
Designing Comprehensible Agents

Phoebe Sengers
Carnegie Mellon University

phoebe@cs.cmu.edu

Abs t r ac t

For many applications, it is important that
agents be not only correct, but also compre­
hensible to human users. Typically, people
have tr ied to make agents' behavior and reason­
ing understandable by adding post-hoc special-
purpose explanation systems, wi th often dis­
appointing results. Here, I instead take the
comprehensibility of agent behavior as a cen­
t ra l agent design consideration from the start. I
describe an agent architecture, the Expressiva-
tor, that supports comprehensibility on top of a
behavior-based framework, using four technical
innovations: (1) structuring the agent's behav­
ior according to the signs and signifiers it is in­
tended to communicate; (2) allowing the agent
to keep track of its impression on the user wi th
sign management, (3) using behavioral transi­
tions to explain the reasons for agent, behavior,
and (4) expressing behavioral interrelationships
directly using meta-level controls.

1 I n t r o d u c t i o n
No matter how powerful an AI system is, it may be use­
less if its actions and reasoning are incomprehensible to
users. Expert systems that suggest investing one's life
savings in an obscure Caribbean manufacturer or treat­
ing a patient w i th a little-used drug wi th potent side-
effects without making clear why wi l l quickly be shelved
in favor of old-fashioned, questionable human experts.
Tutoring systems wi l l fail i f students cannot figure out
what the agent demonstrating the proper solution is do­
ing or why. Humans wi l l have difficulty guiding teleau-
tonomous robots whose behavior and reasoning is only
understandable after time-consuming analysis of activity
logs. Believable agents are pointless if their personality,
behavior, and thinking are unclear.

In all these cases, the usability and usefulness of the AI
system depends heavily on its behavior being easy to un­
derstand by human users. But most techniques available
for building such systems focus on problem-solving, with
understandability as an afterthought. As a result, previ­
ous approaches to this problem have generally focused

on taking already-built but inadequately understand­
able systems and adding explanation systems to make
them more comprehensible [Johnson, 1994] [Diederich
and Tickle, 1995]. In essence, wi th these approaches the
system's behavior and reasoning remain as ineffable as
always, but a special-purpose system is added to recon­
struct and translate it for human users often wi th
disappointing results.

In this paper, I instead explore the possibility of de­
signing agents to be comprehensible from the start That
is, agents can be structured so that their behavior and
reasoning is comprehensible all along, eliminating the
need for a special-purpose explanation system to im­
prove the agent's comprehensibility after the fact. In
order to do this, I first lay out the requirements for com­
prehensibility from a psychological perspective. I then
describe an implemented agent architecture, the Expres-
sivator, which provides support for comprehensible be­
havior on top of a behavior-based framework. The Ex-
pressivator works by designing agents in terms of com­
municated signs rather than internal problem-solving be­
haviors, and by using behavioral transitions to explain
the connection between the agent's activities to users.

2 Prerequisites for Comprehens ib i l i ty

The groundwork for comprehensible systems has been
laid out by believable agents research. Because compre­
hensibility is so essential to believable agents, BA sys­
tems have often included user understandability as one
central agent design consideration [Loyall, 1997] [Neal
Reilly, 1996] [Blumberg, 1996] [Lester and Stone, 1997],
but one that is usually applied in an ad hoc manner. The
Expressivator is instead built on a systematic analysis of
the requirements for comprehensibility from a psycho­
logical point of view.

Basically, an agent is comprehensible if, based on the
agents' observable actions, users can build an accurate
interpretation of the agent's beliefs, reasoning, knowl­
edge, and so on. This means that an agent wi l l be par­
ticularly understandable if it gives off the kinds of be­
havioral cues from which people find it easy to construct
meaning. In order to know what kind of cues these are,
we need to understand how people go about interpreting

SENGERS 1227

agents. We can then tailor our agents to give the kind of
behavioral cues that are easy for people to understand.

The way in which people go about interpreting the
behavior of complex, autonomous systems is the subject
of the field of narrative psychology [Bruner, 1990]. Nar­
rative psychology argues that people construct meaning
from observed actions by organizing them into narra­
tive, or stories. Narrative theory has uncovered numer­
ous properties of this k ind of organization [Bruner, 1991],
including centrally the following two:

• People t ry to discover not only what the agent does,
but also why. The reasons or motivations behind
actions are just as important as what is done.

• Events are not seen in isolation. Users t ry to inter­
pret events as they relate to each other.

