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Abstract 

In this paper we describe two optimization tech­
niques that are specially tailored for information 
gathering. The first is a greedy minimization algo­
rithm that minimizes an information gathering plan 
by removing redundant and overlapping informa­
tion sources without loss of completeness. We then 
discuss a set of heuristics that guide the greedy min­
imization algorithm so as to remove costlier infor­
mation sources first. In contrast to previous work, 
our approach can handle recursive query plans that 
arise commonly in practice. Second, we present a 
method for ordering the access to sources to reduce 
the execution cost. Sources on the Internet have 
a variety of access limitations and the execution 
cost in information gathering is affected both by 
network traffic and by the connection setup costs. 
We describe a way of representing the access capa­
bilities of sources, and provide a greedy algorithm 
for ordering source calls that respects source l imi­
tations, and takes both access costs and traffic costs 
into account, without requring full source statistics. 
Finally, we wil l discuss implementation and em­
pirical evaluation of these methods in Emerac, our 
prototype information gathering system. 

1 Introduction 
The explosive growth and popularity of the world-wide web 
have resulted in thousands of structured queryable informa­
tion sources on the Internet, and the promise of unprece­
dented information-gathering capabilities to lay users. Un­
fortunately, the promise has not yet been transformed into re­
ality. While there are sources relevant to virtually any user-
queries, the morass of sources presents a formidable hurdle to 
effectively accessing the information. One way of alleviating 
this problem is to develop information gatherers (also called 
mediators ) which take the user's query, and develop and ex­
ecute an effective information gathering plan, that accesses 
the relevant sources to answer the user's query efficiently. 

*This research is supported in part by NSF young investigator 
award (NYl) IRI-9457634, ARPA/Rome Laboratory planning ini­
tiative grant F30602-95-C-0247, Army AASERT grant DAAH04-
96-1-0247, AFOSR grant F20602-98-1-0182 and NSF grant IRI-
9801676. We thank Selcuk Candan for many helpful comments. 

Several first steps have recently been taken towards the de­
velopment of a theory of such gatherers in both database and 
artificial intelligence communities. The information gather­
ing problem is typically modeled by building a virtual global 
schema for the information that the user is interested in, and 
describing the accessible information sources as materialized 
views on the global schema. The user query is posed in 
terms of the relations of the global schema. Since the global 
schema is virtual (in that its extensions are not stored ex­
plicitly anywhere), computing the answers requires rewrit­
ing the query such that all the extensional (EDB) predicates 
in the rewrite correspond to the materialized view predicates 
that represent information sources. Several researchers from 
AI and database communities have addressed this rewriting 
problem [13, 15, 10]. Recent research by Duschka and his 
co-workers [5, 6J subsumes most of this work, and provides 
a clean methodology for constructing information gathering 
plans for user queries posed in terms of a global schema. 

Generating source complete plans however is only a first 
step towards efficient information gathering. A crucial next 
step, which we focus on in this paper, is that of query plan 
optimization. The plans produced by Dushka's methodology, 
while complete, in that they wi l l retrieve all (accessible) an­
swers to the query, tend to be highly redundant in that they 
access any information source that may be remotely relevant 
to the query. They need to be minimized first by removing re­
dundant sources before being executed. The execution phase 
also presents several challenges since traditional execution 
optimization models and techniques [3] do not apply in the 
context of information gathering on Internet. 

