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Abstract 

This paper studies the role of two mechanisms -
memory and balance - to exploit the arms race resulting 
from predator-prey interactions when solving a given 
problem. Memory ensures that individuals are not only 
well adapted to the current members of the opposite 
population but also to earlier generations of opponents. 
A balanced (co)evolution, on the other hand, adapts the 
speed of evolution (i.e. the reproduction rate) to the 
performance of a population. It leads to a steady 
progress in both populations. Indirectly, a balanced 
(co)evolution avoids a premature loss of genetic di­
versity. This in turn, diminishes the need for a long 
memory span. The current paper shows how both 
mechanisms can be incorporated in Coevolutionary 
Genetic Algorithms (CGAs). Empirical results support 
the importance of, and interaction between, both 
mechanisms. 

1 Introduction 

In nature, organisms undergo selective pressures from other 
organisms - belonging to the same or to other species. 
Predator-prey interactions are a common example of selec­
tive pressure between organisms. These interactions are 
characterized by an inverse fitness interaction: success on 
one side is felt by the other side as failure to which must be 
responded in order to maintain one's chances of survival. 
This typically results in an arms race in which the com­
plexity of both predator and prey increases stepwise. It is a 
challenge to integrate this mechanism into an evolutionary 
algorithm in order to further improve its performance. 

Paredis [1999] provides an overview of the use of co-
evolution for computational purposes starting from the early 
days of computing. Here, only work directly relevant to the 
issues of the current paper is discussed. Hillis [1992] co-
evolved networks for sorting lists of sixteen numbers. Such 
a sorting network consists of comparisons between two 
numbers (and the possibility of swapping both numbers). 
The goal was to find a network, which correctly sorts all 
possible lists of sixteen numbers, with as few comparisons 
as possible. Hillis used two populations. The first popula­

tion consisted of sorting networks. The individuals in the 
second population were sets of test-lists. These lists contain 
numbers to be sorted. Both populations were geographically 
distributed over a grid with each location containing one set 
of test-lists and one sorting network. At each generation a 
sorting network was tested on the set of test-lists at the 
same location. The fitness of a sorting network was defined 
as the percentage of correctly sorted test-lists. The fitness of 
the set of test-lists, on the other hand, was equal to the per­
centage of test-lists incorrectly sorted by the network. This 
is similar to the inverse fitness interaction between predator 
and prey. 

Hillis has shown that - in comparison with traditional 
non-coevolutionary single population GAs - better sorting 
networks can be obtained. Inspired by this work, Paredis 
[1994a] introduced a Coevolutionary Genetic Algorithm 
(CGA) which uses a partial but continuous fitness evalua­
tion resulting from encounters between individuals belong­
ing to different species. The first CGA was used to train a 
Neural Network (NN) on a classification task. Next, an ab­
stract class of problems which can be solved by CGAs was 
defined: so-called test-solution problems [Paredis 1996]. 
This large class of problems in Artificial Intelligence and 
Computer Science in general, involves the search for a solu­
tion which satisfies a given set of tests. 

A CGA uses two populations to solve test-solution 
problems. One contains the tests which a solution should 
satisfy. The other consists of potential solutions to the 
problem. CGAs have been applied to various other test-so­
lution problems, such as: constraint satisfaction [Paredis 
1994b], process control [Paredis, 1998], path planning 
[Paredis and Westra, 1997], and the evolution of cellular au­
tomata (CA) for density classification [Paredis, 1997]. The 
main purpose of the applications described above is to help 
us understand, explore, and illustrate the operation of 
CGAs. Recently, researchers have been using CGAs in real-
world applications such as object motion estimation from 
video images [Dixon et al, 1997] and time tabling for an 
emergency service [Kragelund, 1997]. 

