
Behavior Networks for Continuous Domains using
Situation-Dependent Motivat ions

Klaus Dorer*
Centre for Cognitive Science

Institute for Computer Science and Social Research
Albert-Ludwigs-University Freiburg, Germany

Abstract

The problem of action selection by autonomous
agents becomes increasingly difficult when act­
ing in continuous, non-deterministic and dy­
namic environments pursuing multiple and pos­
sibly conflicting goals. We propose a method
that exploits additional information gained
from continuous states, is able to deal wi th
unexpected situations, and takes multiple and
conflicting goals into account including addi­
tional motivational aspects such as dynamic
goals, which allow for situation-dependent mo­
tivational influence on the agent. Further
we show some domain independent properties
of this algorithm along w i th empirical results
gained using the RoboCup simulated soccer en­
vironment.

1 In t roduc t ion
Agents in a complex dynamic domain need to take mul­
tiple goals into account, which may be of different type
(as exemplified in the RoboCup soccer environment):

• maintenance goals, which should be less demanding
the more the goal is satisfied (e.g. 'have stamina').

• achievement goals, which should be more demand­
ing the closer the agent is to the goal (e.g. 'score a
goal').

Maes [1989; 1990; 1992] suggested a mechanism for
action selection (M A S M - Maes Action Selection Mech­
anism [Tyrrel l , 1994]) in dynamic and unpredictable do­
mains based on so-called behavior networks. Although
MASM-networks do work in continuous domains, they
do not exploit the additional information provided by
continuous states. Similarly, though there are mecha­
nisms to distinguish different types of goals in M A S M ,
there are no means to support goals wi th a continuous

*The work reported here has been funded by the German
Research Association (DFG, Graduiertenkolleg Menschliche
und maschinelle Intelligenz). I would like to thank Gerhard
Strube and Bernhard Nebel for important comments and sug­
gestions during the preparation of this research.

t ru th state (like 'battery charged') to become increas­
ingly demanding the less they are satisfied.

We propose a revised and extended version (REASM)
of Maes' action selection mechanism, that takes the step
from discrete to continuous domains by introducing real-
valued propositions. It also allows for advanced motiva­
tional control by situation-dependent goals, and retains
the advantages of M A S M , such as reactivity, planning
capabilities, robustness, accountance of multiple goals
and the cheap and distributed calculation.

We give a formal definition of extended behavior net­
works and describe the activation spreading and action
selection algorithm in section 2. In section 3 we show
some domain independent properties such as activation
spreading always reaching a stable state. Among other
empirical results, we show in section 4 that the exten­
sions proposed show significantly better success in the
RoboCup domain.

2 R E A S M Formalism
In this section we give a formal description of the re­
vised and extended behavior networks followed by the
algorithms for activation spreading used to calculate the
ut i l i ty of a behavior and for action selection, which de­
cides on the behavior to execute.

2.1 Behavior N e t w o r k D e s c r i p t i o n

Let S be a set of worldstates, a set of atoms, and
a function assigning a truth value

to each atom in each worldstate. V is a set of atoms
and negated atoms where is
a propositional language over V and the logical connec­
tive where and is any
continuous triangular norm (e.g. is
a propositional language over and the logical connec­
tives and where and

is any continuous triangular conorm
[Saffiotti et al.,., 1995].

REASM behavior networks B are described by a tuple
where

denotes the set of goals characterized as tuples
wi th

DORER 1233

- GCon the goal condition, i.e. the situa­
tion in which the goal is satisfied,

- i the importance of the goal
- RCon the relevance condition, i.e. the

situation-dependent importance of the goal
with the relevance of the goal.

• M is a finite set of competence modules, where m
is a tuple with

~ Pre denoting the precondition with
the degree of executability;

- b the behavior, which is executed once the mod­
ule is selected for execution;

- Post is a tuple (Eff, ex), where Eff are
the effects of the behavior and exj denotes the
expectation € [0..1] of effect proposition Effj
to become true after executing this module;

- a the activity € 1R indicating the uti l i ty of the
module with ag the vector of activations a9i

received (directly or indirectly) by goal Qi.

• II is a set of (domain-dependent) parameters used
to control activation spreading;

activation of modules,
inhibition of modules,
inertia of activation,
activation threshold, with the up­

per bound for a module's activation,
threshold decay.

The revised activation spreading algorithm of REASM
(see next section) made it possible to reduce the number
of parameters and to restrict them to the ranges printed
above. This simplifies the process of finding best per­
forming parameter values for a domain (see section 4.1).

