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Abstract 

The problem of action selection by autonomous 
agents becomes increasingly difficult when act­
ing in continuous, non-deterministic and dy­
namic environments pursuing multiple and pos­
sibly conflicting goals. We propose a method 
that exploits additional information gained 
from continuous states, is able to deal wi th 
unexpected situations, and takes multiple and 
conflicting goals into account including addi­
tional motivational aspects such as dynamic 
goals, which allow for situation-dependent mo­
tivational influence on the agent. Further 
we show some domain independent properties 
of this algorithm along w i th empirical results 
gained using the RoboCup simulated soccer en­
vironment. 

1 In t roduc t ion 
Agents in a complex dynamic domain need to take mul­
tiple goals into account, which may be of different type 
(as exemplified in the RoboCup soccer environment): 

• maintenance goals, which should be less demanding 
the more the goal is satisfied (e.g. 'have stamina'). 

• achievement goals, which should be more demand­
ing the closer the agent is to the goal (e.g. 'score a 
goal'). 

Maes [1989; 1990; 1992] suggested a mechanism for 
action selection ( M A S M - Maes Action Selection Mech­
anism [Tyrrel l , 1994]) in dynamic and unpredictable do­
mains based on so-called behavior networks. Although 
MASM-networks do work in continuous domains, they 
do not exploit the additional information provided by 
continuous states. Similarly, though there are mecha­
nisms to distinguish different types of goals in M A S M , 
there are no means to support goals wi th a continuous 
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t ru th state (like 'battery charged') to become increas­
ingly demanding the less they are satisfied. 

We propose a revised and extended version (REASM) 
of Maes' action selection mechanism, that takes the step 
from discrete to continuous domains by introducing real-
valued propositions. It also allows for advanced motiva­
tional control by situation-dependent goals, and retains 
the advantages of M A S M , such as reactivity, planning 
capabilities, robustness, accountance of multiple goals 
and the cheap and distributed calculation. 

We give a formal definition of extended behavior net­
works and describe the activation spreading and action 
selection algorithm in section 2. In section 3 we show 
some domain independent properties such as activation 
spreading always reaching a stable state. Among other 
empirical results, we show in section 4 that the exten­
sions proposed show significantly better success in the 
RoboCup domain. 

2 R E A S M Formalism 
In this section we give a formal description of the re­
vised and extended behavior networks followed by the 
algorithms for activation spreading used to calculate the 
ut i l i ty of a behavior and for action selection, which de­
cides on the behavior to execute. 

2.1 Behavior N e t w o r k D e s c r i p t i o n 

Let S be a set of worldstates, a set of atoms, and 
a function assigning a truth value 

to each atom in each worldstate. V is a set of atoms 
and negated atoms where is 
a propositional language over V and the logical connec­
tive where and is any 
continuous triangular norm (e.g. is 
a propositional language over and the logical connec­
tives and where and 

is any continuous triangular conorm 
[Saffiotti et al.,., 1995]. 

REASM behavior networks B are described by a tuple 
where 

denotes the set of goals characterized as tuples 
wi th 
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- GCon the goal condition, i.e. the situa­
tion in which the goal is satisfied, 

- i the importance of the goal 
- RCon the relevance condition, i.e. the 

situation-dependent importance of the goal 
with the relevance of the goal. 

• M is a finite set of competence modules, where m 
is a tuple with 

~ Pre denoting the precondition with 
the degree of executability; 

- b the behavior, which is executed once the mod­
ule is selected for execution; 

- Post is a tuple (Eff, ex), where Eff are 
the effects of the behavior and exj denotes the 
expectation € [0..1] of effect proposition Effj 
to become true after executing this module; 

- a the activity € 1R indicating the uti l i ty of the 
module with ag the vector of activations a9i 

received (directly or indirectly) by goal Qi. 

• II is a set of (domain-dependent) parameters used 
to control activation spreading; 

activation of modules, 
inhibition of modules, 
inertia of activation, 
activation threshold, with the up­

per bound for a module's activation, 
threshold decay. 

The revised activation spreading algorithm of REASM 
(see next section) made it possible to reduce the number 
of parameters and to restrict them to the ranges printed 
above. This simplifies the process of finding best per­
forming parameter values for a domain (see section 4.1). 