Some CGA applications used a test population whose 
contents remained fixed over time [Kragelund, 1997; 
Paredis, 1994a; 1994b]. In others, both populations fully 
evolved [Dixon et a/., 1997; Paredis, 1997; 1998; Paredis 
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and Westra, 1997]. In the latter case, there is pressure on 
both populations to improve, i.e. the solutions "try" to cor­
rectly satisfy as many individuals as possible in the test 
population. At the same time the tests "try" to make life 
hard for the solutions. It is not in their "interest" that the 
problem be solved. Especially if there is no solution satis­
fying all possible tests then the tests might keep the solu­
tions under constant attack. Even if there exists a solution 
satisfying all tests, it might be virtually unreachable given 
the revolut ionary dynamics. This might be caused by the 
high degree of epistasis in the linkages between both popu­
lations. Due to such linkages a small change to the individ­
uals in one population might require extensive changes in 
the other population. This was exactly what happened in the 
CA application [Paredis, 1997]: the tests were able to keep 
ahead of the solutions by "jumping" back and forth between 
two regions - in close proximity of each other - in the space 
of all tests. After each such jump of the test population, ex­
tensive changes to the "genes" of the solutions, i.e. CAs, 
were required in order to satisfy the tests. Paredis [1997] 
provides a simple diversity preserving scheme which pre­
vents the tests from keeping ahead of the solutions. In fact, 
it achieves this by randomly inserting and deleting individ­
uals from the test population. It also suggests other mecha­
nisms, such as fitness sharing or the use of different repro­
duction rates in both populations. The latter approach is in­
vestigated here. The goal is to obtain a good balance such 
that there is a steady progress in both populations. This is 
to avoid the tests from "out-evolving" the solutions and to 
ensure that there is sufficient variation in the fitness of the 
members of a population. The latter is necessary to guide 
(co)evolution. 

The use of fitness sharing to preserve diversity in a 
competitive revolutionary context has been investigated by 
a number of researchers. The Othello application of Smith 
and Gray [1994] is probably one of the earliest. Rosin and 
Belew [1995] combine competitive fitness sharing and 
shared sampling. The latter ensures that representative oppo­
nents are selected for the "competition duels". Juille and 
Pollack [ 1996] proposed another way to ensure population 
diversity: in a classification application, a solution receives 
a larger reward when it correctly classifies a test which is 
classified correctly by none (or only a few) of the other so­
lutions. More recently, Rosin [1997] has identified the 
causes why revolutionary progress can come to a halt: the 
loss of important niches, revolutionary cycles, or a lack of 
balance. He observed that, even with fitness sharing, solu­
tions might "forget" how to compete against old extinct 
types of individuals which might be difficult to rediscover. 
For this reason he introduces a "Hall of Fame", containing 
the best individuals of previous generations which are used 
for testing new individuals. This introduces some kind of 
memory in the system. In order to keep the progress in both 
population balanced, Rosin [1997] introduces a "phantom 
parasite" which provides a niche for "interesting" individu­
als. 

The final goal of a CGA solving a test-solution prob­
lem is to find a solution which satisfies all possible tests. 

Any other "victory" of the solution population is only a 
Pyrrhic victory. A solution population whose members sat­
isfy all members in the test-population, but who do not sat­
isfy tests which are unlikely to make their way in the test-
population, is useless. This is another reason why it is im­
portant to preserve the genetic diversity of the test popula­
tion for long enough a period. 

The structure of this paper is as follows. The next sec­
tion describes the use of CGAs for test-solution problems 
in more detail. Section three describes how to obtain a bal­
anced coevolution within a CGA and how the memory can 
be increased. The fifth section evaluates the impact of these 
mechanisms when solving multimodal problems described 
in section four. Finally, the paper closes with a discussion 
and conclusions. 

2 CGAs For Test-Solution Problems 

As a first step in applying CGAs to test-solution problems, 
both initial populations are filled with randomly generated 
individuals. Their fitness is calculated by pairing them up 
with 20 randomly selected members of the other popula­
tion. In order to calculate the fitness of an initial solution, 
one counts the number of tests it satisfies. Similarly, the 
fitness of a test is the number of solutions (out of a ran­
domly chosen set of twenty solutions) which violate the 
test. As a matter of fact, each individual - test or solution -
has a history which stores the fitness feedback - or pay-off-
resulting from such an encounter. A solution receives a pay­
off of one if it satisfies the test. Otherwise it receives a zero. 
The opposite is true for tests: they get a pay-off of one if 
the solution encountered does not satisfy a test. The fitness 
of an individual is equal to the sum of the pay-offs in its 
history. It is also good to note that the populations are 
sorted on fitness: the fitter the individual the higher its rank 
in the population. 