In this paper we describe the query optimization techniques 
that we have developed in the context of Emerac, a prototype 
information gathering system that we are developing. Fig­
ure 1 provides a schematic illustration of the query planning 
and optimization process in Emerac. It contains two steps: 
logical optimization and execution optimization. For logical 
optimization, we describe a technique that operates on the 
recursive plans generated by Dushka's algorithm and greed­
ily minimizes them so as to remove access to costly and re­
dundant information sources, without affecting the complete­
ness of the plan. For this purpose, we use the so-called lo­
calized closed world (LCW) statements that characterize the 
completeness of the contents of a source relative to either the 
global (virtual) database schema or other sources. Our tech­
niques are based on an adaptation of Sagiv's [16] method for 
minimizing datalog programs under uniform equivalence. A l -
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Figure 1: Query planning phases in Emerac 

though there exists some previous research on minimizing in­
formation gathering plans using LCW statements [4, 8), none 
of it is applicable to minimization of information gathering 
plans containing recursion. Our ability to handle recursion 
is significant because recursion appears in virtually all infor­
mation gathering plans either due to functional dependencies, 
binding constraints on information sources, or recursive user 
queries |5). Additionally, in contrast to existing methods, 
which do pairwise redundancy checks on source accesses, 
our approach is capable of exploiting cases where access to 
one information source is rendered redundant by access to 
a combination of sources together. Large performance im­
provements in our prototype information gatherer, Emenic, 
attest to the cost-effectiveness of our minimization approach. 

Ultimately execution optimization boils down to doing 
joins between the sources efficiently. This problem differs 
significantly from the traditional database query optimization 
problem, as sources on the Internet have a variety of access 
limitations (aka "source capabilities") and the execution cost 
in information gathering is affected both by network traffic 
and by the connection setup costs. Our second contribution 
is a way of representing the access capabilities of sources, 
and a greedy algorithm for ordering source calls that respects 
source limitations. The algorithm also takes both access costs 
and traffic costs into account, without requring full source 
statistics. 

The paper starts with a brief review of Dushka's query plan 
formation methodology in Section 2. Section 3 presents plan 
minimization preliminaries, and Section 4 presents our plan 
minimization algorithm. Section 5 explains how source ac-
cesses in the minimized plan can be ordered using the knowl­
edge of sourece access capabilities. Section 6 describes em­
pirical evaluation of our ideas in the context of Emerac sys­
tem. Section 7 discusses the related work and Section 8 
presents our conclusions. 

2 Building Query Plans: Background 

Suppose our global schema contains the world relation 
advisor (S, A), where A is the advisor of S. Further more, 
suppose we have an information source A D D B , such that 
for every tuple (S,A) returned by it, A is the advisor of S. 
This can be represented as a materialized view on the global 
schema as follows: 

Suppose we want to retrieve all the students advised by 
Weld. We can represent our goal by the query Q: 

Dushcka et. al. [5, 6] show how we can generate an infor­
mation gathering plan that is "maximally contained" in that 
it returns every query-satisfying tuple that is stored in any of 
the accessible information sources. This method works by in­
verting all source (materialized view) definitions, and adding 

them to the query. The inverse, , of the materialized view 
definition with head is a set of logic rules in 
which the body of each new rule is the head of the original 
view, and the head of each new rule is a relation from the body 
of the original view. When we invert our definition above, we 
get: 

When this rule is added to the original query we effec­
tively create a datalog1 program whose execution produces 
all the tuples satisfying the query. 
Constrained sources & Recursion: The materialized view 
inversion algorithm can be modified in order to model 
databases that have binding pattern requirements. Suppose 
we have a second information source, CONDB that requires 
the student argument to be bound, and returns the advisor of 
that given student. We denote this in its view as follows: 

The notation denotes that S must be bound for any 
query sent to C O N D B . A straightforward inversion of this 
source will get us a rule of the form: 

which is ununexecutable as S is not bound. This is handled 
by making up a new relation called dom whose extension is 
made to correspond to all possible constants that can be sub­
stituted for S. In our example, assuming that we have both 
the ADDB source and the CON DB source, the complete plan 
for the query, which we shall refer to as P, is: 

Notice that all extensional (EDB) predicates in the progam 
correspond to source predicates (materialized views). Notice 
also the presence of dom(S) relation in the rule r3. Rules 
7*4, r5 and r7 define the extension of dom by collecting all 
possible constants that can be derived from source calls. Fi­
nally, note that rule r6 is recursive, which makes the overall 
plan recursive, even though the original query as well as the 
source description are non-recursive. Given the ubiquitous-
ness of constrained sources on the Internet, it is thus impor­
tant that we know how to handle recursive information gath­
ering plans. 

