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Abs t r ac t 
This paper deals wi th the way dual genetic al­
gorithms ( D G A ) , an extension of the standard 
ones, explore the search space. After a brief 
introduction presenting genetic algorithms and 
dualism, the fitness distance correlation is dis­
cussed in the context of dualism. From this 
discussion, a conjecture is made about the ge­
netic: heuristic used by dual genetic algorithms 
to explore the search space. This conjecture 
is reinforced by the visualization of the popu­
lation centroid trajectories in the plane fitness 
distance. These trajectories help to point out 
"leg-up" behaviors, which allow the dual ge­
netic algorithm to reach the global optimum 
from walks on deceptive paths. 

1 I n t r o d u c t i o n 
1.1 Genetic algorithms 
Genetic algorithms are adaptive systems inspired from 
Darwin's theories on natural evolution. Their fundamen­
tal bases were defined twenty five years ago by Holland 
([Holland, 1975]) in his book on natural and artificial 
adaptation. Much works have been done since, in par­
ticular to improve their function optimization abilities 
([Goldberg, 1989]). 

The basic algorithm is simple: an ini t ia l population of 
N individuals is randomly drawn and evaluated given a 
fitness function; according to this fitness value, the in­
dividuals are allowed to reproduce in such a way that 
the number of expected children of each individual is 
proportional to the fitness; children are mated together, 
mutated, in order to obtain a new population of size TV; 
and the algorithm loops unt i l a stop condition is reached. 
Individuals may be problem solutions, function parame­
ters, and so on. 

Improvements consist in modifying the evaluation 
step, the reproduction step, the mating and mutation 
step, or even the algorithm itself. But the main prob­
lem is always to choose an appropriate representation for 
the individuals. Dualism was introduced in order to by­
pass this problem by having an algorithm less sensitive 
to representation shortcomings. 

1.2 Dualism 

Dual genetic algorithms ( D G A ) are an extension of GA 
(see [Collard and Eseazut, 1995] for more details). Their 
principles are the same as the standard GA (SGA) ones. 
They only differ in the representation of the individuals. 
W i t h i n D G A , individuals are enhanced wi th an additional 
bit , termed meta bit, which controls their interpretation. 

Let be the binary space where the problem is orig­
inally defined, that is the basic search space. The space 

is called the mirrvr space. Strings from 
are interpreted as follows: is intended as while 

is intended as the binary complement of Apart 
from this interpretation step, this is a classical GA which 
is applied on the mirror space. 

Elements from are known as chromosomes, and el­
ements from as anti-chromosomes. A chromosome 
and an anti-chromosome corresponding to the same el­
ement of form a dual pair. For instance, 00100 and 
11011, both represent the same individual from U, 0100. 

There are many studies on application of D G A in 
several contexts: time dependent optimization, mul t i -
objective optimization and classifier systems. 

2 Fitness Dis tance C o r r e l a t i o n 
Some researchers have established a correspondence be­
tween evolutionary algorithms and heuristic state space 
search ([Jones and Forrest, 1995; Tackett, 1995]). This 
correspondence is based on the fact that both approaches 
can be seen as searching labeled graphs. Evolutionary 
landscape matches state space, individual potential so­
lution and Fitness function Heuristic function. In the 
landscape model, the label on a vertex is a measure of 
the worth of that vertex as a solution. Whereas for many 
heuristic searches, as Means-Ends Analysis or the A* al­
gori thm, the label is interpreted as a measure of the dis­
tance to a goal. There are many results that show that 
the better an heuristic is as an estimate to the function 
which gives the exact distance to the goal, the better it 
w i l l perform. From these results, Jones ([Jones and For­
rest, 1995]) suggests that the ideal fitness function for 
evolutionary algorithms must provide a measure of how 
far away a good solution is. So he proposes to use the 
relationship between fitness and distance to the goal as 
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a measure of diff iculty for a genetic algorithm. 
The definition of the fitness distance correlation ( F D C ) 

is quite simple. Given a set of fit­
ness values f rom n individuals and the corresponding set 

of distances from them to the near­
est opt imum, the correlation coefficient is calculated as: 

i 

is the covariance of F and D, and and 5 are 
the standard deviations and means of F and D. 

From the correlation coefficient r, problems may be 
divided in three classes: 

1. decep t i ve p r o b l e m s for which the fit­
ness increases wi th the distance to optimum. 

2. h a r d p r o b l e m s for which 
there is no correlation between fitness and distance. 

3. easy p r o b l e m s for which the fitness 
increases when the distance decreases. 

