
Coevolution, Memory and Balance

Jan Paredis
MATRIKS

Universiteit Maastricht
P.O. Box 616, NL-6200 AL Maastricht

The Netherlands
e-mail: jan@riks.nl

Abstract

This paper studies the role of two mechanisms -
memory and balance - to exploit the arms race resulting
from predator-prey interactions when solving a given
problem. Memory ensures that individuals are not only
well adapted to the current members of the opposite
population but also to earlier generations of opponents.
A balanced (co)evolution, on the other hand, adapts the
speed of evolution (i.e. the reproduction rate) to the
performance of a population. It leads to a steady
progress in both populations. Indirectly, a balanced
(co)evolution avoids a premature loss of genetic di­
versity. This in turn, diminishes the need for a long
memory span. The current paper shows how both
mechanisms can be incorporated in Coevolutionary
Genetic Algorithms (CGAs). Empirical results support
the importance of, and interaction between, both
mechanisms.

1 Introduction

In nature, organisms undergo selective pressures from other
organisms - belonging to the same or to other species.
Predator-prey interactions are a common example of selec­
tive pressure between organisms. These interactions are
characterized by an inverse fitness interaction: success on
one side is felt by the other side as failure to which must be
responded in order to maintain one's chances of survival.
This typically results in an arms race in which the com­
plexity of both predator and prey increases stepwise. It is a
challenge to integrate this mechanism into an evolutionary
algorithm in order to further improve its performance.

Paredis [1999] provides an overview of the use of co-
evolution for computational purposes starting from the early
days of computing. Here, only work directly relevant to the
issues of the current paper is discussed. Hillis [1992] co-
evolved networks for sorting lists of sixteen numbers. Such
a sorting network consists of comparisons between two
numbers (and the possibility of swapping both numbers).
The goal was to find a network, which correctly sorts all
possible lists of sixteen numbers, with as few comparisons
as possible. Hillis used two populations. The first popula­

tion consisted of sorting networks. The individuals in the
second population were sets of test-lists. These lists contain
numbers to be sorted. Both populations were geographically
distributed over a grid with each location containing one set
of test-lists and one sorting network. At each generation a
sorting network was tested on the set of test-lists at the
same location. The fitness of a sorting network was defined
as the percentage of correctly sorted test-lists. The fitness of
the set of test-lists, on the other hand, was equal to the per­
centage of test-lists incorrectly sorted by the network. This
is similar to the inverse fitness interaction between predator
and prey.

Hillis has shown that - in comparison with traditional
non-coevolutionary single population GAs - better sorting
networks can be obtained. Inspired by this work, Paredis
[1994a] introduced a Coevolutionary Genetic Algorithm
(CGA) which uses a partial but continuous fitness evalua­
tion resulting from encounters between individuals belong­
ing to different species. The first CGA was used to train a
Neural Network (NN) on a classification task. Next, an ab­
stract class of problems which can be solved by CGAs was
defined: so-called test-solution problems [Paredis 1996].
This large class of problems in Artificial Intelligence and
Computer Science in general, involves the search for a solu­
tion which satisfies a given set of tests.

A CGA uses two populations to solve test-solution
problems. One contains the tests which a solution should
satisfy. The other consists of potential solutions to the
problem. CGAs have been applied to various other test-so­
lution problems, such as: constraint satisfaction [Paredis
1994b], process control [Paredis, 1998], path planning
[Paredis and Westra, 1997], and the evolution of cellular au­
tomata (CA) for density classification [Paredis, 1997]. The
main purpose of the applications described above is to help
us understand, explore, and illustrate the operation of
CGAs. Recently, researchers have been using CGAs in real-
world applications such as object motion estimation from
video images [Dixon et al, 1997] and time tabling for an
emergency service [Kragelund, 1997].