2.2 A c t i v a t i o n S p r e a d i n g 

The competence modules are connected in a network 
[Maes, 1989] to receive activation from goals and other 
modules. A competence module receives activation 
from a goal at timestep 

( i ) 

if the module has an effect (with expectation exj) that is 
part of the goal condition and both are atoms or both are 
negated atoms, i.e. the behavior satisfies the goal, f is 
any continuous triangular norm, that combines the static 
importance of the goal and the dynamic relevance 

A module k is inhibited by a goal i by 

(2) 

if the module has an effect that is part of the goal condi­
tion and exactly one of them is negated, i.e. the behavior 
would undo an already satisfied goal. 

A module receives activation by a so called successor 
module if it has an effect (with expectation that is 
part of the preconditions of the successor module 
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and both are atoms or negated atoms. The activations 
are calculated separately for each goal activation a3UCCgi 

of the successor module and are 

. (3) 

where o\ is the transfer function of the mod­
ules activation for which we used 
[Goetz, 1997]. The term states that the 
less the precondition of the successor module is satisfied 
in situation s the more activation is spread to modules 
making this precondition true, i.e. the false precondi­
tion becomes an increasingly demanding subgoal of the 
network. 

Finally a module is inhibited by conflictor modules by 

(4) 

if it has an effect that is part of the preconditions of 
the conflictor module and exactly one of them is 
negated. is the activation the conflictor module 
received directly or indirectly by goal p, at timestep 

The activation of each goal is kept separately by 
each module and is set to the activation of that link with 
the highest absolute maximum activation 

(5) 

In other words, only the strongest path from each goal 
to a module is taken into account. Any confluence of 
activation within a module from the same goal is pro­
hibited. This leads to some important new properties of 
the algorithm shown in section 3. 

Finally the activation of a module k is 

(6) 

where controls the inertia of the activation and there­
fore the inertia of the agent's behavior. 

Activation and inhibition as well as the introduction 
of relevance conditions allow the modelling of differ­
ent types of goals. Increasingly demanding maintenance 
goals (e.g. 'have stamina' in the RoboCup soccer envi­
ronment) can be achieved by adding a relevance condi­
tion ('stamina low'). This increases the relevance of the 
goal and therefore the activation of satisfying behaviors 
by the goal as the situation diverges from the state to 
be maintained. Achievement goals (e.g. 'score a goal') 
can be realized by adding a relevance condition ('close to 
goal') whose t ruth value increases on nearing the goal. 
Modules achieving the goal are increasingly activated, 
modules conflicting with the goal are inhibited. 

2.3 A c t i o n S e l e c t i o n 

Action selection is done in a cycle containing the follow­
ing steps [Maes, 1990] 

1. Calculate activation of each module (Eq. 6). 

2. Combine activation and executability of a module 
by a non-decreasing function 
To prevent non-executable modules from being ex­
ecuted, should be zero. 



3. If the highest value lies aboveexecu te the 
corresponding module's behavior, reset to its orig­
inal value and go to 1. 

4. Otherwise reduce by and go to 1. 

Step 2 is necessary because modules have a continous 
executability e and can therefore not be divided into 
executable and non-executable as opposed to MASM. 
All modules have to be considered for execution prefer-
ing modules with higher executability, although modules 
with high activation may be executed even if their exe­
cutability is low. 

3 Domain Independent Propert ies 
In this section we show properties of the algorithm for 
activation spreading that are domain independent. 

3.1 Stability 
An important property of activation spreading networks 
is to reach a stable state of activation. Although this 
seems to be the case for Maes' behavior networks, to our 
knowledge it has never been proven. However, variations 
of Maes' networks (variation four of [Tyrrell, 1994]) oscil­
late under some circumstances. The algorithm proposed 
here can be proven to reach a stable state. 

Lemma 1 The above described algorithm for activation 
spreading does not allow feedback of activation for a (a) 

Proof. Although there possibly are cycles within 
REASM behavior networks, the activation a module gets 
from itself drops to zero for This holds 

because (Eq. 
3,4 and is the 
no of excitation links, m the number of inhibition links 
within the cycle. For either or 

and therefore approaches zero. 
For m = n = 0 the module is not part of a cycle. 