The pseudo-code below describes the basic cycle the 
CGA executes after the initial populations are generated. 
First, 20 encounters are executed in which a test and solu­
tion are paired up. The SELECTion of these individuals is 
biased towards highly ranked individuals, i.e. the fitter in­
dividuals are more likely to be SELECTed. In a CGA, the 
most fit individual is 1.5 times more likely to be selected 
than the individual with median fitness. Next, the actual 
ENCOUNTER happens during which it is tested whether 
the solution satisfies the test it encounters. The result of the 
encounter is one if it does. Otherwise it is zero. This result 
is also the pay-off received by the solution. The test re­
ceives the "inverse" pay-off. The function TOGGLE in the 
basic cycle implements this inverse fitness interaction be­
tween tests and solutions. It changes a one into a zero and 
vice versa. Again, each individual stores the pay-off it re­
ceives in its history. At the same time, the pay-off that the 
individual received least recently is removed from the his­
tory. This guarantees that the history wi l l always contain 
the 20 most recently received pay-offs. This UPDATE of 
the HISTORY of an individual, is followed by an 
UPDATE of the FITNESS of the individual: it is set equal 
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to the sum of the pay-offs in its history. Because both pop­
ulations are kept sorted on fitness, an individual might 
move up and down in its population as a result of the up­
date of its fitness. 

After the execution of the encounters, one offspring is 
generated in each population. This happens as follows. 
First, two parents are SELECTED from the population, 
again with the same bias towards fitter individuals as ex­
plained above. Next, (2-point reduced surrogate) 
CROSSOVER and (adaptive) MUTATion are used in order 
to generate the child from the bit-string of each of its par­
ents. Then the FITNESS of the CHILD is calculated as the 
sum of the pay-off received from encounters with 20 
SELECTed individuals from the other population. If this 
fitness is higher than the minimum fitness in the popula­
tion to which its parents belong then the child is 
INSERTED at the appropriate rank location in this popula­
tion. At the same time, the individual with the minimum 
fitness is removed. In this way, both populations remain 
sorted on fitness. 

A couple of remarks are in place here. First, note that in or­
der to avoid unreliable pay-off from possible mediocre off­
spring, the encounters with new offspring do only result in 
pay-off for the child, not for the individuals it is encounter­
ing. 

Second, the partial but continuous fitness feedback re­
sulting from the encounters is called life-time fitness evalu­
ation (LTFE). Two parameters are associated with it. The 
first is the size of the histories. The second is the number of 
encounters per cycle. In all previous CGA applications, 
both parameters are set - quite arbitrarily - to 20. Except 
when mentioned explicitly, this will be the case here too. 

3 Increasing the Memory and Keeping the 
Balance 

This paper investigates whether an increase of the memory 
of the individuals prevents the two species (solutions and 
tests) from performing a cyclical dance of changes without 
really improving their quality. By increasing the memory, 
individuals which learn new things at the expense of things 
learned earlier are penalized. The balancing mechanism pro­
posed here is devised to prevent the tests from outperform­

ing too much the solutions. It also ensures that as the solu­
tions get better, more effort is put into finding tests which 
are not satisfied by the solutions. 

3.1 M e m o r y 

The steady-state character of the CGA together with the con­
tinuous nature of LTFE provides memory to the individu­
als. An individual's fitness reflects its performance against 
members of the opposite population over a period of time. 
The variant proposed here accumulates the pay-offs received 
during the entire lifetime of an individual. In this case, the 
fitness is defined as the number of times a pay-off of one is 
received divided by the total number of encounters the indi­
vidual was involved in. This alternative for LTFE is called 
lifelong fitness evaluation (LLFE). With LLFE, the fitness 
of an individual reflects its performance against the mem­
bers of the opposite population it encountered during its en­
tire lifetime. In this way, there is a selective advantage for 
individuals to also "beat" members of less recent genera­
tions of the opposite population. Hence, in comparison 
with LTFE, LLFE increases the memory of the individuals. 

3.2 Balance 

The need for a balanced evolution immediately raises two 
questions: 1) How can the CGA recognise that the evolu­
tion is getting unbalanced? 2) Once an imbalance is recog­
nised, how can the balance be restored? 

The answer to the first question is relatively simple: if 
both populations evolve in a balanced manner then they 
will receive roughly the same amount of pay-off during the 
encounters. Conversely, the evolution is getting more im-
balanced as the pay-off received by both populations is 
more unequal. 