Some CGA applications used a test population whose
contents remained fixed over time [Kragelund, 1997;
Paredis, 1994a; 1994b]. In others, both populations fully
evolved [Dixon et a/., 1997; Paredis, 1997; 1998; Paredis

1212 SEARCH

and Westra, 1997]. In the latter case, there is pressure on
both populations to improve, i.e. the solutions "try" to cor­
rectly satisfy as many individuals as possible in the test
population. At the same time the tests "try" to make life
hard for the solutions. It is not in their "interest" that the
problem be solved. Especially if there is no solution satis­
fying all possible tests then the tests might keep the solu­
tions under constant attack. Even if there exists a solution
satisfying all tests, it might be virtually unreachable given
the revolut ionary dynamics. This might be caused by the
high degree of epistasis in the linkages between both popu­
lations. Due to such linkages a small change to the individ­
uals in one population might require extensive changes in
the other population. This was exactly what happened in the
CA application [Paredis, 1997]: the tests were able to keep
ahead of the solutions by "jumping" back and forth between
two regions - in close proximity of each other - in the space
of all tests. After each such jump of the test population, ex­
tensive changes to the "genes" of the solutions, i.e. CAs,
were required in order to satisfy the tests. Paredis [1997]
provides a simple diversity preserving scheme which pre­
vents the tests from keeping ahead of the solutions. In fact,
it achieves this by randomly inserting and deleting individ­
uals from the test population. It also suggests other mecha­
nisms, such as fitness sharing or the use of different repro­
duction rates in both populations. The latter approach is in­
vestigated here. The goal is to obtain a good balance such
that there is a steady progress in both populations. This is
to avoid the tests from "out-evolving" the solutions and to
ensure that there is sufficient variation in the fitness of the
members of a population. The latter is necessary to guide
(co)evolution.

The use of fitness sharing to preserve diversity in a
competitive revolutionary context has been investigated by
a number of researchers. The Othello application of Smith
and Gray [1994] is probably one of the earliest. Rosin and
Belew [1995] combine competitive fitness sharing and
shared sampling. The latter ensures that representative oppo­
nents are selected for the "competition duels". Juille and
Pollack [1996] proposed another way to ensure population
diversity: in a classification application, a solution receives
a larger reward when it correctly classifies a test which is
classified correctly by none (or only a few) of the other so­
lutions. More recently, Rosin [1997] has identified the
causes why revolutionary progress can come to a halt: the
loss of important niches, revolutionary cycles, or a lack of
balance. He observed that, even with fitness sharing, solu­
tions might "forget" how to compete against old extinct
types of individuals which might be difficult to rediscover.
For this reason he introduces a "Hall of Fame", containing
the best individuals of previous generations which are used
for testing new individuals. This introduces some kind of
memory in the system. In order to keep the progress in both
population balanced, Rosin [1997] introduces a "phantom
parasite" which provides a niche for "interesting" individu­
als.

The final goal of a CGA solving a test-solution prob­
lem is to find a solution which satisfies all possible tests.

Any other "victory" of the solution population is only a
Pyrrhic victory. A solution population whose members sat­
isfy all members in the test-population, but who do not sat­
isfy tests which are unlikely to make their way in the test-
population, is useless. This is another reason why it is im­
portant to preserve the genetic diversity of the test popula­
tion for long enough a period.

The structure of this paper is as follows. The next sec­
tion describes the use of CGAs for test-solution problems
in more detail. Section three describes how to obtain a bal­
anced coevolution within a CGA and how the memory can
be increased. The fifth section evaluates the impact of these
mechanisms when solving multimodal problems described
in section four. Finally, the paper closes with a discussion
and conclusions.

2 CGAs For Test-Solution Problems

As a first step in applying CGAs to test-solution problems,
both initial populations are filled with randomly generated
individuals. Their fitness is calculated by pairing them up
with 20 randomly selected members of the other popula­
tion. In order to calculate the fitness of an initial solution,
one counts the number of tests it satisfies. Similarly, the
fitness of a test is the number of solutions (out of a ran­
domly chosen set of twenty solutions) which violate the
test. As a matter of fact, each individual - test or solution -
has a history which stores the fitness feedback - or pay-off-
resulting from such an encounter. A solution receives a pay­
off of one if it satisfies the test. Otherwise it receives a zero.
The opposite is true for tests: they get a pay-off of one if
the solution encountered does not satisfy a test. The fitness
of an individual is equal to the sum of the pay-offs in its
history. It is also good to note that the populations are
sorted on fitness: the fitter the individual the higher its rank
in the population.