3 Plan minimization preliminaries 
The plan V above accesses two different advisor databases to 
answer the query. It would be useful to try and cut down re­
dundant accesses, as this would improve the execution cost of 
the plan. To do this however, we need more information about 
the sources. While the materialized view characterizations 
of sources explicate the world relations that are respected by 

1 Things get a bit more complicated when there are variables in 
the body of the view that do not appear in the head. During in­
version, every such variable is replaced with a new function term 

The function symbols can then be eliminated by 
a flattening procedure, as there wil l be no recursion through them in 
the eventual plan, resulting in a datalog program in the end. 
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each tuple returned by the source, there is no guarantee that 
all tuples satisfying those properties are going to be returned 
by that source. 

One way to support minimization is to augment the source 
descriptions with statements about their relative coverage, us­
ing the so-called localized closed world (LCW) statements 
[7]. An LCW statement attempts to characterize what infor­
mation (tuples) the source is guaranteed to contain in terms 
of the global schema. Suppose, we happen to know that the 
source ADDB is guaranteed to contain all the students ad­
vised by Weld and Hanks. We can represent this information 
by the statement (note the direction of the arrow): 

ADDB(S. A) 
ADDB(S, A) 

Pair-wise rule subsumption: Given the LCW statement 
above, intuitively it is obvious that we can get all the tuples 
satisfying the query Q by accessing just A D D B . We now 
need to provide an automated way of making these determi­
nations. Suppose we have two datalog rules, each of which 
has one or more materialized view predicates in its body 
that also have LCW statements, and we wish to determine 
if one rule subsumes the other. The obvious way of check­
ing the subsumption is to replace the source predicates from 
the first rule with the bodies of their view description state­
ments, and the source predicates from the second rule with the 
bodies of the LCW statements corresponding to those pred­
icates. We now have the transformed first rule providing a 
"liberal" bound on the tuples returned by that rule, while the 
transformed second rule gives a "conservative" bound. If the 
conservative bound subsumes the liberal bound, i.e., if the 
transformed second rule "contains" (entails) the transformed 
first rule, we know that second rule subsumes the first rule. 
Duschka [4) shows that this check, while sufficient, is not a 
necessary condition for subsumption. He proposes a modified 
version that involves replacing each source predicate s with 
sAv in the first rule, and with in the second rule, where v 
is the view description of s, and is the conjunction of LCW 
statements of .s. If after this transformation, the second rule 
contains the first, then the first rule is subsumed by it.2 

Minimization under uniform equivalence: Pair-wise rule 
subsumption checks alone are enough to detect redundancy 
in non-recursive plans 112, 8], but are inadequate for mini­
mizing recursive plans. Specifically, recursive plans corre­
spond to infinite union of conjunctive queries and checking if 
a particular rule of the recursive plan is redundant will involve 
trying to see if that part is subsumed by any of these infinite 
conjuncts [17, pp. 908]. We instead base our minimization 
process on the notion of uniform containment for datalog pro­
grams, presented in (16). To minimize a datalog program, we 
might try removing one rule at a time, and checking if the new 
program is equivalent to the original program. Two datalog 
programs are equivalent if they produce the same result for 
all possible assignments of EDB predicates f 16]. Checking 
equivalence is known to be undecidable. Two datalog pro­
grams are uniformly equivalent if they produce the same re­
sult for all possible assignments of EDB and 1DB predicates. 
Uniform equivalence is decidable, and implies equivalence. 
Sagiv [16] offers a method for minimizing a datalog program 
under uniform equivalence that we illustrate by an example 

2The next section contains an example illustrating this strategy. 