Theorem 2 Activation in REASM networks always 
reaches a stable state (unless the situation changes). 

Proof. Activation for each goal is calculated separately 
by the competence modules. Therefore we can treat each 
goal separately and look at the connected subgraphs 
containing one goal. We split the vertices of this sub­
graph into two sets: contains the vertices which have 
reached a stable state of activation, V contains all the 
other nodes of the subgraph. Initially, V° only contains 
the goal. After one step of activation spreading the node 
with the strongest link to the goal (in terms of maximum 
absolute activation (Eq. 1,2)) wil l receive constant acti­
vation a9i and can be removed from V and put into V°. 
This holds because activation decreases along activation 
paths (proof of lemmal) and because each module re­
ceives activation across a single incoming link (Eq. 5). 
This can be repeated for all nodes in V, although ac­
tivation of these nodes may take more than one step 
of activation spreading to reach a stable state, because 

3.2 P r o b l e m s m e n t i o n e d b y T y r r e l l 

Tyrrell [1994] pointed out some problems of behavior 
networks proposed by Maes. We show that none of these 
problems hold within REASM. 

Preference for appet i t ive behaviors1 

The action selection mechanism proposed by Maes shows 
some undesirable preference for appetitive nodes over 
consummatory nodes (see Fig. 1) independent of pa­
rameter settings [Tyrrell, 1994]. 

In MASM activation of an appetitive node (action2) is 
while a consummatory 

node (action3) receives less activation 
This is undesirable, because action3 directly satisfies 

the goal while action2 only satisfies a precondition of 
action 1 which reaches the same goal. 

Figure 1: Preference for appetitive nodes 
At the top level are the goals with their importance, below 
are the competence modules and their activation and at the 
bottom level the situation propositions (perceptions) with 
their r-values. Only the relations of activation values matter. 
MASM (left) undesirably prefers appetitive action2, REASM 
(right) correctly prefers action3 (action 1 is non-executable). 

In REASM, activation from a goal always decreases 
with the distance to that goal (proof of lemma 1) prefer­
ring modules that directly satisfy it. This prevents acti­
vation feedback from occurring (lemma 1) and therefore 
the preference for appetitive behaviors. 

Ac t i va t ion fan 
MASM divides activation spread by goals by the number 
of links connected to the goal (activation fan). Similarly, 
activation received by a node is divided by the number 
of incoming links. This penalizes goals with more behav­
iors satisfying it and does not prefer modules satisfying 
multiple goals at once (see Fig. 2). 

Tyrrell shows however that leaving out division by the 
number of links causes a different problem, namely the 

*In contrast to consummatory behaviors that try to satisfy 
a goal, appetitive behaviors try to prepare consummatory. 
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of previous activation caught in feedback cycles. This 
activation feedback, however, drops to zero for 
(lemma 1). The main activation of a module m received 
by all goals then equals 
(Eq. 6) and D 



Figure 2: Problems with activation fan 
Goals with multiple satisfying competence modules are penal­
ized in MASM (left) due to the division of activation by the 
number of leaving links. Modules satisfying multiple goals 
are not preferred (right) due to the division of activation by 
the number of incoming links. 

confluence of activation in nodes with many successors 
which may all be alternatives of one goal (see Fig. 3). 

Figure 3: Problems without activation fan 
An appetitive behavior (action3) cannot distinguish between 
getting activation originally spread by one goal (left) or by 
multiple goals (right). 

Neither problem holds for RE ASM. Activation is not 
divided by the number of incoming or outgoing links. 
Therefore behaviors satisfying multiple goals are pref-
ered (Eq. 6), goals with alternative behaviors satisfying 
them are not penalized. And there is no confluence of ac­
tivation from the same goal due to the fact that only the 
strongest path of activation from each goal to a module 
is taken into account (Eq. 5). 

