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Abstract 

We present a new framework for reasoning 
about points , intervals and dura t ions- -Poin t 
Interval Dura t i on Network ( P I D N ) . The P I D N 
adequately handles bo th qual i ta t ive and quan-
t i ta ive tempora l in fo rmat ion . We show that I n ­
terval Algebra, Point Algebra, TCSP, P D N and 
A P D N become special cases of P I D N . The un­
der ly ing algebraic structure of P I D N is closed 
under composi t ion and intersection. Deter-
m i n i g consistency of P I D N is N P - l l a r d . How­
ever, we identify some tractable subclasses of 
P I D N . We show tha t path consistency is not 
sufficient to ensure global consistency o[ the 
tractable subclasses of P I D N . We identify a 
subclass for which enforcing 4-consistency suf­
fices to ensure the global consistency, and prove 
tha t this subclass is m a x i m a l for qual i ta t ive 
constraints. Our approach is based on the geo­
metric in terpreta t ion of the domains of tempo­
ral objects. Interestingly, the classical Helly\s 
Theorem of 1923 is used to prove the complex­
i ty for the tractable subclass. 

1 Introduction 
Several formalisms for expressing and reasoning w i t h 
temporal constraints have been proposed [l8J, [17], [3J, 
[7]. Several classes of Tempora l Constraint Satisfaction 
Problems (TCSP) are defined depending on the t ime 
enti ty tha t the variables can represent, namely t ime 
points, t ime intervals, durat ions and the class of con­
straints namely qual i ta t ive , metric or both. Quali ta­
tive approaches such as Allen's [ l ] Interval Algebra and 
V i l l a i n and Kautz 's [17] Point Algebra have difficulties 
in representing metr ic , numerical informat ion. On the 
other hand, the quant i ta t ive approach of Dechter el. 
ai [3] has shortcomings in representing qual i ta t ive infor­
ma t ion . Me i r i [ i t ] proposes a combined network-based 
computa t iona l model for temporal reasoning that is ca­
pable of handl ing both qual i ta t ive and quant i ta t ive in­
format ion . There have been also efforts to combine point 
and interval objects in a single constraint network [l l j . 

In order to encode durat ion informat ion , a separate net­
work is used which is orthogonal to the interval relation­
ship network (e.g., IA [ l ] , P D N [12], A P D N [19], metr ic 
t ime-point and durat ion model [2]) but these two net­
works do not function independent of each other. Bar­
ber [2] presents a dura t ion based temporal model w i t h 
metric constraint but this model cannot handle disjunc­
tive quali tat ive constraint. Meiri 's a t tempt [ l l ] to unify 
the quali tat ive and quant i ta t ive constraint can handle 
both point and interval variables but cannot handle du­
ration information. 

( l iven a TCSP ,S\ one impor tan t reasoning problem 
is to determine whether S is consistent. Consistency 
checking is NP-hard problem for the general TCSP [3], 
[15], while they are polynomial for PA [.16] and for some 
impor tant special cases of IA and TCSP. These include 
a sub-algebra of Interval Algebra namely, O R D - H o r n 
class [13] and simple TCSP [3]. In a landmark paper [13] 
Nebel and Biirckert. show that ORD-Horn class form the 
maximal tractable class. It is also known that P D N and 
A P D N admit polynomial algorithms for the consistency 
checking problem only when the constraints are simple. 

We present a new framework for representation and 
reasoning about points, intervals and d u r a t i o n s - P o i n t 
I n t e r v a l D u r a t i o n N e t w o r k ( P I D N ) . The P I D N ad­
equately handles both qual i ta t ive and quant i ta t ive tem­
poral information. We show that existing frameworks 
such as Interval Algebra, Point Algebra, TCSP frame­
work, PDN and A P D N become special cases of P I D N . 
The underlying algebraic structure of P I D N is closed 
under composition and intersection. Determining con­
sistency of the P I D N is NP- I Ia rd . However, we identify 
some tractable subclasses of P I D N . In the spir i t of O R D -
Horn class of Nebel and Bi i rker t [13], we characterize the 
maximal tractable subclass of this algebra. Further, we 
show that path consistency is not. sufficient to ensure 
global consistency for the tractable class of P I D N . We 
identify a subclass for which enforcing 4-consistency suf­
fices to ensure the global consistency, and prove that this 
subclass is maximal for qual i ta t ive constraints. Our ap­
proach is based on the geometric interpretat ion of the 
domain of the temporal objects and hence, provides a 
better insight to some of the earlier problems. It also 
gives a simpler analysis of O R D - H o r n classes as the inax-
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irnal tractable classes of the Interval Algebra. 