2.2 A c t i v a t i o n S p r e a d i n g

The competence modules are connected in a network
[Maes, 1989] to receive activation from goals and other
modules. A competence module receives activation
from a goal at timestep

(i)

if the module has an effect (with expectation exj) that is
part of the goal condition and both are atoms or both are
negated atoms, i.e. the behavior satisfies the goal, f is
any continuous triangular norm, that combines the static
importance of the goal and the dynamic relevance

A module k is inhibited by a goal i by

(2)

if the module has an effect that is part of the goal condi­
tion and exactly one of them is negated, i.e. the behavior
would undo an already satisfied goal.

A module receives activation by a so called successor
module if it has an effect (with expectation that is
part of the preconditions of the successor module

1234 SOFTWARE AGENTS

and both are atoms or negated atoms. The activations
are calculated separately for each goal activation a3UCCgi

of the successor module and are

. (3)

where o\ is the transfer function of the mod­
ules activation for which we used
[Goetz, 1997]. The term states that the
less the precondition of the successor module is satisfied
in situation s the more activation is spread to modules
making this precondition true, i.e. the false precondi­
tion becomes an increasingly demanding subgoal of the
network.

Finally a module is inhibited by conflictor modules by

(4)

if it has an effect that is part of the preconditions of
the conflictor module and exactly one of them is
negated. is the activation the conflictor module
received directly or indirectly by goal p, at timestep

The activation of each goal is kept separately by
each module and is set to the activation of that link with
the highest absolute maximum activation

(5)

In other words, only the strongest path from each goal
to a module is taken into account. Any confluence of
activation within a module from the same goal is pro­
hibited. This leads to some important new properties of
the algorithm shown in section 3.

Finally the activation of a module k is

(6)

where controls the inertia of the activation and there­
fore the inertia of the agent's behavior.

Activation and inhibition as well as the introduction
of relevance conditions allow the modelling of differ­
ent types of goals. Increasingly demanding maintenance
goals (e.g. 'have stamina' in the RoboCup soccer envi­
ronment) can be achieved by adding a relevance condi­
tion ('stamina low'). This increases the relevance of the
goal and therefore the activation of satisfying behaviors
by the goal as the situation diverges from the state to
be maintained. Achievement goals (e.g. 'score a goal')
can be realized by adding a relevance condition ('close to
goal') whose t ruth value increases on nearing the goal.
Modules achieving the goal are increasingly activated,
modules conflicting with the goal are inhibited.

2.3 A c t i o n S e l e c t i o n

Action selection is done in a cycle containing the follow­
ing steps [Maes, 1990]

1. Calculate activation of each module (Eq. 6).

2. Combine activation and executability of a module
by a non-decreasing function
To prevent non-executable modules from being ex­
ecuted, should be zero.

3. If the highest value lies aboveexecu te the
corresponding module's behavior, reset to its orig­
inal value and go to 1.

4. Otherwise reduce by and go to 1.

Step 2 is necessary because modules have a continous
executability e and can therefore not be divided into
executable and non-executable as opposed to MASM.
All modules have to be considered for execution prefer-
ing modules with higher executability, although modules
with high activation may be executed even if their exe­
cutability is low.

3 Domain Independent Propert ies
In this section we show properties of the algorithm for
activation spreading that are domain independent.

3.1 Stability
An important property of activation spreading networks
is to reach a stable state of activation. Although this
seems to be the case for Maes' behavior networks, to our
knowledge it has never been proven. However, variations
of Maes' networks (variation four of [Tyrrell, 1994]) oscil­
late under some circumstances. The algorithm proposed
here can be proven to reach a stable state.

Lemma 1 The above described algorithm for activation
spreading does not allow feedback of activation for a (a)

Proof. Although there possibly are cycles within
REASM behavior networks, the activation a module gets
from itself drops to zero for This holds

because (Eq.
3,4 and is the
no of excitation links, m the number of inhibition links
within the cycle. For either or

and therefore approaches zero.
For m = n = 0 the module is not part of a cycle.

Theorem 2 Activation in REASM networks always
reaches a stable state (unless the situation changes).