Hard problems are in fact hard to predict, since in this 
case, the FDC brings l i t t le information. So, Jones recom­
mends to examine the scatter plot distance vs. fitness, 
especially when r is near zero. This allows to distinguish 
between a problem such as o needle in a haystack ( N I A H ) 

from a problem wi th a symmetrical scatter plot, for ex­
ample. They both have a null coefficient, but NIAH is 
a hard problem, while there are symmetrical problems 
which are easy. 

Jones recommends to use distances related to genetic 
operators. However, it is not sure that such distances 
exist, and if so, that they are easily computable. Jones 
claims that Hamming distance allows a first approxima­
tion of a FDC more related to the operators. 

In order to validate the accuracy of the FDC, .Jones 
uses it on problems wi th known difficulty. Results show 
undoubtedly the predictive abil i ty of the FDC, even cal­
culated wi th Hamming distance. 

These results are surprising, since the distances ac­
tually implied by operators are not taken into account. 
The only operator taken into account is the mutation, 
as the Hamming distance between two individuals is di­
rectly related to the number of bit flips to pass from one 
individual to the other. 

Altenberg ([Altenberg, 1997]) goes further. He says 
the fact that the FDC is only a statistical and static mea-
sure, based on a distance which is apparently only bound 
to mutat ion, implies two assumptions: either Hamming 
distance is connected to the way genetic algorithms work; 
or this relation exists in a fortuitous way among the test 
set chosen by Jones. In which case, counter examples 
exist for which this relation does not hold, and which, 
therefore, deceive the FDC. 

Since there seems that there is no relation between re­
combination operators and Hamming distance, and that 
mutation is supposed to play a marginal role in genetic 
algorithms, Altenberg claims that it, is possible to con­
struct a counter example. The counter example he con­
structs is GA-easy, but the correlation between distance 

and fitness to opt imum is null by construction. Further, 
the observation of the scatter plot gives no more infor­
mations. 

This counter example deceives the Jones' conjecture 
which claims that if the FDC is close to 0 and if the 
scatter plot exhibits no particular structure, then the 
problem is GA-difficult. Moreover, Quick et al. ([Quick 
et a/., 1998a]) construct a class of problems, called ridge 
Junctions, which are GA-easy wi th a high positive corre­
lation. 

While the Altenberg's counter example is prone to dis­
cussion, in particular on the definition of the GA-easiness, 
the counter example of Quick et al is clear: there are 
functions that the FDC predicts misleading and which 
are in fact easy. Nevertheless, these two counter exam­
ples exploit known weaknesses of the FDC: its null ity for 
the symmetrical functions and the low contribution of a 
particular path in the global calculation. Besides, Quick 
et al. ([Quick et a/., 1998b]) recognize that the FDC cal­
culated with the points actually sampled by the GA gives 
better results. 

In a more general way, Naudts and Kallel ([Naudts 
and Kallel, 1998]) show that a FDC drawback is its great 
sensibility to non-linear scaling. Kallel and Schoenauer 
([Kallel and Shoenauer, 1997]) show in a more formal 
frame the irrelevance of FDC as performance predictor 
for GA, in an article judiciously entitled: "no universal 
statistical measure but a set of hints". 

Nevertheless, the success of the FDC: on a large number 
of functions remains an unsolved question. Collard et al. 
([Collard et a/., 98]) bring some elements of response, 
exhibiting a correlation between Hamming distance and 
instability implied by crossover. 

3 FDC and Dual ism 
This section deals wi th the relations that can be estab­
lished between FDC theory and dualism. In the first part, 
we define the dual distance that should be used to cal­
culate the FDC in the dual case. In the second part, a 
conjecture on dynamical behavior of DGA is proposed. 

3.1 Dual FDC 

The dualism implies two ways to transform an individual 
to another individual The first one, called 

direct, is equivalent to mute the i different bits 
between x and y. This corresponds to a walk on the 
boolean hypercube and the associated distance is simply 
the Hamming distance. The second one is equivalent 
to get x and y each in a different mirror subspace and 
to mute the identical bits, where is the 
chromosome length. This corresponds to a step through 
the boolean hypercube followed by a walk on i t . We 
called the associated distance the codistance, dc. It can 
be established that : 

The 1 is for the step through, and is the 
length of the walk on the hypercube. 
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The dual distance between two individuals from the 
basic space x and y, is natural ly defined as follows : 

where is the Hamming distance, and 
are the two dual individuals corresponding to .x. 

Since : 

where is the length of x and y, we get: 

being the length of strings over 
This result expresses that the dual distance between x 
and y is the minimum of the Hamming distance and the 
codistance. 