Now, the second question can be addressed. What 
should be done when one population gets considerably 
more pay-off than the other? Somehow the weaker popula­
tion has to be given a helping hand. Its efforts to counter 
the increasing opposition should be increased. This is done 
by allowing different reproduction rates in both popula­
tions. In the standard CGA, two offspring are generated per 
cycle, one in each population. Now, only one offspring will 
be generated per cycle. The percentage of successes in the 
last twenty encounters is used to stochastically determine 
which population evolves. If none of the 20 encounters is 
successful then the tests may well be too good, i.e. diffi­
cult, for the solutions currently in the solution population. 
Hence, the probability that the solution-population evolves 
(i.e. two parents are SELECTED from it, and if their off­
spring is fit enough, it is INSERTed in the solution popu­
lation) is equal to one. As the percentage of successes in­
creases this probability linearly decreases (see figure 1). It 
becomes zero when all encounters are successful. In this 
case, the probability that the test population reproduces is 
equal to one. 
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Figure 1. In order to determine which population repro­
duces, a real number is uniformly drawn from the interval 
[0,1], If this number is smaller than the probability of re­
producing a solution then the solution population evolves 
else the test population evolves. 

4 Testing the CGA on the P-Model 

De Jong et al, [1997] introduce a simple multimodal prob­
lem generator which allows to perform controlled experi­
ments testing the mechanisms described above. As a first 
step, a set of P random bit-strings of length N is generated. 
These represent the location of P peaks in a N-dimensional 
boolean hypercube. The strength1 of an individual is equal 
to the proportion of bits the string has in common with the 
nearest peak. When P is equal to one, a single peaked 
strength-landscape is obtained. For larger P, the modality, 
as well as the degree of epistasis, increases. 

The P-model allows us to test the mechanisms intro­
duced before on problems with different degrees of diffi­
culty. An additional advantage of the P-model - in compari­
son with, for example, the NK-model [Kaufman, 1989] - is 
that the optimal value of strength is known: it is one. 
Furthermore, for different P, the variance in strength is not 
significantly reduced. 

In our experiments, the P-model is used as follows. 
Each population, test and solution, has its own set of op­
tima which might be different in location as well as num­
ber, i.e. they can have a different value of P. During an en­
counter, the individual with the highest strength gets a pay­
off of one, the other receives zero pay-off. These pay-offs are 
used to calculate the fitness as described in section 2. As 
was the case for test-solution problems, the pay-offs are re­
stricted to two values, zero and one, instead of just being 
equal to the respective strengths. This to facilitate the gen­
eralization of the conclusions drawn from the experiments 
described here to test-solution problems in general. Note 
that when the individuals involved in an encounter have the 
same strength, the solution gets the pay-off of one and the 
test gets zero pay-off. This to ensure that there exists a solu­
tion which beats all tests. Ideally, the CGA should find this 
individual which has a strength of one. 

1 De Jong et al use the term fitness. We use the term strength in 
order to avoid confusion with the definition of fitness in 
CGAs. 

5 Empirical Results 

Just as was the case in earlier CGA applications, both popu­
lations contain 100 individuals. Also the same genetic op­
erators are used: reduced surrogate two-point crossover and 
adaptive mutation. Furthermore, N is set equal to 50. In the 
experiment described here, the degree of epistasis of the test 
strength landscape is higher than that of the solution land­
scape. Due to space restrictions two other experiments, in 
which the solution strength landscape has the highest P, or 
where both populations have the same P value are not re­
ported here. These two additional experiments confirm the 
conclusions drawn from the experiment discussed here. 

In the current paper, the performance of 8 CGA variants 
is compared. The name of each variant consists of a triplet. 
The first part indicates whether LTFE or LLFE is used to 
calculate the fitness of the solutions. The second part repre­
sents the type of fitness calculation used for the test popula­
tion. The third part is either labelled 'TRAD" or "BAL". 
The former indicates that the traditional "unbalanced" algo­
rithm - as described in section 2 - is used, the latter uses the 
balanced algorithm. L-T-BAL, for example, refers to the 
BALanced variant which uses lifelong fitness evaluation 
(LLFE) for the solution population, and lifetime fitness 
evaluation (LTFE) for the test population. 

In order to allow for a fair comparison, all variants gen­
erate 5000 offspring. This means that the variants with a 
balanced evolution execute 5000 cycles, whereas the "unbal­
anced" variants - which produce two offspring per cycle -
execute 2500 cycles. In order to ensure that all variants use 
the same amount of computing time and fitness feedback, 
the balanced variants perform 10 encounters per cycle in­
stead of 20. 