The pseudo-code below describes the basic cycle the
CGA executes after the initial populations are generated.
First, 20 encounters are executed in which a test and solu­
tion are paired up. The SELECTion of these individuals is
biased towards highly ranked individuals, i.e. the fitter in­
dividuals are more likely to be SELECTed. In a CGA, the
most fit individual is 1.5 times more likely to be selected
than the individual with median fitness. Next, the actual
ENCOUNTER happens during which it is tested whether
the solution satisfies the test it encounters. The result of the
encounter is one if it does. Otherwise it is zero. This result
is also the pay-off received by the solution. The test re­
ceives the "inverse" pay-off. The function TOGGLE in the
basic cycle implements this inverse fitness interaction be­
tween tests and solutions. It changes a one into a zero and
vice versa. Again, each individual stores the pay-off it re­
ceives in its history. At the same time, the pay-off that the
individual received least recently is removed from the his­
tory. This guarantees that the history wi l l always contain
the 20 most recently received pay-offs. This UPDATE of
the HISTORY of an individual, is followed by an
UPDATE of the FITNESS of the individual: it is set equal

PAREDIS 1213

to the sum of the pay-offs in its history. Because both pop­
ulations are kept sorted on fitness, an individual might
move up and down in its population as a result of the up­
date of its fitness.

After the execution of the encounters, one offspring is
generated in each population. This happens as follows.
First, two parents are SELECTED from the population,
again with the same bias towards fitter individuals as ex­
plained above. Next, (2-point reduced surrogate)
CROSSOVER and (adaptive) MUTATion are used in order
to generate the child from the bit-string of each of its par­
ents. Then the FITNESS of the CHILD is calculated as the
sum of the pay-off received from encounters with 20
SELECTed individuals from the other population. If this
fitness is higher than the minimum fitness in the popula­
tion to which its parents belong then the child is
INSERTED at the appropriate rank location in this popula­
tion. At the same time, the individual with the minimum
fitness is removed. In this way, both populations remain
sorted on fitness.

A couple of remarks are in place here. First, note that in or­
der to avoid unreliable pay-off from possible mediocre off­
spring, the encounters with new offspring do only result in
pay-off for the child, not for the individuals it is encounter­
ing.

Second, the partial but continuous fitness feedback re­
sulting from the encounters is called life-time fitness evalu­
ation (LTFE). Two parameters are associated with it. The
first is the size of the histories. The second is the number of
encounters per cycle. In all previous CGA applications,
both parameters are set - quite arbitrarily - to 20. Except
when mentioned explicitly, this will be the case here too.

3 Increasing the Memory and Keeping the
Balance

This paper investigates whether an increase of the memory
of the individuals prevents the two species (solutions and
tests) from performing a cyclical dance of changes without
really improving their quality. By increasing the memory,
individuals which learn new things at the expense of things
learned earlier are penalized. The balancing mechanism pro­
posed here is devised to prevent the tests from outperform­

ing too much the solutions. It also ensures that as the solu­
tions get better, more effort is put into finding tests which
are not satisfied by the solutions.

3.1 M e m o r y

The steady-state character of the CGA together with the con­
tinuous nature of LTFE provides memory to the individu­
als. An individual's fitness reflects its performance against
members of the opposite population over a period of time.
The variant proposed here accumulates the pay-offs received
during the entire lifetime of an individual. In this case, the
fitness is defined as the number of times a pay-off of one is
received divided by the total number of encounters the indi­
vidual was involved in. This alternative for LTFE is called
lifelong fitness evaluation (LLFE). With LLFE, the fitness
of an individual reflects its performance against the mem­
bers of the opposite population it encountered during its en­
tire lifetime. In this way, there is a selective advantage for
individuals to also "beat" members of less recent genera­
tions of the opposite population. Hence, in comparison
with LTFE, LLFE increases the memory of the individuals.

3.2 Balance

The need for a balanced evolution immediately raises two
questions: 1) How can the CGA recognise that the evolu­
tion is getting unbalanced? 2) Once an imbalance is recog­
nised, how can the balance be restored?

The answer to the first question is relatively simple: if
both populations evolve in a balanced manner then they
will receive roughly the same amount of pay-off during the
encounters. Conversely, the evolution is getting more im-
balanced as the pay-off received by both populations is
more unequal.