(and later adapt for our information gathering plan minimiza­
tion). Suppose that we have the following datalog program: 

We can check to see if rl is redundant by removing it from 
the program, then instantiating its body to see if the remain­
ing rules can derive the instantiation of the head of this rule 
through simple bottom-up evaluation. Our initial assignment 
of relations is . If the remaining rules in 
the datalog program can derive from the assignment 
above, then we can safely leave rule rl out of the datalog pro­
gram. This is indeed the case. Given we can assert 

via rule r3. Then, given and we 
can assert from rule r2 . Thus the above program will 
produce the same results without rule rl in it. 

4 Greedy Minimization of Recursive plans 

We now adapt the algorithm for minimizing datalog programs 
under uniform equivalence to remove redundant sources and 
unnecessary recursion from the information gathering plans. 
Our first step is to transform the query plan such that the query 
predicate is directly related to the source calls. This is done by 
removing global schema predicates, and replacing them with 
bodies of inversion rules that define those predicates (see [17, 
Sec. 13.4]).3 Our example plan P, from Section 2, after this 
transformation with the LCW statements in Section 3 looks 
as follows: 

We are now ready to consider minimization. Our basic 
idea is to iteratively try to remove each rule from the infor­
mation gathering plan. At each iteration, we use the method 
of replacing information source relations with their views or 
LCW's as in the rule subsumption check (see previous sec­
tion) to transform the removed rule into a representation of 
what could possibly be gathered by the information sources in 
it, and transform the remaining rules into a representation of 
what is guaranteed to be gathered by the information sources 
in them. Then, we instantiate the body of the transformed 
removed rule and see if the transformed remaining rules can 
derive its head. If so, we can leave the extracted rule out of the 
information gathering plan, because the information sources 
in the remaining rules guarantee to gather at least as much 
information as the rule that was removed. The full algorithm 
is shown in Figure 2. 

For our example plan above, we will try to prove that rule 
r.?, containing an access to the source C O N D B , is unneces­
sary. First we remove r3, from our plan, then transform it and 
the remaining rules so they represent the information gath-
erered by the information sources in them. For the removed 
rule, we want to replace each information source in it with a 
representation of all the possible information that the infor-

3Note that this step is safe because there is no recursion through 
global schema predicates. This step also removes any new predicates 
introduced through flattening of function symbols. 
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Replace all global schema predicates in 
with bodies of their inversion rules. 

repeat 
let be a rule in that has not yet been considered 
let be the program obtained by deleting rule r from 
and simplifying it by deleting any unreachable rules. 
let 
let 
if there is a rule, 
such that is uniformly contained by 

then replace with 
until each rule in has been considered once 

Figure 2: The greedy plan minimization algorithm 

mation source could return. Specifically, we want to trans­
form it to This produces: 

query(S,A) :- dom(S) CONDBfS, A) 

For the remaining rules, we transform them into 
which represents the information 

guaranteed to be produced by the information sources in the 
rules. For our example, we produce: 

r21: query(S, A) :-
r22: query(S, A) :-
r23: querv($, A) 

dom(S) :- ADDB(S.A) 
dom(S) > advisor(S, A) 
dom(A) :- ADDB(S.A) 
dom(A) :- advisor(S, A) 
dom(A) 
dom(A) :-

When we instantiate the body of the transformed removed 
rule r3, wc get the ground terms: dom("S"), conDB("S," 
"A"), A="Weld'', advisories", "A"). After evaluating V 
the remaining rules given with these constants, we find that 
we can derive query("S", "A") , using the rule r22, which 
means we can safely leave out the rule r3 that we've removed 
from our information gathering program. 