The experiment repeats the following steps 50 times. 
First, a solution strength landscape (P= 250) and a test 
strength landscape (P= 500) are generated. Next, each vari­
ant is run on these landscapes. Finally, the strength of the 
highest ranking solution individual of each variant is com­
pared. Table 1 summarizes the results obtained. The first 
column of this table shows how often a given variant pro­
duces a highest ranking solution with a strength greater (or 
equal) than the strength of the highest ranking solution in­
dividuals of the other variants. The second column indicates 
how often it was the second best, etc. Table 1 shows, for 
example, that for 38 out of 50 runs the highest ranking so­
lution individual of T-T-BAL has the highest strength. 
Note that the total of all numbers in the first column of the 
table is above 50. This is because the highest ranking solu­
tion of several variants might have the same strength. 

A couple of observations can be made from the table. 
First of all, the upper left quadrant of the table (four left­
most columns of the four top rows) and the bottom right 
quadrant contain small numbers. The large numbers are lo­
cated mainly in the two other quadrants. Or, in other words, 
the balanced CGAs consistently outperform the traditional 
CGAs in which each population evolves at the same rate. 
The balanced variant without LLFE, T-T-BAL, performs 
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best. It is not only 38 times the best of the eight variants. 
In 46 (38 + 8) out of 50 runs it finds the best or second 
best strength. Hence, this indicates that LLFE does not 
bring any improvement, on the contrary. 

T-T-TRAD 

L-T-TRAD 

T-L-TRAD 

L-L-TRAD 

T-T-BAL 

L-T-BAL 

T-L-BAL 

L-L-BAL 

1st 

5 

1 

2 

0 

38 

29 

22 

22 

2nd 

2 

0 

1 

1 

8 

9 

5 

8 

3rd 

0 

2 

2 

0 

2 

5 

9 

10 

4rth 

3 

2 

3 

1 

2 

5 

12 

9 

|5th 

9 

9 

17 

11 

0 

2 

1 

0 

|6th 

8 

10 

14 

10 

0 

0 

1 

1 

7th 

12 

13 

8 

16 

0 

0 

0 

0 

8th 

11 

13 

3 

11 

0 

0 

0 

0 

Table 1: Ranking of the strength of the highest ranking so­
lution after 50 runs (see text) 

The same picture emerges from table 2 which compares the 
variants on the basis of the highest solution strength en­
countered during the entire run. Again, the balanced variants 
outperform the unbalanced ones considerably. Once more, 
T-T-BAL is the winner. 

T-T-TRAD 

L-T-TRAD 

T-L-TRAD 

L-L-TRAD 

T-T-BAL 

L-T-BAL 

T-L-BAL 

L-L-BAL 

1st 

7 

2 

6 

2 

28 

24 

22 

12 

[2nd 

4 

1 

2 

1 

7 

7 

10 

10 

3rd 

4 
3 
3 

4 

0 

10 

9 

6 

13 

4rth 

3 

3 

7 

4 

2 

4 

5 

9 

5th 

10 

9 

7 

13 

3 

4 

6 

3 

6th 

3 

8 

12 

10 

0 

0 

0 

1 

7th 

12 

6 

5 

10 

0 

1 

1 

2 

8th 

7 

18 

7 

10 

0 

1 

0 

0 
• T . i * * 

Table 2: Ranking of the highest solution strength generated 
during 50 runs (see text) 

A third observation is that, at the end of the run of each 
balanced variant, the solution population always contains at 
least one individual with the largest strength encountered 
during the entire run. For, T-T-TRAD, L-T-TRAD, T-L-
TRAD, and L-L-TRAD, on the other hand, this is only true 
for 37, 35, 33, and 40 out of 50 runs, respectively. 
Moreover, at the end of a run with a balanced CGA, this 
individual with the highest strength can often be found at 
the top of the solution population. For T-T-BAL, L-T-
BAL, T-L-BAL, and L-L-BAL this is the case in 27, 27, 
19 and 30 out of 50 runs, respectively. This is considerably 
lower for T-T-TRAD (6), L-T-TRAD (12), T-L-TRAD (12), 
and L-L-TRAD (8). This increased ability of the balanced 
variants to keep the best individual at the top of the popula­

tion, explains why the difference between the balanced and 
unbalanced variants is most outspoken in Table 1. 