Now, the second question can be addressed. What
should be done when one population gets considerably
more pay-off than the other? Somehow the weaker popula­
tion has to be given a helping hand. Its efforts to counter
the increasing opposition should be increased. This is done
by allowing different reproduction rates in both popula­
tions. In the standard CGA, two offspring are generated per
cycle, one in each population. Now, only one offspring will
be generated per cycle. The percentage of successes in the
last twenty encounters is used to stochastically determine
which population evolves. If none of the 20 encounters is
successful then the tests may well be too good, i.e. diffi­
cult, for the solutions currently in the solution population.
Hence, the probability that the solution-population evolves
(i.e. two parents are SELECTED from it, and if their off­
spring is fit enough, it is INSERTed in the solution popu­
lation) is equal to one. As the percentage of successes in­
creases this probability linearly decreases (see figure 1). It
becomes zero when all encounters are successful. In this
case, the probability that the test population reproduces is
equal to one.

1214 SEARCH

Figure 1. In order to determine which population repro­
duces, a real number is uniformly drawn from the interval
[0,1], If this number is smaller than the probability of re­
producing a solution then the solution population evolves
else the test population evolves.

4 Testing the CGA on the P-Model

De Jong et al, [1997] introduce a simple multimodal prob­
lem generator which allows to perform controlled experi­
ments testing the mechanisms described above. As a first
step, a set of P random bit-strings of length N is generated.
These represent the location of P peaks in a N-dimensional
boolean hypercube. The strength1 of an individual is equal
to the proportion of bits the string has in common with the
nearest peak. When P is equal to one, a single peaked
strength-landscape is obtained. For larger P, the modality,
as well as the degree of epistasis, increases.

The P-model allows us to test the mechanisms intro­
duced before on problems with different degrees of diffi­
culty. An additional advantage of the P-model - in compari­
son with, for example, the NK-model [Kaufman, 1989] - is
that the optimal value of strength is known: it is one.
Furthermore, for different P, the variance in strength is not
significantly reduced.

In our experiments, the P-model is used as follows.
Each population, test and solution, has its own set of op­
tima which might be different in location as well as num­
ber, i.e. they can have a different value of P. During an en­
counter, the individual with the highest strength gets a pay­
off of one, the other receives zero pay-off. These pay-offs are
used to calculate the fitness as described in section 2. As
was the case for test-solution problems, the pay-offs are re­
stricted to two values, zero and one, instead of just being
equal to the respective strengths. This to facilitate the gen­
eralization of the conclusions drawn from the experiments
described here to test-solution problems in general. Note
that when the individuals involved in an encounter have the
same strength, the solution gets the pay-off of one and the
test gets zero pay-off. This to ensure that there exists a solu­
tion which beats all tests. Ideally, the CGA should find this
individual which has a strength of one.

1 De Jong et al use the term fitness. We use the term strength in
order to avoid confusion with the definition of fitness in
CGAs.

5 Empirical Results

Just as was the case in earlier CGA applications, both popu­
lations contain 100 individuals. Also the same genetic op­
erators are used: reduced surrogate two-point crossover and
adaptive mutation. Furthermore, N is set equal to 50. In the
experiment described here, the degree of epistasis of the test
strength landscape is higher than that of the solution land­
scape. Due to space restrictions two other experiments, in
which the solution strength landscape has the highest P, or
where both populations have the same P value are not re­
ported here. These two additional experiments confirm the
conclusions drawn from the experiment discussed here.

In the current paper, the performance of 8 CGA variants
is compared. The name of each variant consists of a triplet.
The first part indicates whether LTFE or LLFE is used to
calculate the fitness of the solutions. The second part repre­
sents the type of fitness calculation used for the test popula­
tion. The third part is either labelled 'TRAD" or "BAL".
The former indicates that the traditional "unbalanced" algo­
rithm - as described in section 2 - is used, the latter uses the
balanced algorithm. L-T-BAL, for example, refers to the
BALanced variant which uses lifelong fitness evaluation
(LLFE) for the solution population, and lifetime fitness
evaluation (LTFE) for the test population.