If we continue with the algorithm on our example problem, 
we wil l not be able to remove any more rules. The remaining 
dam rules can be removed if we do a simple reachability test 
from the user's query, as they are not referenced by any rules 
reachable from the query. 
Heuristics for ordering rules for removal: The final infor­
mation gathering plan that we end up with after executing the 
minimization algorithm wi l l depend on the order in which 
we remove the rules from the original plan. In the example 
above, suppose we had another LCW statement: 

CONDBfS, A) advisor(S, A) 

In such a case, we could have removed r2 from the original 
information gathering plan p, instead of removing r3. Since 
both rules wi l l lead to the generation of the same informa­
tion, the removal would succeed. Once r2 is removed how­
ever, we can no longer remove r3. This is significant, since in 
this case, a plan with rule r3 in it is much costlier to execute 
than the one with rule r2 in it. The presence of r3 triggers the 
dom recursion through rules r4...r6, which would have been 
eliminated otherwise. Recursion greatly increases the execu­
tion cost of the plan, as it can generate potentially boundless 

number of accesses to remote sources (see Section 6). We 
thus consider for elimination rules containing non-recursive 
predicates before those containing recursive predicates (such 
as dom terms). Beyond this, we also consider any gathered 
statistics about the access costs of the sources (such as con­
tact time, response time, probability of access etc.) to break 
ties [11]. 
Complexity of Minimizat ion: The complexity of the min­
imization algorithm in Figure 2 is dominated by the cost of 
uniform containment checks. As Sagiv [16] points out, the 
running time of the uniform containment check is in the worst 
case exponential in the size of the query plan being mini­
mized. However, things are brighter in practice since the ex­
ponential part of the complexity comes from the "evaluation" 
of the datalog program. The evaluation here is done with re­
spect to a "small" database - consisting of the grounded liter­
als of the tail of the rule being considered for removal. Nev­
ertheless, the exponential complexity justifies our greedy ap­
proach for minimization, as finding a globally minimal plan 
would require considering all possible rule-removal orders. 

5 Ordering source calls during Execution 
After the minimization phase, the information gathering plan 
is ready for execution. A crucial practical choice we have to 
make during the execution of the minimized plans (datalog 
programs) is the order in which predicates are evaluated. Ul­
timately plan execution in our context largely boils down to 
doing joins between the sources efficiently. Although there is 
a large body of work on join-ordering [3], most of it assumes 
that all data sources are fully relational databases, ignores 
source access costs (concentrating only on the traffic costs), 
and assumes the availability of elaborate source statistics. 
Such approaches are not particularly suited for Emcrac. In 
the information gathering domain, the assumption that infor­
mation sources are fully relational databases is rarely valid, 
as sources tend to have a variety of access limitations. Source 
access costs (connection set up costs etc.) can outweigh the 
traffic costs. Finally, due to the decentralized nature of In­
ternet, full statistics about sources arc rarely available. We 
now discuss how Emcrac represents the source limiations, 
and provide a greedy algorithm for ordering sources that uses 
this representation to reduce both traffic and access costs dur­
ing execution. 

5.1 Representing source l imi ta t ions 
On Internet, an information source may be a wrapped 
web page, a form interfaced database, or a fully relational 
database. A wrapped web page is a WWW document inter­
faced through a wrapper program to make it appear as a rela­
tional database. The wrapper retrieves the web page, extracts 
the relational information from it, then answers relational 
queries. Normal selection queries are not supported. A form-
interfaced database refers to a database with an H T M L form 
interface on the web which only answers selection queries 
over a subset of the attributes in the database. A WWW air­
line database that accepts two cities and two dates and returns 
flight listings is an example of a form interfaced database. 

In Emcrac, we use a simple way to inform the gatherer 
as to what types of queries on an information source would 
accept. We use the "$" annotation to identify variables that 
must be bound, and "%" annotation to identify unselectable 
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attributes (i.e., those that must not be bound). Thus a fully 
relational source would be adorned source(X, Y), a form in­
terfaced web-page that only accepts bindings for its first ar­
gument would be adorned source(X, % K ) , while a wrapped 
web-page source would have all its attributes marked unse-
lectable, represented as source(%X,%Y). Finally, a form 
interfaced web-page that requires bindings for its first argu­
ment, and is able to do selections only on the second argument 
would be adorned as source($X, Y, %Z). 