Narrative psychologists argue that people comprehend
intentional activity by t ry ing to interrelate observed ac­
tions and to find out the reasons for the agent's behav­
ioral choices. If this is so, then an agent, to be maximally
understandable, must have the following properties:

• The agent must clearly express what it is doing.
These individual actions must be clear to the user,
since they form the building blocks for any future
interpretation.

• The agent must clearly express why it is doing what
it does.

• The relationships between the agents' activities
must be made clear. The agent cannot simply jump
between different activities, but should suggest to
the user how the activities fit together into a logical
whole.

In addition, for maximum comprehensibility, behav­
ior cannot be arbi trar i ly complex. Behavior in which
an agent can take account of many perhaps barely no­
ticeable environmental conditions and do complex rea­
soning instantaneously simply cannot be communicated
adequately. At the same time, since users can infer a
great deal about the agent's motivations and personal­
ity from simple actions, simple, well-chosen behaviors
can be enough.

The properties which comprehensible agents must
have lead to the following heuristic for comprehensible
agent construction:

Behaviors should be as simple as possible. The
agent's comprehensibility comes from thinking
out the connections between behaviors and dis­
playing them to the user.

3 Bu i ld ing Comprehensible Agents
This heuristic forms the basis of the Expressivator, an
agent architecture that focuses on the expression of agent
actions and their interrelationships to users. The Ex-
pressivator is buil t on top of Hap [Loyall and Bates,
1991], a behavior-based language designed for believ­
able agents. The Expressivator provides systematic sup­
port for narrative comprehensibility through the follow­
ing mechanisms:

• Expressing what the agent does: The agent's de­
sign is based not on internally-defined behaviors,
but on signs and signifiers which are directly com­
municated to the user. The agent uses a sign-
management system to keep track of the signs and
signifiers that have been communicated.

• Expressing why the agent does i t : Behavioral tran­
sitions communicate the reasons for agent activity.

• Expressing the relationships between activities:
Transitions use meta-level controls to know about
and influence other behaviors, so that their rela­
tionships are expressly communicated to the user.

Each of these mechanisms is described in more detail be-
low. Examples come from the Expressivator's use in the
Industrial Graveyard. In this v i r tua l environment the
Patient, a discarded lamp character implemented with
the Expressivator, attempts to eke out a miserable ex­
istence while being bullied about by the Overseer, an
agent implemented in Hap.

3.1 Signs, Signif iers , a n d S ign
M a n a g e m e n t

The first prerequisite for behavior comprehensibility is
that the user should be able to clearly tell what the
agent is doing. Clear communication of the basic ac­
tions and behaviors of the agent is essential if the user is
to comprehend the agent's activity. Signs and signifiers
support the construction of clearly communicated be­
havior; sign management allows the agent itself to keep
track of what has been communicated, so it can tailor
subsequent behavioral communication to the user's cur­
rent interpretation.

Signs a n d Signif iers
Current behavior-based approaches are based on an in­
ternal, problem-solving approach, and generally divide
an agent into activities in which the agent likes to or
needs to engage. Typical behavior-based systems divide
an agent into three parts: (1) physical actions in which
the agent engages, (2) low-level behaviors, which are the
agent's simple activities, and (3) high-level behaviors,
which combine low-level behaviors into high-level activ­
ities using more complex reasoning. Because these ac­
tivities are implemented according to what makes sense
from the agent's internal point of view, there is no nec­
essary correlation between the agent's behaviors and the
behaviors we would like the user to see in our agent.

But for comprehensible agent design, it may make
more sense to design the agent according to the things
we would like to communicate to the user, i.e. mak­
ing the internal behaviors exactly those behaviors we
want to communicate to the user. Then, communicating
what the agent does reduces to the problem of making
sure that each of these behaviors is properly communi­
cated. For this reason, the Expressivator structures an
agent not into physical actions and problem-solving be­
haviors, but into signs and signifiers, or units of action

1228 SOFTWARE AGENTS

that are likely to be meaningful to the user. This struc­
ture involves three levels, roughly corresponding to those
of generic behavior-based A I : (1) signs, which are small
sets of physical actions that are likely to be interpreted
in a particular way by the user; (2) low-level signijiers,
which combine signs, physical actions, and mental ac­
tions to communicate particular immediate physical ac­
tivities to the user; and (3) high-level signifiers, which
combine low-level signifiers to communicate the agent's
high-level activities.