In order to allow for a fair comparison, all variants gen­
erate 5000 offspring. This means that the variants with a
balanced evolution execute 5000 cycles, whereas the "unbal­
anced" variants - which produce two offspring per cycle -
execute 2500 cycles. In order to ensure that all variants use
the same amount of computing time and fitness feedback,
the balanced variants perform 10 encounters per cycle in­
stead of 20.

The experiment repeats the following steps 50 times.
First, a solution strength landscape (P= 250) and a test
strength landscape (P= 500) are generated. Next, each vari­
ant is run on these landscapes. Finally, the strength of the
highest ranking solution individual of each variant is com­
pared. Table 1 summarizes the results obtained. The first
column of this table shows how often a given variant pro­
duces a highest ranking solution with a strength greater (or
equal) than the strength of the highest ranking solution in­
dividuals of the other variants. The second column indicates
how often it was the second best, etc. Table 1 shows, for
example, that for 38 out of 50 runs the highest ranking so­
lution individual of T-T-BAL has the highest strength.
Note that the total of all numbers in the first column of the
table is above 50. This is because the highest ranking solu­
tion of several variants might have the same strength.

A couple of observations can be made from the table.
First of all, the upper left quadrant of the table (four left­
most columns of the four top rows) and the bottom right
quadrant contain small numbers. The large numbers are lo­
cated mainly in the two other quadrants. Or, in other words,
the balanced CGAs consistently outperform the traditional
CGAs in which each population evolves at the same rate.
The balanced variant without LLFE, T-T-BAL, performs

PAREDIS 1215

best. It is not only 38 times the best of the eight variants.
In 46 (38 + 8) out of 50 runs it finds the best or second
best strength. Hence, this indicates that LLFE does not
bring any improvement, on the contrary.

T-T-TRAD

L-T-TRAD

T-L-TRAD

L-L-TRAD

T-T-BAL

L-T-BAL

T-L-BAL

L-L-BAL

1st

5

1

2

0

38

29

22

22

2nd

2

0

1

1

8

9

5

8

3rd

0

2

2

0

2

5

9

10

4rth

3

2

3

1

2

5

12

9

|5th

9

9

17

11

0

2

1

0

|6th

8

10

14

10

0

0

1

1

7th

12

13

8

16

0

0

0

0

8th

11

13

3

11

0

0

0

0

Table 1: Ranking of the strength of the highest ranking so­
lution after 50 runs (see text)

The same picture emerges from table 2 which compares the
variants on the basis of the highest solution strength en­
countered during the entire run. Again, the balanced variants
outperform the unbalanced ones considerably. Once more,
T-T-BAL is the winner.

T-T-TRAD

L-T-TRAD

T-L-TRAD

L-L-TRAD

T-T-BAL

L-T-BAL

T-L-BAL

L-L-BAL

1st

7

2

6

2

28

24

22

12

[2nd

4

1

2

1

7

7

10

10

3rd

4
3
3

4

0

10

9

6

13

4rth

3

3

7

4

2

4

5

9

5th

10

9

7

13

3

4

6

3

6th

3

8

12

10

0

0

0

1

7th

12

6

5

10

0

1

1

2

8th

7

18

7

10

0

1

0

0
• T . i * *

Table 2: Ranking of the highest solution strength generated
during 50 runs (see text)

A third observation is that, at the end of the run of each
balanced variant, the solution population always contains at
least one individual with the largest strength encountered
during the entire run. For, T-T-TRAD, L-T-TRAD, T-L-
TRAD, and L-L-TRAD, on the other hand, this is only true
for 37, 35, 33, and 40 out of 50 runs, respectively.
Moreover, at the end of a run with a balanced CGA, this
individual with the highest strength can often be found at
the top of the solution population. For T-T-BAL, L-T-
BAL, T-L-BAL, and L-L-BAL this is the case in 27, 27,
19 and 30 out of 50 runs, respectively. This is considerably
lower for T-T-TRAD (6), L-T-TRAD (12), T-L-TRAD (12),
and L-L-TRAD (8). This increased ability of the balanced
variants to keep the best individual at the top of the popula­

tion, explains why the difference between the balanced and
unbalanced variants is most outspoken in Table 1.