Given a source with annotations S1 ($Ar, %Y, Z ) , only the 
binding patterns of the form are feasible (where " - " 
stands for either bound or /ree argument). Similarly, we are 
not allowed to push selection constraints on Y to the source 

(they must be filtered locally). Thus the call must 
be executed as filtered locally with the binding on Y. 
Finally, given two binding patterns a and for a source 5, 

is said to be more general than (written 
if every selectable (non '%"-annotated) variable that is free 
in is also free in a, but not vice versa. Finally, we de­
fine as as the number of bound variables in a that are 
not %-annotated. Notice that holds only between binding 
patterns of the same source while can be used to relate 
binding patterns of different sources. 

5.2 A greedy a l g o r i t h m for o r d e r i n g source calls 
The normal heuristic for ordering subgoals in a datalog pro­
gram is to use "'bound is easier" assumption [17], and call 
sources with more specific binding patterns before those with 
more general ones. The idea is to reduce costs associated with 
data transfer (number of tuples transferred). It turns out that 
bound-is-easier assumption can wind up increasing the con­
nection and access costs. To elaborate, reducing the network 
traffic involves accessing sources with less general binding 
patterns. This in turn typically increases the number of sep 
arate calls made to a source, and leads to increased access 
costs. 

Emerac source-call ordering method considers the connec­
tion costs to be of primary importance and the network traf­
fic costs to be of secondary importance. To reduce connec­
tion costs, we attempt to access sources with the most gen­
eral feasible binding patterns. To take traffic costs into ac­
count, we also maintain a table HTBP of least general (w.r.t. 

source binding patterns that are still known to be high-
tralfic producing. Our algorithm, shown in Figure 3 attempts 
to pick, for each source, the most general feasible binding 
pattern that is neither equal to, nor more general than any 
binding pattern for that source listed in HTBP. An assumption 
motivating this approach is that while full source statistics are 
rarely available, one can easily gain partial information on the 
types of binding patterns that cause excessive traffic. 

If all of the feasible binding patterns of all sources are 
found to be in HTBP in a given step, then the algorithm 
selects the source with the binding pattern containing most 
number of bound variables that are not %-annotated (adopt­
ing the "bound-is-easier" assumption). This selection then 
gives rise to further bound variables (enlarges Vr in the algo­
rithm above), and makes low traffic binding patterns feasible 
at the next step. 

When the algorithm terminates successfully, the array C 
specifies which sources are to be called in each stage, and 
what binding patterns are to be used in those calls. Execution 

Inputs: FBP: table of forbidden binding patterns 
HTBP: table of high traffic binding patterns 
V := all variables bound by the head; 

Array where lists sources chosen at stage; 
Array where lists sources postponed at stage 

for i := 1 to m (where m is the number of subgoals) do begin 
C[i] 
for each unchosen subgoal S do begin 

B := All feasible binding patterns for 5 w.r.t. V and FBP 
sorted using " relation. 

for each do begin 

then begin 
Push S with binding pattern into 
Mark S as "chosen"; 
add to V all variables appearing in S; 

end 
end 
if and S is not chosen 

then Push into where 
has the maximuni value; 

end 
if 

then begin 
Take the source with maximum value 
and push it into 
add to V all variables appearing in 5; 

else fail 
end 
Return the array 

Figure 3: A greedy source call ordering algorithm that con­
siders both access costs and traffic costs. 

involves issuing calls to sources with the specified binding 
pattern; where each bound variable in the binding pattern is 
instantiated to all values of that variable collected upto that 
point during execution. If the bound variable is a %-annotated 
variable, then the call is issued without variable instantiation, 
and the filtering on the variable values is done locally. The 
tuples returned by the source calls in each stage are locally 
joined. 

Notice that each element of C is a (possibly non-singleton) 
set of source calls with associated binding patterns (rather 
than a single source call). This parallelism supports "bushy 
join trees" |3 | and cuts down the overall time wasted during 
connection delays. The complexity of our ordering algorithm 
is where n is the length of the rule. 