Proof. Activation for each goal is calculated separately
by the competence modules. Therefore we can treat each
goal separately and look at the connected subgraphs
containing one goal. We split the vertices of this sub­
graph into two sets: contains the vertices which have
reached a stable state of activation, V contains all the
other nodes of the subgraph. Initially, V° only contains
the goal. After one step of activation spreading the node
with the strongest link to the goal (in terms of maximum
absolute activation (Eq. 1,2)) wil l receive constant acti­
vation a9i and can be removed from V and put into V°.
This holds because activation decreases along activation
paths (proof of lemmal) and because each module re­
ceives activation across a single incoming link (Eq. 5).
This can be repeated for all nodes in V, although ac­
tivation of these nodes may take more than one step
of activation spreading to reach a stable state, because

3.2 P r o b l e m s m e n t i o n e d b y T y r r e l l

Tyrrell [1994] pointed out some problems of behavior
networks proposed by Maes. We show that none of these
problems hold within REASM.

Preference for appet i t ive behaviors1

The action selection mechanism proposed by Maes shows
some undesirable preference for appetitive nodes over
consummatory nodes (see Fig. 1) independent of pa­
rameter settings [Tyrrell, 1994].

In MASM activation of an appetitive node (action2) is
while a consummatory

node (action3) receives less activation
This is undesirable, because action3 directly satisfies

the goal while action2 only satisfies a precondition of
action 1 which reaches the same goal.

Figure 1: Preference for appetitive nodes
At the top level are the goals with their importance, below
are the competence modules and their activation and at the
bottom level the situation propositions (perceptions) with
their r-values. Only the relations of activation values matter.
MASM (left) undesirably prefers appetitive action2, REASM
(right) correctly prefers action3 (action 1 is non-executable).

In REASM, activation from a goal always decreases
with the distance to that goal (proof of lemma 1) prefer­
ring modules that directly satisfy it. This prevents acti­
vation feedback from occurring (lemma 1) and therefore
the preference for appetitive behaviors.

Ac t i va t ion fan
MASM divides activation spread by goals by the number
of links connected to the goal (activation fan). Similarly,
activation received by a node is divided by the number
of incoming links. This penalizes goals with more behav­
iors satisfying it and does not prefer modules satisfying
multiple goals at once (see Fig. 2).

Tyrrell shows however that leaving out division by the
number of links causes a different problem, namely the

*In contrast to consummatory behaviors that try to satisfy
a goal, appetitive behaviors try to prepare consummatory.

DORER 1235

of previous activation caught in feedback cycles. This
activation feedback, however, drops to zero for
(lemma 1). The main activation of a module m received
by all goals then equals
(Eq. 6) and D

Figure 2: Problems with activation fan
Goals with multiple satisfying competence modules are penal­
ized in MASM (left) due to the division of activation by the
number of leaving links. Modules satisfying multiple goals
are not preferred (right) due to the division of activation by
the number of incoming links.

confluence of activation in nodes with many successors
which may all be alternatives of one goal (see Fig. 3).

Figure 3: Problems without activation fan
An appetitive behavior (action3) cannot distinguish between
getting activation originally spread by one goal (left) or by
multiple goals (right).

Neither problem holds for RE ASM. Activation is not
divided by the number of incoming or outgoing links.
Therefore behaviors satisfying multiple goals are pref-
ered (Eq. 6), goals with alternative behaviors satisfying
them are not penalized. And there is no confluence of ac­
tivation from the same goal due to the fact that only the
strongest path of activation from each goal to a module
is taken into account (Eq. 5).

4 Empi r ica l Results
Empirical analysis of behavior networks has been con­
ducted using the RoboCup soccer server program [Noda,
1995]. Agents in this domain are simulated soccer play­
ers getting their (relative) perceptions from the server
across a network and sending executed actions to the
server which changes its state accordingly. Perception
and action are non-deterministic, i.e. perceptions as well
as actions are perturbed by some noise, and may be lost
in the network. The state of the soccer field is dynamic:
It changes whenever any of the agents performs some
action. It is continuous: State, perceptions and also
actions are described by continuous values. In short,
the RoboCup domain is non-deterministic, dynamic and
continuous and is therefore a demanding environment for
any algorithm for action selection.

The network used contained three goals and eight com­
petence modules (see Fig. 5). The corresponding behav­
iors were implemented using methods that were
called once the competence module was selected,
functions for perception-propositions were similarly cal­

culated from the agent's perceptions and state informa­
tion using methods.