Finally, let us define a population with a highest fit­
ness smaller or equal to 0.1 as an extinct population. In
none of the 50 runs, a balanced CGA variant produced an
extinct (test or solution) population. This in contrast with
the unbalanced variants. As a matter of fact, extinctions
only occurred in populations which used LTFE. Out of 50
runs, the solution population of T-T-TRAD and T-L-TRAD
became extinct 10 and 3 times respectively. Extinction of
test populations occurred 20 and 14 times. The former when
T-T-TRAD was used. The latter when L-T-TRAD was used.
Clearly, such extinctions must be avoided because uniform
low fitness values do not provide enough information to
guide coevolution.

6 Conclusions and Discussion

As described in the introduction, other researchers have used
fitness sharing to preserve genetic diversity in a revo lu ­
tionary environment. The balanced CGA deals with the di­
rect cause of the loss of diversity: selection. When selection
is too severe, the population rapidly converges to a
(sub)optimum. In a CGA, selection occurs through compe­
tition between new offspring and individuals already in the
population. The balancing mechanism proposed here makes
the reproduction rate (and hence the amount of selection)
dependent on the success of the population. In this way, the
algorithm avoids that the better population "out-evolves"
the weaker one. In fact, once an imbalance occurs, the
weaker population is allowed to catch up: more search effort
is spent on it. This at the expense of the stronger popula­
tion whose progress - and convergence - is slowed down.

The experiments show that a balanced coevolution re­
sults in an increased performance. Two reasons can be iden­
tified for this success. A first one was already given in the
previous paragraph: balanced coevolution maintains genetic
diversity. In this way, individuals are confronted with a di­
verse opposition. Secondly, the balancing mechanism, to­
gether with the inverse fitness interaction between both
populations, ensures that the fitness variance between mem­
bers of a population is maximal. This because when each
population receives about the same amount of pay-off then
each population receives roughly as many zero pay-offs as
ones. This results in fitness variance which, in its turn,
guides (co)evolution. In addition to this, the balanced vari­
ants maintain the best solutions found, in (the top of) the
population.

In the experiments above an increase in memory did
not result in increased performance. There is not yet a satis­
fying explanation for this. Possibly the steady-state nature
of a CGA and the partial and continuous fitness feedback of
LTFE provide more than enough memory. Note that al­
though LTFE does not take into account pay-offs received
more than 20 encounters ago, the very survival of an old
individual indicates that it has been able to withstand nu­
merous opponents. Alternatively, the type of problems used
here might preclude the need for memory. In fact, as indi-

1216 SEARCH

viduals climb the strength-landscape, the set of opponents
which beat them monotonically decreases. Hence, there is
no risk of "forgetting" to beat opponents which were beaten
by previous, inferior, individuals. The experiments do,
however, suggest a possible relationship between memory
and balance: in the absence of a balancing mechanism only
populations using LLFE could avoid "extinctions". Hence,
balance does seem to decrease the need for memory.

It is good to look whether nature also "uses" a balanc­
ing mechanism. When a predator species becomes too suc­
cessful then more prey is killed. In the short term, the pop­
ulation size of the prey decreases while that of the predators
increases. This puts a natural brake on the growth of the
predator species because food (i.e. prey) becomes more and
more scarce2. Similarly, too effective prey w i l l , on one
hand, lead to a rapid increase of the prey population size,
which, in its turn, provides a larger food resource for the
predators. On the other hand, the predator population size
decreases, i.e. the selective pressure to improve increases.
Hence, in nature, fluctuations in population size keep
(co)evolution in balance. This in contrast with the fixed
population sizes in CGAs which do not allow for real ex­
tinctions of test or solution species. Hence, an alternative
balancing mechanism is introduced here which adapts the
selective pressures through a change of reproduction rates.

Recently, Olsson (1998) introduced a balancing mecha­
nism which lets a population evolve until it contains an in­
dividual (a "champion") beating all the individuals in the
other population. Next, the other population evolves until it
finds an individual beating all members of the first popula­
tion. This process is then repeated but at each stage all the
previous champions as well as the current members of the
opposite population should be beaten. Such a mechanism
could be introduced in a balanced CGA by marking cham­
pions. These marked individuals should always remain in
the population.