2 Geometric Interpretat ion 
We refer here to two types of temporal objects namely, 
points and intervals. Intervals correspond to time period 
during which events occur and points represent the be­
ginning and end point of some event as well as the neutral 
points of time. A useful representation of interval rela­
tions is in terms of regions in the Euclidean plane [9; 
14]. Namely, an interval is defined by a pair of real 
numbers such that X Y . (The special case 
of X = Y refers to an interval as a time point). Hence, 
the set of all intervals in that sense can be identified with 
the half plane H defined by the in-equation X Y in 
the -plane. Let (a, 6) be a fixed interval. If (a, 6) 
imposes a constraint on an interval then the ad­
missible domain of is a region (not necessarily a 
connected region) in this half plane. 

Thus a more general way of defining a Temporal Con­
straint Satisfaction Problem is to specify the admissi­
ble region that one temporal object imposes on another. 
The variables are the 2-dimensional points in this half 
plane representing general temporal objects. A tempo­
ral object can be a time point or a time interval. The 
d o m a i n of the temporal object is H. The cons t ra in ts 
can be viewed as admissible regions and a disjunction of 
constraints is the union of the regions. For a given tem­
poral object, we denote d = as the duration of 
the object. The time points correspond to the temporal 
objects of 0 duration. We can define the d imens ion of 
a relation as the dimension of the associated region. Let 
us consider the well-known example here [ l l ] . 
E x a m p l e 1: John and Fred work for a company that has 

local and main offices in LA. They usually work at the local 
office, in which case it takes John less than 20 minutes and 
Fred 15-20 minutes to get to work. Twice a week John works 
at the main office, in which case his commute to work takes at 
least 60 minutes. Today John left home between 7:05-7:Warn, 
and Fred arrived at work between 7:50-7:55am. We also know 
that Fred and John met at a traffic light on their way to work. 

There are four temporal objects (John was going 
to work), (Fred was going to work), (John left 
home) and (Fred arrived at work). and are 
time intervals and and are time points wi th the 
unary constraints (X3 = Y3) and (X4 = Y4). and 
also have other metric unary constraints which restricts 
their domains to regions K3, corresponding to interval 
[7:05,7:10] and R4 corresponding to [7:50, 7:55], respec­
tively (see Figure 1). Similarly, any instantiation of 
imposes a restriction (qualitative) on that both have 
same abscissa value and imposes a restriction on 
that they have same ordinate value. There are unary 
restrictions of the duration on The admissi­
ble regions are 0*i imposes a 
binary qualitative constraint on For every instanti­
ation of in this constraint defines the domain of 

The composition of the two constraints yield ABCD 
as the admissible region of The admissible domain 

Figure 1: The admissible regions in H for different tem­
poral constraints in Example 1 

of based on admissible instantiation of 0$ and the 
unary constraint on duration is Taking the 
intersection of the constraints, the admissible region of 

is only This illustrates the process of intersec­
tion and composition operations when we represent the 
domain as regions in the half plane. It may be noted 
that are 1-dimensional whereas Rx and R2 

are 2-dimensional, 

3 Point-Interval-Duration Network 
( P I D N ) 

This study is inspired by the geometric interpretation 
of temporal objects, constraints and their operations. 
There can be different ways of encoding regions. In the 
present study, we consider only the TCSP's having con­
strained regions as convex hexagon with sides parallel 
to three fixed lines namely, -Y-axis, y-axis, and X = Y 
line. Such regions can be described in terms of three 
intervals. 

3 . 1 D e f i n i t i o n s 

A P o i n t - I n t e r v a l - D u r a t i o n N e t w o r k ( P I D N ) con­
sists of a set of variables having H as the 
domain, each representing a temporal object (interval or 
point). An instantiation of means mapping of to 
a point in H. A constraint is a disjunction of the form 

where each r is an ordered set 
of three intervals The intervals 5, E and D are 
closed or open and bounded or unbounded in either side. 
Intuitively, the intervals S, E and D represent the range 
of the d o m a i n of the start point, end point and the du­
ration, respectively of the temporal object. A temporal 
object is said to satisfy the constraint C, if 
it satisfies at least one of the disjuncts r< and it satisfies 
a if Following 
the standard notation, ,and (a,b) repre­
sent closed, semi-closed, open intervals, respectively. ? 
represents a unrestricted interval or universal constraint. 