4 Empi r ica l Results 
Empirical analysis of behavior networks has been con­
ducted using the RoboCup soccer server program [Noda, 
1995]. Agents in this domain are simulated soccer play­
ers getting their (relative) perceptions from the server 
across a network and sending executed actions to the 
server which changes its state accordingly. Perception 
and action are non-deterministic, i.e. perceptions as well 
as actions are perturbed by some noise, and may be lost 
in the network. The state of the soccer field is dynamic: 
It changes whenever any of the agents performs some 
action. It is continuous: State, perceptions and also 
actions are described by continuous values. In short, 
the RoboCup domain is non-deterministic, dynamic and 
continuous and is therefore a demanding environment for 
any algorithm for action selection. 

The network used contained three goals and eight com­
petence modules (see Fig. 5). The corresponding behav­
iors were implemented using methods that were 
called once the competence module was selected, 
functions for perception-propositions were similarly cal­

culated from the agent's perceptions and state informa­
tion using methods. 

4.1 Parameter Set t ing 
As stated above, activation spreading and action selec­
tion depend on a set of parameters. These parameters 
are domain dependent and have to be tuned to obtain 
best performance from the agents. This was done by 
playing a series of games with equal teams of two players2 

except for varying one parameter of one team along its 
definition area. 25 games for each of eleven variations per 
parameter were conducted to obtain statistically reliable 
results. The quality of the varied team was measured by 
the difference between scored goals and those scored by 
the other team. For the variation of the first parameter, 
the other parameters were set to 'sensible' values. The 
following parameter variations used previously found val­
ues, which performed best. Because parameters are not 
independent of each other, this process was repeated for 
all parameters, until changes of best values became small 

This led to curves as shown for the activation 
by goals in Figure 4. 

Figure 4: Quality of a team as a function of the activa­
tion by goals 

Two things should be noted: First, without any moti­
vation by goals the agents perform very poorly, 
because all modules have same activation (zero). Hence, 
always the first executable module is executed. Second, 
although differences like are signifi­
cant, the score level is high for a wide range of parameter 
values indicating that finding a 'functional' parameter 
setting is not too difficult. 

4.2 Real-valued Proposi t ions 
To evaluate the usage of real-valued propositions we con­
ducted a series of 30 games where one team used real-

2 Offside rule was switched off, stamina recovery was in­
creased w.r.t. eleven player games. 
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Figure 5: Behavior network used for empirical evaluation in the RoboCup domain. Top level are the goals of the 
agent, below the competence modules and at the bottom the perceptions. Links to perceptions are used to calculate 
the executability of a module. Links to goals and other modules are used to calculate the ut i l i ty of a module. 

valued propositions while the other team used discrete 
propositions -values were truncated to 0 for 
0.5 and rounded to 1 for No goal relevance 
was used for these games. The team using real-valued 
propositions scored significantly higher3 (Table 6). 

conditions were fairly primitive, the team using dynamic 
goals scored significantly higher (Table 7). 

mean score 
mean no of shots 
mean possession 

discrete 
6.6 

12.4 
368 

real-valued 
9.0 

24.8 
372 

P 
0.001 

< 0.001 
0.85 

Table 6: Comparison of discrete and real-valued propo­
sitions 

One reason for this is that using continuous proposi­
tions, modules w i th a high ut i l i ty may be executed even 
if their executability is low. So even if the likelihood of 
a successful execution of the behavior is small, the high 
uti l i ty of one or more of its effects makes it worthwhile 
to try. This is reflected for example by a significantly 
higher number of shots at the goal by the team using, 
real-valued propositions, although both teams had al­
most equal ball possessions. 

4.3 Situation-Dependent Goal Relevance 
In another experiment we introduced situation depen­
dent goal relevances (dynamic goals). The relevance con­
dition for the goal 'score goal' was to be in the opponent's 
half (true, 10m behind the midline and false 10m before 
with linear interpolation), for 'protect own goal' it was 
not to be in the opponent's half and for 'be unmarked' 
it was for the teammate to be the nearest player to the 
ball. Two teams, one team using situation-dependent 
goals, played a series of 30 games. Although relevance 