The dual distance remains a distance over the basic 
space But , it can be easily extended to the mirror 
space We note the distance over the mirror 
space to the nearest opt imum. It is easily shown 
that : 

where x is the individual of corresponding to x, and 
is the opt imum over Thus, there is a correspondence 
between a distance over appropriate to calculate a 
FDC and the dual distance defined over 

Now, we are going to study the predictive capacity of 
the dual FDC on a well known function family, the Trap 
functions ([Deb and Goldberg, 1993]). They are defined 
over the imitat ion of chromosomes, that is the number 
of genes set to '1' They admit two optima, a global 
one and a local one, one being the logical complement 
of the other. They are parametrized by two values 
and r. The first one, allows to set the width of the 
attractive basin for each opt ima, and r sets their relative 
importance. The function /'/• is so defined by : 

where Un(x) is the imitat ion divided by the length of 
chromosomes (in the experiments, = 20). 

We calculated the exact value of FDC (that is wi th all 
the points of in function of xb, and r. Results are 
shown on figure 1. They are roughly identical to the 
Deb & Goldberg [Deb and Goldberg, 1993] ones, who 
used another theoretical framework to obtain the condi­
tions on and r for which the Trap function is decep­
tive. These results are corroborated by the performance 
obtained with a "real'1 CM. 

We define performance as the number of runs for which 
the global opt imum is found in less than a given num­
ber of generations (200), divided by the total number of 

runs (40). The figure 2 presents such performance mea-
sures obtained wi th a CM on the Trap functions. It is 
shown that the experimental deceptive area (where per­
formance is less than 0.05) corresponds approximately 
to the theoretical deceptive area found wi th the FDC. 

For DGA, the predicted deceptive area is less important 
(figure 3). It can be shown, f rom figure 4, that there is 
no couple for which the global opt imum is never 
found. This reinforces the hypothesis made elsewhere 
([Collard and Aurand, 1994]) for which there is no totally 
deceptive problem for DGA. 

Figure 1: Standard FDC for Trap functions. Lines de­
l imi t areas in the plane for respectively deceptive, 
hard and easy Trap functions, according to the Jones' 
classification. 

Figure 2: Performances of the SO A on Trap functions. 

3.2 Fitness Dr iven Distance 
Now, we are concerned in studying the dynamical be­
haviors of DGA and the relation that can be made with 
FDC. During evolution, the DGA has to make choices be­
tween direct path and indirect path, that is, for each dual 
pair, it has to choose between the chromosome and the 
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Figure 3: Dual FDC for Trap functions. 

Figure 4: Performances of the D G A on Trap functions. 

anti-chromosome. Indeed, keeping both of them implies 
too much instabil ity. Such a choice cannot be influenced 
directly by fitness, since dual individuals have, by defini­
t ion, the same fitness. So, there is no direct explanation 
on the way these choices are made. 

In the context of FDC, this choice may be expressed 
by the definition of a distance over to the optimum. 
If the opt imum is considered in one of the two mirror 
subspaces, say choosing an individual in the same 
subspace is equivalent to consider the Hamming distance 
between it and the considered opt imum; and choosing an 
individual in the other subspace is equivalent to consider 
the codistance. Thus, there is a strong relation between 
a strategy of choice for the DGA and the effective distance 
over used to calculate the FDC. 

In the next, we are going to show that the best strat­
egy, w i th regard to the FDC, is that which consists in 
choosing the individual in the same mirror subspace than 
the opt imum if its fitness is above average, and in the 
other subspace else. This strategy is instantiated by the 
so-called fitness driven distance defined as follows 

* 

It may be obviously established that: 

P r o p e r t y 1 The fitness-distance correlation coefficient 
calculated with the fitness driven distance is always neg­
ative. 

Moreover, the following property is verified: 

P r o p e r t y 2 The fitness driven distance is the best strat-
egy of choice between dual individuals with regard to the 
fitness-distance correlation. 
D e m o n s t r a t i o n : Let d be a distance over represent­
ing a choice strategy for each individual between Ham­
ming distance and codistance to the opt imum. It is ob­
vious that: 

Then, each term ivolved in 
the covariance calculation is 

Since it is easily established that 
the covariance calculated using the fitness driven dis­
tance is inferior or equal to the covariance using any 
other distance d. 
So, the correlation coefficient calculated with the fitness 
driven distance is inferior or equal to the one calculated 
with any other distance d. 

We conjecture that the DGA tends to follow the strat­
egy expressed by the fitness driven distance. 