A unary constraint C for a temporal object = 
specifies a set of which con­

straints the domain of We assume that a unary 
constraint is always a quantitative constraint and the 
endpoints of S, E and D are real numbers. 
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A binary constraint k of the form where each 
disjunct of ' is defined i l l terms of and <k and 
it constrains the domain of Qj. The end points of 
and D are one of the following types: 

1. A nonnegative real number, say for metric infor-
matiom. 

2. A variable and say for qualitative in­
formation. 

A binary constraint is said to be a qualitative con­
straint if the endpoints of 5, E and D are of the restric­
tion that 6 takes on values only 0 or, A network is 
called a Q u a l i t a t i v e P I D N , if all its constraints are 
qualitative. 

A solution is an instantiation of all 0,'s satisfying all 
the constraints. The network is consistent iff at least one 
solution exists. 
Example 2 

1. While returning from office John took longer than the 
time he took to reach office. 

4 Reasoning with PIDN 
The most important tasks for the any TCSP ( and hence 
for PIDN) is to decide consistency; and if the network is 
consistent then to find a consistent instantiation of the 
temporal objects. 
P r o p o s i t i o n 2: The problem of deciding consistency of 
the PIDN is NP-hard. 
Proof : (sketch) The qualitative temporal consistency 
problem based Interval Algebra becomes a special in­
stance of PIDN. We show this in Section 5 and deciding 
consistency of Interval TCSP is NP-hard [18]. D 

4 . 1 T r a c t a b l e cases o f P I D N 
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forward. If the constraints are qualitative constraints 
then using the fact that for any __ __ it 
is possible to determine the intersection of On 
the other hand, when the constraints are quantitative bi­
nary constraints, the difficulty arises in computing inter­
section when the extremes of involve different 
variables. For example, if and 
then it wi l l be hard to determine sup This situ­
ation can be handled in two different ways, (i) the in­
tersection involves two different terms with disjunction 
or, "(ii) approximate the intersection wi th any one of the 
term. 

3. We can encode a disjunction of constraints on point and 
duration. It may not be possible to encode directly this 
information in PDN formalism. Bob reaches office in 
less than 20 minutes if he start before 7.00am but takes 
at least 40 minutes due to traffic if he starts later. 

2. We can encode a qualitative constraint involving point 
and duration information. Fred and John take same 
time to reach office but they start at different time. Let 



that if _ are open intervals it is not necessary 
that is a single interval. Hence, though r% and 

define two convex polygonal regions in H, by loose 
jo in we only ensure that the union of these regions are 
connected but for a line or a point. 

In the similar line, we can also jo in along S and E 
if both the disjunct have same D and the union results 
in single convex region. Thus for a given C, it may 
be possible to combine a set of disjunctions along 5, 
E and/or D to get a constraint having less number of 
disjunctions. 

A constraint is said to be a convex constraint if it can 
be reduced to a disjunction-free constraint by the p r o 
cess joining along An PIDN is said to 
be a convex P I D N if all its constraints are convex con-
straints. 

discontinuity of as defined by the foi l wing. 

However, on the other hand, if 
then its loose jo in along 5 results in 

a convex polygonal region defined by 
If 
then also we can join these disjunct along S and E to obtain 
a single constraint as 

A constraint is said to be a preconvex constraint if it 
can be written as a disjunction-free constraint by the 
process of loose jo in . A PIDN is called as pre-convex 
P I D N if all its constraints are pre-convex. The pre­
convex constraints correspond to the polygonal admissi­
ble regions with finite number of linear discontinuities. 
P r o p o s i t i o n 3: The Pre-convex PIDN ts closed under 
composition, intersection and converse. 
Proof : (sketch) The admissible regions defined by a con­
vex constraint is a convex polygonal region in H. The 
convexity property is preserved during intersection, com­
position and converse operations. It is easy to see that 
the result holds true for pre-convex constraints too which 
define admissible regions as convex regions with finite 
number of linear discontinuities and these do not affect 
the three basic operations. 