4.1 Parameter Set t ing
As stated above, activation spreading and action selec­
tion depend on a set of parameters. These parameters
are domain dependent and have to be tuned to obtain
best performance from the agents. This was done by
playing a series of games with equal teams of two players2

except for varying one parameter of one team along its
definition area. 25 games for each of eleven variations per
parameter were conducted to obtain statistically reliable
results. The quality of the varied team was measured by
the difference between scored goals and those scored by
the other team. For the variation of the first parameter,
the other parameters were set to 'sensible' values. The
following parameter variations used previously found val­
ues, which performed best. Because parameters are not
independent of each other, this process was repeated for
all parameters, until changes of best values became small

This led to curves as shown for the activation
by goals in Figure 4.

Figure 4: Quality of a team as a function of the activa­
tion by goals

Two things should be noted: First, without any moti­
vation by goals the agents perform very poorly,
because all modules have same activation (zero). Hence,
always the first executable module is executed. Second,
although differences like are signifi­
cant, the score level is high for a wide range of parameter
values indicating that finding a 'functional' parameter
setting is not too difficult.

4.2 Real-valued Proposi t ions
To evaluate the usage of real-valued propositions we con­
ducted a series of 30 games where one team used real-

2 Offside rule was switched off, stamina recovery was in­
creased w.r.t. eleven player games.

SOFTWARE AGENTS

Figure 5: Behavior network used for empirical evaluation in the RoboCup domain. Top level are the goals of the
agent, below the competence modules and at the bottom the perceptions. Links to perceptions are used to calculate
the executability of a module. Links to goals and other modules are used to calculate the ut i l i ty of a module.

valued propositions while the other team used discrete
propositions -values were truncated to 0 for
0.5 and rounded to 1 for No goal relevance
was used for these games. The team using real-valued
propositions scored significantly higher3 (Table 6).

conditions were fairly primitive, the team using dynamic
goals scored significantly higher (Table 7).

mean score
mean no of shots
mean possession

discrete
6.6

12.4
368

real-valued
9.0

24.8
372

P
0.001

< 0.001
0.85

Table 6: Comparison of discrete and real-valued propo­
sitions

One reason for this is that using continuous proposi­
tions, modules w i th a high ut i l i ty may be executed even
if their executability is low. So even if the likelihood of
a successful execution of the behavior is small, the high
uti l i ty of one or more of its effects makes it worthwhile
to try. This is reflected for example by a significantly
higher number of shots at the goal by the team using,
real-valued propositions, although both teams had al­
most equal ball possessions.

4.3 Situation-Dependent Goal Relevance
In another experiment we introduced situation depen­
dent goal relevances (dynamic goals). The relevance con­
dition for the goal 'score goal' was to be in the opponent's
half (true, 10m behind the midline and false 10m before
with linear interpolation), for 'protect own goal' it was
not to be in the opponent's half and for 'be unmarked'
it was for the teammate to be the nearest player to the
ball. Two teams, one team using situation-dependent
goals, played a series of 30 games. Although relevance

3A11 statistical test are paired samples T-tests for differ­
ences of means with a = 0.01

mean score
static

6.8
dynamic

9.0
P

0.003

Table 7: Comparison of static and dynamic goals

4.4 Comparison to MASM
We also implemented the original algorithm proposed
by Maes [Maes, 1990] to be able to compare both algo­
rithms. After parameter optimization described above
for both networks, we played a series of 30 games. The
agents of one team were controlled by MASM, the other
team's action selection was conducted by REASM. Both
teams' agents used the same perceptions4 and identical
behaviors, so the only difference was in action selection.

mean score
behavior switches

MASM
6.3

1105

R(E)ASM
7.8
546

P
0.03

< 0.001

Table 8: Comparison of MASM and REASM without
real-valued propositions and situation-dependent goals

REASM scored considerably higher than agents using
MASM even without the usage of real-valued proposi­
tions and situation-dependent goals (Table 8). This can
be explained by the significantly higher rate in behavior
switches conducted by MASM. It is caused by resetting
the activation of executed competence modules to zero
in MASM and by using sigmoidal transfer functions in
REASM making behaviors attractors for activation re­
sulting in fewer behavior changes [Goetz, 1997].

4Using discrete propositions for MASM.

D0RER 1237

When equipping REASM with real-valued proposi-
tions and situation-dependent goals it scores significantly
higher than MASM (Table 9).

mean score
MASM

4.2
REASM

10.9
P

< 0.001

Table 9: Comparison of MASM and REASM using real-
valued propositions and situation-dependent goals

5 L imi ta t ions
REASM does not allow for multiple behaviors executed
concurrently. However, humans are able to perform well
trained behaviors in parallel, unless they use the same
resources [Gopher and Donchin, 1986]. Assuming knowl­
edge about the resources used by a behavior, the action
selection algorithm could be changed to build sets of exe­
cutable behaviors with disjunct resources and execute all
behaviors in that set, with the highest sum of utilities.