There are several differences between these structural
units and the default behavior-based ones. Unlike phys­
ical actions and behaviors, signs and signifiers focus on
what the user is likely to interpret, rather than what the
agent is 'actually' (i.e. internally) doing. In addition,
signs and signifiers are context-dependent; the same phys­
ical movements may lead to different signs or signifiers,
depending on the context in which the actions are inter­
preted. Most importantly, signs and signifiers carry an
explicit commitment to communication; they require the
agent designer to think about how the agent should be
interpreted and to provide visual cues to support that
interpretation.

Signs and signifiers are not simply design constructs;
they also have technical manifestations. Formally, a sign
is a token the system produces after having engaged in
physical behavior that is likely to be interpreted in a par­
ticular way. This token consists of an arbitrary label and
an optional set of arguments. The label, such as "noticed
possible insult", is meaningful to the designer, and rep­
resents how the designer expects that physical behavior
to be interpreted. The arguments (such as "would-be in-
sulter is Wilma") give more information about the sign.
This token is stored by the sign-management system de­
scribed below, so that the agent can use it to influence its
subsequent behavioral decisions. A low-level signifier is a
behavior that is annotated w i th the special form (w i t h
l o w J e v e l j s i g n i f y i n g . . .) ; a high-level signifier is simi­
larly annotated (w i t h h ighJeve l_s ign i fy ing) . Sig­
nifiers can also generate tokens for the sign-management
system, as described below.

S ign M a n a g e m e n t
Once a designer has structured an agent according to
what it needs to communicate, agents can reason about
what has been communicated in order to fine-tune pre­
sentation of subsequent signs and signifiers. That is, by
noting which signifiers have been communicated, agents
can reason about the user's likely current interpretation
of their actions and use this as a basis for deciding how
to communicate subsequent activity.

The most obvious way for the agent to keep track of
what the user thinks is for it simply to notice which signs
and signifiers are currently running. After all, signifiers
represent what is being communicated to the user. But
it turns out in practice that this is not correct because the
user's interpretation of signs and signifiers lags behind
the agent's engagement in them. For example, if the
agent is currently running a "head-banging" signifier, the

user wi l l need to see the agent smack its head a few times
before realizing that the agent is doing i t .

The sign-management system deals w i th this problem
by having the agent post signs and signifiers when it be­
lieves the user must have seen them. A behavior can
post a sign each time it has engaged in some physi­
cal actions that express that sign, using the pos t - s ign
language mechanism. Similarly, once signs have been
posted that express a low-level signifier, behaviors use
pos t J o w J e v e l to post that that low-level signifier has
been successfully expressed. Once the right low-level sig­
nifiers have been posted to express a high-level signifier,
p o s t - h i g h J eve l is used to post that high-level signifier.

Each of these commands causes a token to be stored
in the agent's memory listing the current sign, low-level
signifier, or high-level signifier, respectively, along w i th a
time stamp. Once signs and signifiers have been posted,
other behaviors can check to see what has been posted
recently before they decide what to do. The result is that
the signs and signifiers the agent has expressed can be
used just like environmental stimuli and internal drives
to affect subsequent behavioral presentation, tuning the
agent's behavior to the user's interpretation.

3.2 T r a n s i t i o n s

The second requirement of behavior comprehensibility is
that the user should be able to tell why the agent is doing
what it is doing. In behavior-based terms, every time an
agent selects a particular behavior, it should express to
the user the reason it is changing from the old behavior
to the new one. This is difficult to do in most behavior-
based systems because behaviors are designed and run
independently; when a behavior is chosen, it has no idea
who it succeeds, let alone why.

In the Expressivator, behavioral transitions are used
to express the agent's reasoning. Transitions are special
behaviors which act to 'glue' two signifying behaviors
together. When a transition notices that it is time to
switch between two signifiers, it takes over from the old
signifier. Instead of switching abruptly to the new signi­
fier, it takes a moment to express to the user the reason
for the behavioral change.

Transitions are implemented in two parts, each of
which is a full-fledged behavior: (1) transition triggers,
that determine when it is appropriate to switch to an­
other behavior for a particular reason, and (2) transition
demons, that implement the transition sequence that ex­
presses that reason to the user. Transition triggers run
in the background, generally checking which behaviors
are running (e.g. exploring the world), and combining
this information with sensory input about current con­
ditions (e.g. the Overseer is approaching). When its con­
ditions are fulfilled, the transition trigger adds a special
token to memory, rioting the behavior which should ter­
minate, the behavior which should replace i t , and a la­
bel which represents the reason for the replacement (e.g.
a f ra id _of_overseer).