It is worth noting that the behavior of our algorithm de­
pends on the contents of the HTBP table. When HTBP con­
tains no binding patterns, the algorithm essentially concen­
trates on reducing the source accesses (similar to [14]). When 
all source binding patterns are listed in HTBP, the algorithm 
winds up focusing on the network traffic, and reduces to a 
variant of conjunct ordering by bound-is-easicr assumption 
[17]. 

6 Implementation and Evaluation 
Emerac is a prototype information gathering system underde­
velopment that implements the ideas in this paper. It is writ­
ten in Java, and is intended to be a library used by applications 
that need a uniform interface to multiple information sources. 
Emerac is internally split into two parts: the query planner 
and the plan executor. The default planner uses Duschka's 
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(a) Cumulative costs of LCW vs. 
Naive (artificial sources) 

(b) Cumulative costs of LCW vs. 
Naive (artificial sources) 

(c) Effect of unsubsumed constrained 
sources on LCW 

Figure 4: Results characterizing utility of minimization algorithm. 

|5 | plan generation techniques coupled with our plan mini­
mization techniques. The plan is executed by traversing the 
relational operator graph [ 171 corresponding to the minimized 
plan. When a union node is encountered during traversal, 
new threads of execution arc created to traverse the children 
of the node in parallel. Use of separate threads also allows us 
to return answers to the user asynchronously. The executor 
uses the algorithm in Section 5 to determine the order to ac­
cess each information source in a join of multiple sources, as 
described in Section 5. Recursion in the relational operator 
graph is controlled by using a depth-limit. 

We used the prototype implementation of Emeruc to evalu­
ate the effectiveness of the optimization techniques proposed 
in this paper. We used two sets of experimental data. The 
first were a set of small artificial sources containing 5 tu­
ples each. Our second data set was derived from the Uni­
versity of Trier's Database and Logic Programming (DBLP) 
online database, which contains bibliographical information 
on database-related publications. Individual sources used in 
the experiments corresponded to different subsets of DBLP 
data (ranging from 128 to 2048 tuples). In each case, some 
of the sources are unconstrained, while others have binding 
restrictions (leading to recursive plans). To normalize for dif­
ferences caused by individual source implementations, we ex-
tracted the data into tables which we stored on disk as Java 
serialized data. Al l experiments were conducted using a sim­
ple wrapper (written in compiled Java) to return the contents 
of the serialized tables. 

The sources delay answering each query for a set period 
of time in order to simulate actual latency on the Internet. In 
all our experiments, this delay was set to 2 seconds, which is 
quite reasonable in the context of current day Internet sources. 

Uti l i ty of minimization: To see how the planner and execu­
tor performed with and without minimization, we varied the 
number of duplicate information sources available and rele­

vant to the query, and compared the total time taken for op­
timization (if any) and exection. Given that the minimization 
step involves an exponential "uniform containment" check, 
it is important to ensure that the time spent in minimization 
is made up in improved execution cost. Notice that we are 
looking at only the execution time, and ignoring other costs 
(such as access cost for premium sources), which also can be 
reduced significantly with the minimization step. The naive 
method simply builds and executes source complete plans. 
The "LCW" method builds source complete plans, then ap-
plies the minimization algorithm described in Section 4 be­
fore executing the plans. For both methods, we support fully 
parallel execution at the union nodes in the r/g graph. Since 
in practice, recursive plans are handled with depth bounded 
recursion, we experimented with a variety of depth limits 
(i.e., the number of times a node is executed in the rule-goal 
graph), starting from I (which in essence prunes the recursion 
completely). 