For the empirical studies, expectations of effects were
set manually. Although Maes proposed an algorithm to
learn the links of a network and their expectations [Maes,
1992], this work does not extend to continuous domains
with delayed effects. Adaptive behavior networks are
however inevitable once domains get increasingly com­
plex. Work in the area of reinforcement learning with
delayed reward could help to extend the algorithm for
learning behavior networks from experience.

6 Discussion
Maes' algorithm contains two further kinds of links
spreading activation from perceptions p to competence
modules with precondition p (situation links) and from
competence modules with effect p to other modules with
precondition p (predecessor links). These links account
for the reactivity of the system because they insert ac­
tivation from perceptions into the network. However,
when dropping the division of activation by the number
of links that use a perception, as we proposed, situation
activation of all executable modules equals is
a parameter that controls the amount of situation acti­
vation). In that case there is no direct influence of these
links to the selection of a behavior. The indirect influ­
ence of having more activation in non-executable mod­
ules with some preconditions satisfied did not turn out
to improve action selection as Goetz [1997] and our own
studies demonstrated, where parameter variations of
showed best performance for

Decugis and Ferber [1998] introduced a different vari­
ation of Maes' algorithm for which they proved conver­
gence of activation. However, their algorithm does not
include inhibition and therefore the ability to take un­
wanted effects into account. Another shortcoming is that
goals do not depend on the current situation. Besides
showing better success, situation-dependent goals sim­
plify the creation of behavior networks, especially when

domains get increasingly large and complex. This is be­
cause relevance conditions of goals can be used to di­
vide up the domain into different contexts. The soccer-
playing agents for example can use goal relevance to
easily incorporate different strategies for play-on phases,
and for phases when the game has been interrupted by
the referee. When using the behaviors' preconditions to
produce the same set of strategies, precondition lists of
all behaviors grow rapidly, complicating the introduction
of new behaviors and new strategies.

In this paper, we have argued that real-valued propo­
sitions can be integrated into an action control algorithm
using behavior networks to improve the performance of
agents in continous domains. Further the introduction of
situation-dependent goals simplifies the creation of large
behavior networks and improves agents' performance by
focussing on relevant goals as exemplified by studies us­
ing the Robocup domain.

References
[Decugis and Ferber, 1998] Decugis, V. and Ferber, J.

(1998). Action selection in an autonmous agent with
a hierarchical distributed reactive planning architec­
ture. In Sycara, K. and Wooldridge, M. (eds.) Pro­
ceedings of the 2nd Int. Conference on Autonomous
Agents, pages 354-361, New York, ACM Press.

[Goetz, 1997] Goetz, Ph. (1997). Attractors in Recur­
rent Behavior Networks. PhD thesis, State University
of New York, Buffalo.

[Gopher and Donchin, 1986] Gopher, D., and Donchin,
E. (1986). Workload: An examination of the concept.
In K. R. Boff, L. Kaufman and J. P. Thomas (eds.)
Handbook of perception and human performance (vol.
2, ch. 41). Wiley, New York.

[Maes, 1989] Maes, P. (1989). The Dynamics of Ac­
tion Selection. In Proceedings of the International
Joint Conference on Artificial Intelligence-'89 , Mor­
gan Kaufmann, Detroit.

[Maes, 1990] Maes, P. (1990). Situated Agents Can
Have Goals. In Journal for Robotics and Autonomous
Systems, Vol. 6, No 1, pages 49-70, North-Holland.

[Maes, 1992] Maes, P. (1992). Learning Behavior Net­
works from Experience. In Varela, F. and Bourgine,
P. Proceedings of the First European Conference on
Artificial Life, pages 48-57, MIT-Press, Paris.

[Noda, 1995] Noda, I. (1995). Soccer server: a simulator
of robocup. In Proceedings of AI symposium '95, pages
29-34, Japanese Society for Artif icial Intelligence.

[Saffiotti et a/., 1995] Saffiotti, A., Konolige, K. and
Ruspini, E. (1995). A Multivalued Logic Approach
to Integrating Planning and Control. In Artificial In­
telligence, Vol 76, No 1-2, pages 481-526.

[Tyrrell, 1994] Tyrrel l , T. (1994). An evaluation of
Maes' bottom-up mechanism for behavior selection.
In Adaptive Behavior 2 (4)} pages 307-348.

1238 SOFTWARE AGENTS