3A11 statistical test are paired samples T-tests for differ­
ences of means with a = 0.01 

mean score 
static 

6.8 
dynamic 

9.0 
P 

0.003 

Table 7: Comparison of static and dynamic goals 

4.4 Comparison to MASM 
We also implemented the original algorithm proposed 
by Maes [Maes, 1990] to be able to compare both algo­
rithms. After parameter optimization described above 
for both networks, we played a series of 30 games. The 
agents of one team were controlled by MASM, the other 
team's action selection was conducted by REASM. Both 
teams' agents used the same perceptions4 and identical 
behaviors, so the only difference was in action selection. 

mean score 
behavior switches 

MASM 
6.3 

1105 

R(E)ASM 
7.8 
546 

P 
0.03 

< 0.001 

Table 8: Comparison of MASM and REASM without 
real-valued propositions and situation-dependent goals 

REASM scored considerably higher than agents using 
MASM even without the usage of real-valued proposi­
tions and situation-dependent goals (Table 8). This can 
be explained by the significantly higher rate in behavior 
switches conducted by MASM. It is caused by resetting 
the activation of executed competence modules to zero 
in MASM and by using sigmoidal transfer functions in 
REASM making behaviors attractors for activation re­
sulting in fewer behavior changes [Goetz, 1997]. 

4Using discrete propositions for MASM. 
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When equipping REASM with real-valued proposi-
tions and situation-dependent goals it scores significantly 
higher than MASM (Table 9). 

mean score 
MASM 

4.2 
REASM 

10.9 
P 

< 0.001 

Table 9: Comparison of MASM and REASM using real-
valued propositions and situation-dependent goals 

5 L imi ta t ions 
REASM does not allow for multiple behaviors executed 
concurrently. However, humans are able to perform well 
trained behaviors in parallel, unless they use the same 
resources [Gopher and Donchin, 1986]. Assuming knowl­
edge about the resources used by a behavior, the action 
selection algorithm could be changed to build sets of exe­
cutable behaviors with disjunct resources and execute all 
behaviors in that set, with the highest sum of utilities. 

For the empirical studies, expectations of effects were 
set manually. Although Maes proposed an algorithm to 
learn the links of a network and their expectations [Maes, 
1992], this work does not extend to continuous domains 
with delayed effects. Adaptive behavior networks are 
however inevitable once domains get increasingly com­
plex. Work in the area of reinforcement learning with 
delayed reward could help to extend the algorithm for 
learning behavior networks from experience. 

6 Discussion 
Maes' algorithm contains two further kinds of links 
spreading activation from perceptions p to competence 
modules with precondition p (situation links) and from 
competence modules with effect p to other modules with 
precondition p (predecessor links). These links account 
for the reactivity of the system because they insert ac­
tivation from perceptions into the network. However, 
when dropping the division of activation by the number 
of links that use a perception, as we proposed, situation 
activation of all executable modules equals is 
a parameter that controls the amount of situation acti­
vation). In that case there is no direct influence of these 
links to the selection of a behavior. The indirect influ­
ence of having more activation in non-executable mod­
ules with some preconditions satisfied did not turn out 
to improve action selection as Goetz [1997] and our own 
studies demonstrated, where parameter variations of 
showed best performance for 

Decugis and Ferber [1998] introduced a different vari­
ation of Maes' algorithm for which they proved conver­
gence of activation. However, their algorithm does not 
include inhibition and therefore the ability to take un­
wanted effects into account. Another shortcoming is that 
goals do not depend on the current situation. Besides 
showing better success, situation-dependent goals sim­
plify the creation of behavior networks, especially when 

domains get increasingly large and complex. This is be­
cause relevance conditions of goals can be used to di­
vide up the domain into different contexts. The soccer-
playing agents for example can use goal relevance to 
easily incorporate different strategies for play-on phases, 
and for phases when the game has been interrupted by 
the referee. When using the behaviors' preconditions to 
produce the same set of strategies, precondition lists of 
all behaviors grow rapidly, complicating the introduction 
of new behaviors and new strategies. 

In this paper, we have argued that real-valued propo­
sitions can be integrated into an action control algorithm 
using behavior networks to improve the performance of 
agents in continous domains. Further the introduction of 
situation-dependent goals simplifies the creation of large 
behavior networks and improves agents' performance by 
focussing on relevant goals as exemplified by studies us­
ing the Robocup domain. 
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