4.2 ^-Consistency in PIDN 
The single most important technique of determining con­
sistency of a temporal network is the idea of enforc­
ing some degree of local consistency to eliminate non-
feasible instantiations. The PIDN is 3-consistent if it is 
arc-consistent and for each triplets for any con­
sistent instantiation of and (i.e., satisfying binary 
constraint between them) there exists an instantiation of 

which is consistent wi th the constraints 
and Similarly, we can generalized the notion 
to define k-consistent. 
P r o p o s i t i o n 4: For a Pre-convex PIDN, enforcing 4-
consistency is sufficient to ensure consistency of the net­
work. 

tractable subclass 3-consistency is not enough to guar­
antee global consistency. The following counterexample 
justifies the claim. 
E x a m p l e 5: Fred, John, Bob and Mary work for the com­
pany. Today, Mary started before Fred. Bob left his home 
after Fred left. Mary reached after Bob. Mary takes less time 
than John to reach office. John started after Fred and reached 
before Bob. 

There are four temporal objects 
The binary relations are the following 

One can see that there exist consistent instantiations of 
for the consistent instantiations of any pair of OB, Op 

and The admissible r e g i o n s h a v e pair-
wise non-empty intersection, but 
The P I D N is inconsistent. 
D e t e r m i n i n g consis tency of P I D N A network can 
be converted to equivalent path consistent form by ap­
plying any path consistency algorithm to the network. 
Path consistency algorithm such as PC-2 [10]. This al­
gorithm takes when n is the number of nodes in 
the network. However, each intersection and composi­
tion operation takes 6 times more operations than the 
TCSP. Nevertheless, the path consistency algorithm re­
quires polynomial time. 

The 4-consistency requires in terms of the num­
ber of temporal objects. Thus consistency checking of 
Pre-convex PIDN can be done in polynomial time. We 
now prove the following result. 
P r o p o s i t i o n 5: For consistency checking problem of a 
Qualitative PIDN, the maximal tractable subclass is Pre-
convex PIDN. 
P r o o f (sketch) The proof is based on following observa­
tions. If the PIDN is not pre-convex then some of its 
constraints define the admissible regions fall into one of 
the following two cases; 
(i) It is the union of pre-convex regions which are sepa-
rated by a d imens iona l region, or, (ii) it is the union 
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convex relations due to the fact that the instantiation 
can be an interior point of the admissible regions of the 
pre-convex relations [9]. 

It is well known that 3-consistency is enough to guar­
antee global consistency for all the tractable temporal 
network problems. The tractable class include Simple 



of connected set of pre~coijjtex regions. Another inter­
esting property of the Qualitative P I D N is that the con­
straints which correspond to case(i) above eventually 
yield case(ii) in the process of transitive closure with 
composition and intersection. Thus, if the PIDN is not 
pre-convex then its transitive closure must contain the 
constraints of type ( i i ) . Since the sides of these polygo­
nal regions are parallel to three fixed lines, there can be 
only 12 different non-convex corners possible and out of 
which 6 of them are the converse of the other six. One 
can make use of Nebel k Burckert's results here to show 
that for these 6 cases then consistency finding is NP-
complete. These 6 cases when translated into equivalent 
Clause algebra form include constraints of the type 

It is interesting to note that this result need not 
be true for Pre-convex PIDN which is not qualitative. 
The major difference is that the transitive closure need 
not always contain case (i i) . Since, in general PIDN 
is intractable, any complete algorithm must perform 
some sort of search over all possible combinations of 
disjunction-free labeling. 

5 Expressive power of P I D N 
We show that all the major temporal constraint satis­
faction problems are special cases of PIDN. 
IA as a special case of P I D N : Interesting to note 
that Interval algebra is a special case of Qualitative 
PIDN where there is no constraint on the duration and 
we have only one type of temporal objects namely, time 
intervals. Hence, without loss of generality we rep­
resent a constraint as a pair of intervals rather than 
a triplets of intervals. For example, 

We call such constraints as 
Rectangular Constraint as the admissible regions are 
rectangles. The 13 basic relations can be equivalently 
written as Rectangular constraints. 

