprecise compu­
tations. IEEE Transactions on Computers, 24(5):58-68, 
1991. 

[Mouaddib, 1993] Abdel-Illah Mouaddib. Contribution au 
raisonnement progressif et temps r6el dans un univers 
multi-agents. PhD thesis, University of Nancy I, (in 
French), 1993. 

[Mouaddib and Zilberstein, 1997] Abdel-IUah Mouaddib 
and Shlomo Zilberstein,. Handling duration uncertainty 
in meta-level control of progressive reasoning. Fifteenth 
International Joint Conference on Artificial Intelligence, 
1201-1206, 1997. 

[Mouaddib and Zilberstein, 1998] Abdel-Illah 
Mouaddib and Shlomo Zilberstein. Optimal scheduling of 
dynamic progressive processing. Thirteenth Biennial Euro­
pean Conference on Artificial Intelligence, 449-503, 1998. 

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald. 
Do the Right Thing: Studies in Limited Rationality M I T 
Press, 1991. 

[Jones and Willett , 1997] Karen S. Jones and Peter Willett . 
(eds.) Readings in Information Retrieval Morgan Kauf-
mann Publishers, 1997. 

[Zilberstein and Russell, 1996] Shlomo Zilberstein and Stu­
art Russell. Optimal composition of real-time systems. 
Artificial Intelligence 82(1~2):181-213, 1996. 

ZILBERSTEIN AND MOUADDIB 1273 