Finally, let us define a population with a highest fit­
ness smaller or equal to 0.1 as an extinct population. In 
none of the 50 runs, a balanced CGA variant produced an 
extinct (test or solution) population. This in contrast with 
the unbalanced variants. As a matter of fact, extinctions 
only occurred in populations which used LTFE. Out of 50 
runs, the solution population of T-T-TRAD and T-L-TRAD 
became extinct 10 and 3 times respectively. Extinction of 
test populations occurred 20 and 14 times. The former when 
T-T-TRAD was used. The latter when L-T-TRAD was used. 
Clearly, such extinctions must be avoided because uniform 
low fitness values do not provide enough information to 
guide coevolution. 

6 Conclusions and Discussion 

As described in the introduction, other researchers have used 
fitness sharing to preserve genetic diversity in a revo lu ­
tionary environment. The balanced CGA deals with the di­
rect cause of the loss of diversity: selection. When selection 
is too severe, the population rapidly converges to a 
(sub)optimum. In a CGA, selection occurs through compe­
tition between new offspring and individuals already in the 
population. The balancing mechanism proposed here makes 
the reproduction rate (and hence the amount of selection) 
dependent on the success of the population. In this way, the 
algorithm avoids that the better population "out-evolves" 
the weaker one. In fact, once an imbalance occurs, the 
weaker population is allowed to catch up: more search effort 
is spent on it. This at the expense of the stronger popula­
tion whose progress - and convergence - is slowed down. 

The experiments show that a balanced coevolution re­
sults in an increased performance. Two reasons can be iden­
tified for this success. A first one was already given in the 
previous paragraph: balanced coevolution maintains genetic 
diversity. In this way, individuals are confronted with a di­
verse opposition. Secondly, the balancing mechanism, to­
gether with the inverse fitness interaction between both 
populations, ensures that the fitness variance between mem­
bers of a population is maximal. This because when each 
population receives about the same amount of pay-off then 
each population receives roughly as many zero pay-offs as 
ones. This results in fitness variance which, in its turn, 
guides (co)evolution. In addition to this, the balanced vari­
ants maintain the best solutions found, in (the top of) the 
population. 

In the experiments above an increase in memory did 
not result in increased performance. There is not yet a satis­
fying explanation for this. Possibly the steady-state nature 
of a CGA and the partial and continuous fitness feedback of 
LTFE provide more than enough memory. Note that al­
though LTFE does not take into account pay-offs received 
more than 20 encounters ago, the very survival of an old 
individual indicates that it has been able to withstand nu­
merous opponents. Alternatively, the type of problems used 
here might preclude the need for memory. In fact, as indi-
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viduals climb the strength-landscape, the set of opponents 
which beat them monotonically decreases. Hence, there is 
no risk of "forgetting" to beat opponents which were beaten 
by previous, inferior, individuals. The experiments do, 
however, suggest a possible relationship between memory 
and balance: in the absence of a balancing mechanism only 
populations using LLFE could avoid "extinctions". Hence, 
balance does seem to decrease the need for memory. 

It is good to look whether nature also "uses" a balanc­
ing mechanism. When a predator species becomes too suc­
cessful then more prey is killed. In the short term, the pop­
ulation size of the prey decreases while that of the predators 
increases. This puts a natural brake on the growth of the 
predator species because food (i.e. prey) becomes more and 
more scarce2. Similarly, too effective prey w i l l , on one 
hand, lead to a rapid increase of the prey population size, 
which, in its turn, provides a larger food resource for the 
predators. On the other hand, the predator population size 
decreases, i.e. the selective pressure to improve increases. 
Hence, in nature, fluctuations in population size keep 
(co)evolution in balance. This in contrast with the fixed 
population sizes in CGAs which do not allow for real ex­
tinctions of test or solution species. Hence, an alternative 
balancing mechanism is introduced here which adapts the 
selective pressures through a change of reproduction rates. 

Recently, Olsson (1998) introduced a balancing mecha­
nism which lets a population evolve until it contains an in­
dividual (a "champion") beating all the individuals in the 
other population. Next, the other population evolves until it 
finds an individual beating all members of the first popula­
tion. This process is then repeated but at each stage all the 
previous champions as well as the current members of the 
opposite population should be beaten. Such a mechanism 
could be introduced in a balanced CGA by marking cham­
pions. These marked individuals should always remain in 
the population. 

Although experiments with different degrees of epista-
sis support the conclusions given here, other CGA applica­
tions arc needed to confirm their generality. Other balancing 
mechanisms, for example based on the (difference in) fitness 
of the individuals instead of on the number of successes 
during the encounters, might further improve performance. 
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