4 F D C and P o p u l a t i o n D y n a m i c s 
In this section, we give more insight in the DGA dynam­
ical behavior, by plott ing the trajectories of the popula­
tion centroid on the fitness-distance plane. In particular, 
we point out the "leg-up" behavior, which allows the al­
gorithms to lean on a deceptive attractor to reach the 
global optimum. 

4.1 Fi tness distance t ra jec to r ies 
Representing the population dynamics is a difficult task. 
Indeed, there is a trade-off to do between the informa­
tion being presented and the clarity of the representa­
tion. The first step is to choose a relevant plane. The 
fitness distance space seems to be an interesting one. 
The second step consists in choosing how the population 
is to be represented in this plane. To do so, it is natural 
to plot the position at each generation of the centroid of 
the population, that is, the point corresponding to the 
mean distance to the opt imum and the mean fitness of 
the population. 

4.2 "Leg-up' ' : a way to converge 
In order to exhibit the choices made by a DGA during 
evolution, we are going to consider two functions, the 
previously introduced Trap function = 10, 

and a modified Trap function called 

CLERGUE AND COLLARD 1221 



T h e Trap f u n c t i o n 

The trajectory of the population centroid for the SGA 
(see figure 5) is not surprising. The population follows 
the deceptive branch of the landscape toward the local 
opt imum. 

Figure 5: SGA: trajectory for the Trap function. 

The figure 6 represents the trajectory for a DGA con­
sidering distances in the basic space. First, as for the 
SGA, the population converges toward the deceptive op­
t imum. But after a while, the population crosses the 
space to converge on the global opt imum. This is the 
"leg-up" phenomenon: the algori thm leans on the local 
opt imum to reach the global one. 

Figure 6: DGA: trajectory for the Trap function in the 
basic space. 

The representation in the mirror space (see figure 
7) gives another point of view of this behavior. In par­
t icular, it shows that the population begins to move on 
the mirror subspace (solid line). Then it jumps on 

to reach the global opt imum (dashed line). 

Figure 7: The Trap function in The solid line rep­
resents the individuals, and the dashed line, the 
ones. The points are the trajectory of the population. 

T h e bi-Trap f u n c t i o n 
The Trap function involves an unique "leg-up". Indeed, 
although the space is crossed from part to part , this 
corresponds to the change of only 1 b i t in But 
this strategy may be used by DGA, even when the local 
opt imum is not in the vicinity of the global opt imum 
complement. Moreover, there may be several successive 
"leg-up" during evolution. 

Now, we are going to introduce a function involving 
two "leg-up". The Trap function is modified in order to 
get many local opt ima (see figure 8) : The binary com­
plement of the global one and the individuals situated 
at imi tat ion 10. 

According to the in i t ia l populat ion, the SGA behaves 
half of the t ime as for the Trap function, that is it con­
verges toward the complement of the global opt imum. 
Any t ime else, it converges toward the other local op­
t ima, from where it occasionally reaches the global opt i­
mum. 

W i t h DGA, the trajectory of the population exhibits 
clearly two "leg-up" (see figure 8). Ini t ial ly, the popu­
lation follows the left branch. It jumps a first t ime to 
follow the right one and converge toward the deceptive 
opt imum. Then it makes another jumps to reach the 
global opt imum as w i th the standard Trap. These jumps 
in U correspond in fact to mirror subspace changes, as 
shown figure 9. 

5 Conclusion 
Dual genetic algorithms seem to be a promising improve­
ment of genetic algorithms. However, it lacked explana­
t ion on why they are so efficient and on the way they be­
have. In this paper, we bring some element of response, 
using the fitness distance correlation, and plot t ing their 
dynamical behaviors in the fitness distance plane. 

The trajectories plots in the distance fitness space ex­
hibi t the "leg-up" phenomenon. The choice of the Trap 
functions was influenced by our needs to get a function 
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Figure 8: The function in , along with the 
trajectory of a DGA. 

Figure 9: The function in The solid line 
represents the individuals, and the dashed line, the 

The points are the trajectory of the population. 

with a simple representation in this space. This way, the 
position of the centroid gives more informations about 
the distribution of chromosomes and anti chromosomes, 
than wi th functions wi th fuzzier representation. How­
ever, in the general case, it may be supposed that this 
jumping behavior is also present, while less observable. 

This reinforces our conjecture, firstly made wi th the 
fitness driven distance, for which, during evolution, the 
DGA is confronted to choices between dual individuals, 
and that it tends to make such choices in a way which 
optimizes the correlation between fitness and distance to 
the global opt imum. 
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