Transition demons monitor memory, waiting for a
transition for a particular reason to be triggered. They

SENGERS 1229

then choose an appropriate behavioral expression for the
reason for change, according to the current likely user in ­
terpretation and conditions in the v i r tua l environment.
Expressing the reasoning behind behavioral change often
requires changes to subsequent behaviors; for example,
if the Patient starts doing some odious task because it
is forced to by the Overseer, it should include some an­
noyed glances at the Overseer as part of the task-fulfilling
behavior. Transitions are able to express these kinds of
interbehavioral influences using the meta-level controls
described below.

3.3 Meta-Level Controls
The th i rd requirement of narrative comprehensibility is
that the relationships between the agent's activities are
made clear. Instead of jumping around between appar­
ently independent actions, the agent's activities should
express some common threads. But these relationships
are difficult to express in most behavior-based systems
because they treat individual behaviors as distinct enti­
ties which do not have access to each other. Conflicts
and influences between behaviors are not handled by be­
haviors themselves but by underlying mechanisms wi th in
the architecture. Because the mechanisms that handle
relationships between behaviors are part of the implici t
architecture of the agent, they are not directly express­
ible to the user.

The Expressivator deals wi th this problem by giving
behaviors meta-level controls, special powers to sense
and influence each other. Because meta-level controls are
explicitly intended for communication and coordination
between behaviors, they are in some sense a violation of
the behavior-based principle of minimal behavioral inter­
action. Nevertheless, meta-level controls are so useful for
coordinating behavior that several have already found a
home in behavior-based architectures. An example is
Hamsterdam's meta-level commands, which allow non-
active behaviors to suggest actions for the currently dom­
inant behavior to do on the side [Blumberg, 1996]. In
the Expressivator, behaviors can (1) query which other
behaviors have recently happened or are currently ac­
tive; (2) delete other behaviors; (3) add new behaviors,
not as subbehaviors, but at the top level of the agent;
(4) add new sub-behaviors to other behaviors; (5) change
the internal variables that affect the way in which other
behaviors are processed; (6) turn off a behavior's abili ty
to send motor commands, and (7) move running subbe­
haviors from one behavior to another.

The most important function for these meta-level con­
trols in the Expressivator is to allow for the implemen­
tat ion of transitions. Transitions, at a minimum, need
to be able to find out when an old behavior needs to
be terminated, delete the old behavior, engage in some
action, and then start a new behavior. This means that
transition behaviors need to have all the abilities of a
regular behavior, and a few more: (1) they need to be
able to know what other behaviors are running; (2) they
need to be able to delete an old behavior; and (3) they
need to be able to begin a new behavior. Ideally, they

should also be able to alter the new behavior's process­
ing to reflect how it relates to what the agent was doing
before. In the Expressivator, transitions can do all these
things w i th meta-level controls.

More generally, meta-level controls make the relation­
ships between behaviors explicit, as much a part of the
agent design as behaviors themselves. They allow behav­
iors to affect one another directly when necessary, rather
than making interbehavioral effects subtle side-effects of
the agent design. Meta-level controls give agent builders
more power to expose the inner workings of agents by
letting them access and then express aspects of behavior
processing that other systems leave implici t .

3.4 Putting It Al l Together

Narrative psychology suggests that comprehensibility re­
quires agents to clearly express what they do, why they
do i t , and the interrelationships between their activities.
The Expressivator supports comprehensibility by ex­
pressing the agent's actions through signs and signifiers,
the reasons for agent activity through transitions, and
the interrelationships between activities through meta-
level controls.

These architectural mechanisms are described sepa­
rately, but used together in the agent design process,
changing the way in which agents are designed. In a
typical behavior-based system, an agent is defined in 3
major steps: (1) deciding on the high-level behaviors in
which the agent wi l l engage; (2) implementing each high-
level behavior, generally in terms of a number of low-level
behaviors and some miscellaneous behavior to kni t them
together; (3) using environmental triggers, conflicts, and
other design strategies to know when each behavior is
appropriate for the creature to engage in . W i t h the Ex­
pressivator, the choice and expression of these structural
'units' for the agent is not enough; in order to support
the user's comprehension, the designer must also give
careful consideration to expressing the reasons for and
interrelationships between those units. These interrela­
tionships are designed and implemented wi th transitions,
which alter the signifiers they connect in order to make
them clearer. In practice, transitions are the keystone of
the architecture, combining signifiers in meaningful ways
through the use of meta-level controls.