The intuitive notion of convex and pir,-convex rela­
tions can be interpreted in this context too and these 
are similar to the terms introduced in [9]. It is inter­
esting to note that the relations of IA which are equiva­
lent to single rectangular relations are convex relations. 
For example, relation like can be combined to 
yield a single rectangular constraint and is a convex re­
lation. For the IA relation {p,o} the equivalent PIDN 
constraints is The 
disjunction here can be loosely joined along E and hence 
is a pre-convex relation. The preconvex relations cor­
respond to the Nebel and Biirckert's ORD-Hom clause 
class [9], The following observation justifies that for IA 
3-consistency is sufficient for global consistency of the 
tractable subclasses. 
P r o p o s i t i o n 6: For a PIDN with rectangular con­
straint, 3-consistency implies global consistency. 
P r o o f (sketch) The argument of proof follows the same 
line and is due to the fact that if the polygonal regions 
have sides parallel to two fixed lines then their pairwise 

non-empty intersection ensures that they have a common 
non-empty intersection. 
T C S P as a special case of P I D N : The TCSP pro­
posed by Dechter et al can be viewed as a special case 
of PIDN. The temporal objects are time points. A con­
straint is a disjunction of r's where each r is a 
The Simple TCSP correspond to the convex subclass and 
the [8], [5], class correspond to pre-convex class. 

However, PIDN is more expressive than these TCSP's 
including extensions suggested by Meiri [ l l ] . 
P D N and P I D N : Navarrete and Marin [12] propose a 
temporal reasoning system, P D N that takes both points 
and durations as primitive objects and allow relative and 
indefinite information. PDN consists of two PA net­
works separately and are connected by a set of ternary 
constraints. One PA network represents the set of time 
points and the other represents duration between pairs of 
time points. One can visualise both networks as special 
cases of the PIDN, the first having just the r n 5 and 
the second one as a PIDN with r = D. However, in the 
proposed formalism it is possible to club the information 
into one network avoiding the ternary constraints l inking 
these two networks. Since the PIDN also handles quan­
titative information like APDN which is an extension of 
the concept of PDN. On the other hand, PIDN can han­
dle disjunctions between point and duration which is not 
easily possible in PDN. (see Table 1) 
O the r Re la ted W o r k : Recently Jonsson and 
Backstrom [6] have proposed a unifying framework called 
Disjunctive Linear Relations (DLRs). The DLRs is 
based on the linear programming paradigm. Jonsson 
and Brackstrom use Karmarker's and Khachiyan's algo-
rithrn to prove that Horn DLRSat (a tractable subclass 
of DLRs) can be solved in polynomial t ime.1 Though 
these algorithms are polynomial in t ime, their optimal 
solutions are not exact as they are numerical methods. 
They generate solutions which have the l imit ing point 
that is optimal. Therefore, the numerical stability of 
these methods may be questionable while applying them 
to the satisfiability problem. On the other hand, Sim­
plex method may be suitable in this context, but may 
not be polynomial. On the whole, linear programming 
approach, though expressive, does not take advantage of 
the underlying structures (e.g., domain constraints) of 
temporal constraints. 

In comparison to DLRs, the PIDN is committed to 
the standard approach based on a temporal constraint 
network having binary constraints among time objects. 
Hence, PIDN has computational advantage over DLRs. 
For example, if there are 100 time intervals, DLR forms 
the constraints of 200 variables. At any given iteration 
it solves a LP of 200 variables. However, if we handle 
Binary constraint network of 100 nodes then the path 
consistency algorithm wi l l carry out the composition and 
intersection of 4 nodes at t ime in one iteration. Hence 
PIDN handles only 12 variables. It does this for a poly-

1 However, it is not clear whether it is the maximal 
tractable subclass of DLRs. 
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nomial time in 100. But in any iteration it handle* 12 
variables. D L R also does polynomial number of iteration 
in 100 and in each iteration it handles 200 variables. 

0 Summary and Future Scope 
In the present work we propose an unified formalism 
which treats points, intervals and durations as tempo­
ral objects and handles quantitative and quantitative 
constraints (Table 1). In general, checking consistency 
of P IDN is NP-Hard and the maximal tractable class 
for qualitative case is identified. Unlike the other for­
malisms, for the tractable classes, the level of local con­
sistency for guaranteeing global consistency is 4. It is 
shown that the all other major temporal constraint for­
malisms are special cases of the proposed network. 

The aim of the present study is to establish the fact 
that a specific geometrical interpretation of the time 
domain helps in unifying the earlier diverse concepts. 
There are many unresolved questions remain to be an­
swered. We outline some of the* possible future work: 
(i) To devise a specialized algorithm to compute inter­
section, composition for qualitative or for the general 
network; (ii) Determining the maximal tractable class 
for the general P IDN. It may be noted that the the fact 
that non-convex disconnected admissible regions yield 
connected regions by the process of composition do not 
hold true for the quantitative constraints. It may be 
possible to identify the class for which this is true; (iii) 
Developing an efficient search algorithm for the general 
network, and comparing empirical performance of PIDN 
and DLRs 
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