Although experiments with different degrees of epista-
sis support the conclusions given here, other CGA applica­
tions arc needed to confirm their generality. Other balancing
mechanisms, for example based on the (difference in) fitness
of the individuals instead of on the number of successes
during the encounters, might further improve performance.

References
De Jong, K., Potter, M. A., Spears, W., (1997), Using
Problem Generators to Explore the Effects of Epistasis,
Proceedings of the Seventh International Conference on
Genetic Algorithms (ICGA 97), Baeck, T., (ed.), Morgan
Kaufmann Publishers.

Dixon, E. L . , Pantsios Markhauser, C, Rao, K. R., (1997)
Object Motion Estimation Technique for Video Images

1 Analoguous to the CGA, a two-population model with one
prey population and one predator population is assumed.
When a population predates on multiple species then a decline
of one of its prey populations might result in more intensive
predation on the other population(s).

based on a Genetic Algorithm, IEEE Transactions on
Consumer Electronics.

Hillis, W. D., (1992), Co-evolving Parasites improve
Simulated Evolution as an Optimization Procedure, in
Artificial Life I I , Langton, C.Gr, Taylor, C; Farmer, J.D.,
and Rasmussen, S., (eds), Addison-Wesley, California.

Juille, H., Pollack, J., B., (1996), Co-evolving Intertwined
Spirals, Proceedings of the Fifth Annual Conference on
Evolutionary Programming, M I T Press.

Kauffman, S. A., (1989), Adaptation on Rugged Fitness
Landscapes, Lectures in the Sciences of Complexity, Stein,
E. (ed), Addison-Wesley.

Kragelund, (1997), Solving a Timetabling Problem using
Hybrid Genetic Algorithms, Software - Practice &
Experience, vol. 27 (10).

Olsson, B., (1998), A Host-Parasite Genetic Algorithm for
Asymmetric Tasks, Proceedings of the European Conference
on Machine Learning

Paredis, J., (1994a), Steps towards Coevolutionary
Classification Neural Networks, Proceedings Artificial Life
IV, R. Brooks, P. Maes (eds), MIT Press.

Paredis, J., (1994b), Coevolutionary Constraint
Satisfaction, Proceedings PPSN-1II, Lecture Notes in
Computer Science, vol. 866, Davidor, Y., Schwefel, H-P.,
Manner, R. (eds.), Springer Verlag.

Paredis, J., (1996), Coevolutionary Computation, Artificial
Life Journal, Vol. 2, nr. 4, Langton, C. (ed), M I T Press.

Paredis, J., (1997), Coevolving Cellular Automata: Be
aware of the Red Queen!, Proceedings of the Seventh
International Conference on Genetic Algorithms (ICGA 97),
Baeck, T., (ed.), Morgan Kaufmann Publishers.

Paredis, J., Westra, R., (1997), Coevolutionary
(Computation for Path Planning, Proceedings 5th European
Congress on Intelligent Techniques and Soft Computing
(EUF1T 97), R-J. Zimmermann (ed), Verlag Mainz.

Paredis, J., (1998), Coevolutionary Process Control,
Proceedings of the International Conference on Artificial
Neural Networks and Genetic Algorithms (ICANNGA97),
G. D. Smith (ed.), Springer, Vienna 1998.

Paredis, J., (1999), Coevolutionary Algorithms, The
Handbook of Evolutionary Computation, 1st supplement,
Back, T., Fogel, D., Michalewicz, Z. (eds.), Oxford
University Press (in press).

Rosin, C, D., Belew, R., K. , (1995), Methods for
Competitive Co-evolution; Finding Opponents Worth
Beating, Proceedings of the Sixth International Conference
on Genetic Algorithms (ICGA 95), Eshelman, L. (ed.),
Morgan Kaufmann Publishers.

Rosin, C, D., (1997), Coevolutionary Search Among
Adversaries, PhD Thesis, Univ. of California, San Diego

Smith, R. E., Gray, B., (1994), Coadaptive Genetic
Algorithms, an Example in Othello Strategies, Proceedings
of the Florida Artificial Intelligence Symposium 1994.

PAREDIS 1217