4 Results
The best way to see how the Expressivator changes the
quality of agent behavior is to look at how its transitions
work in detail. Here, I w i l l go over one point where the
agent switches behaviors, and explain how transitions
make this switch more comprehensible. One example
does not proof make, but it does take up a lot of space;
the sceptical reader can find more in [Sengers, 1998].

As our excerpt begins, the Patient notices the sched­
ule of daily activities which is posted on the fence. It
goes over to read the schedule. The Overseer, noticing
that the Patient is at the schedule and that the user is
watching the Patient, goes over to the schedule, changes

1230 SOFTWARE AGENTS

Figure 1: Response without transitions

the t ime to 10:00, and forces the Patient to engage in
the activity for that hour: exercising.

The goal of this part of the plot is to communicate
to the user the daily regime into which the Patient is
strapped. The Patient does not have autonomy over its
actions; it can be forced by the Overseer to engage in
activities completely independently of its desires. The
specific behavioral change from reading the schedule to
exercising, then, should show the user that the agent
changes its activity because (1) it notices the Overseer,
(2) the Overseer enforces the scheduled activities; (3) the
activity that is currently scheduled is exercising.

Wi thou t transitions, the Patient's response to the
Overseer is basically stimulus-response (Figure 1). The
Patient starts out reading the schedule. As soon as the
Patient senses the Overseer, it immediately starts exer­
cising. This reaction is both correct and instantaneous;
the Patient is doing an excellent job of problem-solving
and rapidly selecting optimal behavior. But this be­
havioral sequence is also perplexing; the chain of logic
that connects the Overseer's presence and the various
environmental props to the Patient's actions is not dis­
played to the user, being jumped over in the instanta­
neous change from one behavior to another.

W i t h transitions, attempts are made to make the logic
behind the behavioral change clearer (Figure 2). Again,
the behavior starts wi th the Patient reading the sched­
ule. This time, when the Overseer approaches, the Pa­
tient just glances at the Overseer and returns to reading.
Since the Patient normally has a strongly fearful reac­
tion to the Overseer (and by this time the Overseer's
enthusiasm for punishing the Patient has already gener­
ally aroused sympathy in the user's mind), the user has
a good chance of understanding that this simple glance
without further reaction means that the Patient has not
really processed that the Overseer is standing behind i t .

Suddenly, the Patient becomes startled and quickly
looks back at the Overseer again. Now, the user can
get the impression that the Patient has registered the
Overseer's presence. Wrhatever happens next must be a
reaction to that presence. Next, the Patient checks the

Figure 2: Response with transitions

time and the schedule of activities to determine that it
is time to exercise. Then the Patient whirls to face the
Overseer and frantically and energetically begins exercis­
ing, tapering off in enthusiasm as the Overseer departs.
This transition clearly communicates that the change in
behavior is connected to several factors: the presence of
the Overseer, the clock, and the schedule. This is in con­
trast with the transition-less sequence, in which there is
no clear connection between any of the environmental
factors and the Patient,'s behavioral change.

4.1 Eva lua t ion

How good is the Expressivator? The kind of detailed
transition analysis given here suggests that, wi th the Ex­
pressivator, the user is given more information on which
to judge both the agent's behavior and the reasons for
the agent's behavioral changes. This is certainly a basis
for improved user understanding, but does not necessar­
ily imply actual improvement. In particular, the quality
of the animation is not up to snuff, which means users
sometimes have trouble interpreting the simple move­
ments of the agent. A l l the innovations the Expressivator
introduces are wort hless if individual signs are not clearly
animated; everything rests on the substantial animation
problem of getting a sigh to look like a sigh and not like
a cough or a snort. This problem is exacerbated when,

SENGERS 1231

as in Hap, there is a mind-body split, w i t h the mind gen­
erating actions that are implemented autonomously by
the body. The resulting divide between command and
execution makes accurate t iming and therefore effective
control of animation impossible. This problem of gener­
ating expressive animation, while not a straightforward
" A I problem," must be addressed by any architecture
that is going to implement graphically presented, com­
prehensible agents.

Certainly, the difficulty of communicating agents'
th inking could be lessened by allowing them to talk.
Then, the framework designed here could be applied sim­
ply by using natural language to express what the agent
is doing and why. At the same time, constant explana­
tory commentary ("Now I am going to hide because the
Overseer is coming and I am afraid!") seems unnatural
and distracting, leaving a role for physical action to back
up and expand on the agent's utterances.

The Industrial Graveyard is an entertainment appli­
cation, but the constructs of the Expressivator are not
l imited to believable agents. The concept of a narrative
structure for behavior can be just as important for tele-
autonomous robots, semi-autonomous avatars, or peda­
gogical agents. However, the Expressivator's focus on
behavior and concrete action probably does not ade­
quately support systems like automatic theorem provers
that engage in complex, abstract reasoning.

The greatest conceptual problem wi th the Expressiva­
tor is the potential explosion of the number of transitions
needed between signifiers; but this turned out not to be
a problem in practice. For the Patient's 8 high-level
signifiers there were only 15 transitions, and for the Pa­
tient's 16 low-level signifiers, there were only 25 transi­
tions. This is for several reasons. First of all , transitions
are only needed between high-level signifiers, and be­
tween low-level signifiers that share the same high-level
signifier — not between low-level signifiers in different
high-level signifiers.1 I also cut out many transitions by
wri t ing several generic transitions, that could go from
any behavior to a particular behavior. Most importantly,
I found in practice that many of the possible transitions
did not make practical sense because of the semantics of
the behaviors involved.

The greatest advantage of the Expressivator for the
behavior programmer is that it makes it much easier to
handle interbehavioral effects. The coordination of mul­
tiple high-level behaviors is one of the major stumbling
blocks of behavior-based architectures [Brooks, 1990];
since interbehavioral factors are implici t in the archi­
tecture they are hard to control, leading to multiple be­
haviors batt l ing it out over the agent's body, and hours
of tweaking to get each behavior to happen when and
only when it is supposed to. This is much easier to han­
dle when behaviors can simply k i l l other behaviors that
are not appropriate, and when the trigger conditions for
each behavior can be explicitly set.

This would be implemented instead with a transition be­
tween the respective high-level signifiers.

5 Conclusion
For many applications, agents w i l l be much more use-
fill i f their behavior and reasoning are understandable
to human users. The work done here is based on the
idea that agents w i l l be more comprehensible i f they
are tailored to support human, narrative interpretation
from the start. This interpretation requires that agents
should show what they are doing, why they are doing
i t , and the interrelationships between their activities. In
practice, this means making behaviors maximally sim­
ple and expressive, and explicit ly showing the connec­
tions between them. The Expressivator supports this
style of agent construction by using transitions to relate
signifying behaviors, expressing their interrelationships
through meta-level controls.

References
[Blumberg, 1996] Bruce Blumberg. Old Tricks, New

Dogs: Ethology and Interactive Creatures. PhD thesis,
M I T Media Lab, Cambridge, M A , 1996.

[Brooks, 1990] Rodney A. Brooks. Elephants don't play
chess. In Pattie Maes, editor, Designing Autonomous
Agents. M I T Press, Cambridge, M A , 1990.

[Bruner, 1990] Jerome Bruner. Acts of Meaning. Har­
vard University Press, Cambridge, M A , 1990.

[Bruner, 1991] Jerome Bruner. The narrative construc­
t ion of reality. Critical Inquiry, 18(1):1 21, 1991.

[Diederich and Tickle, 1995] Joachim Diederich and
Alan B. Tickle. Explanation and collective compu­
tat ion. Complexity International, 2, 1995.

[Johnson, 1994] W. Lewis Johnson. Agents that learn to
explain themselves. In Proceedings of AAAI-94, pages
1257 1263, Seattle, Washington, 1994. A A A I Press.

[Lester and Stone, 1997] James C. Lester and Brian A.
Stone. Increasing believability in animated pedagogi­
cal agents. In W. Lewis Johnson, editor, Proceedings
of the First International Conference on Autonomous
Agents, pages 16 21, N Y , February 1997. A C M Press.

[Loyall and Bates, 1991] A. Bryan Loyall and Joseph
Bates. Hap: A reactive, adaptive architecture for
agents. Technical Report CMU-CS-91-147, Carnegie
Mellon University, 1991.

[Loyall, 1997] A. Bryan Loyall . Believable Agents:
Building Interactive Personalities. PhD thesis,
Carnegie Mellon University, Pit tsburgh, May 1997.
CMU-CS-97-123.

[Neal Reilly, 1996] Scott Neal Reilly. Believable Social
and Emotional Agents. PhD thesis, Carnegie Mellon
University, 1996. CMU-CS-96-138.

[Sengers, 1998] Phoebe Sengers. Anti-Boxology: Agent
Design in Cultural Context. PhD thesis, Carnegie Mel­
lon University Department of Computer Science and
Program in Literary and Cultural Theory, Pittsburgh,
PA, 1998.

1232 SOFTWARE AGENTS