The plots in Figure 4 show the results of our experiments. 
Plot a is for the artificial sources, and shows the relative time 
performances of LCW against the naive algorithm when the 
number of redundant constrained sources is increased. In this 
set of experiments, LCW statements allow us to prove all con­
strained sources to be redundant, and the minimization algo-
rithm prunes them. The y-axis shows the cumulative time 
taken for minimization and execution. We note that the time 
taken by the LCW algorithm remains fairly independent of re­
cursion depth as well as number of constrained sources. The 
naive algorithm, in contrast, worsens exponentially with in­
creasing number of constrained sources. The degradation is 
more pronounced for higher recursion depths, with the LCW 
method outperforming the naive one when there are two or 
more redundant constrained sources. Plot b repeats the same 
experiment, but with the sources derived from the DBLP data. 
The sources are such that the experimental query returns upto 
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256 tuples. The experiment is conducted for recursion depth 
limits 1 and 3. We note once again, that LCW method re­
mains fairly unaffected by the presence of redundant con­
strained sources, while the naive method degrades exponen­
tially. Plot c considers DBLP data sources in a scenario where 
some constrained sources are left unsubsumed after the min­
imization. As expected, LCW performance degrades grace­
fully with increased number of constrained sources. Naive 
algorithm would not have shown such graceful degradation 
no sources would be removed through subsumption. 

Although we have not completed a formal evaluation of 
the source ordering strategy described in Section 5, informal 
experiments with artificial sources indicate that the technique 
produces plans with better cumulative access and traffic costs 
than those offered by ordering based on bound-is-easier as­
sumption. 

7 Related Work 
Early work on optimizing information gathering plans (c.f. 
[10,2]) combined the phases of query plan generation and op­
timization and posed the whole thing as a problem of search 
through the space of different executable plans. By starting 
with Duschka's work (5, 6] which gives a maximally con­
tained plan in polynomial time, and then optimizing it, we 
make a clean separation between generation and optimization 
phases. 

Friedman and Weld 18] offer an efficient algorithm for min­
imizing a non-recursive query plan through the use of LCW 
statements. Their algorithm is based on pair-wise subsump­
tion checks on conjunctive rules. Recursive rules correspond 
to infinite unions of conjunctive queries, and trying to prove 
subsumption through pair-wise conjunctive rule containment 
checks wil l not be decidable. The approach in Duschka [4] 
also suffers from similar problems as it is based on the idea 
of conjunctive (un)foldings of a query in terms of source re­
lations f 15]. In the case of recursive queries or sources with 
binding restrictions, the number of such foldings is infinite. 
In contrast, our minimization algorithm is based on the no­
tion of uniform containment for recursive datalog programs. 
This approach can check if sets of rules subsume a single rule. 
Thus it can minimize a much greater range of plans. 

Our source-access ordering technique assumes that statis­
tics regarding source relations are not easily available, and 
thus traditional join-ordering strategies are not applicable. An 
interesting alternative is to try and learn the source statistics 
through experience. Zhu and Larson 118] describe techniques 
for developing regression cost models for multi-database sys­
tems by selective querying. Adali et. al [1] discuss how keep­
ing track of rudimentary access statistics can help in doing 
cost-based optimizations. 

8 Conclusion 
In this paper, we considered the query optimization prob­
lem for information gathering plans, and presented two novel 
techniques. The first technique makes use of LCW statements 
about information sources to prune unnecessary information 
sources from a plan. For this purpose, we have modified an 
existing method for minimizing datalog programs under uni­
form containment, so that it can minimize recursive informa­
tion gathering plans with the help of source subsumption in­
formation. The second technique is a greedy algorithm for or­

dering source calls that respects source limitations, and takes 
both access costs and traffic costs into account, without requr-
ing full source statistics. We have then discussed the status 
of a prototype implementation system based on these ideas 
called Emerac, and presented an evaluation of the effective­
ness of the optimization strategies in the context of Emerac. 
Our current directions involve integrating the minimization 
and source-call ordering phases more tightly, explicitly mod­
eling and exploiting cost/quality tradeoffs, dealing with run­
time exceptions such as sources that become inaccessible, 
as well as run-time opportunities such as the use of caches 
[1[. We are also exploring the utility of learning rudimentary 
source models by keeping track of time and solution quality 
statistics, and the utility of probabilistic characterizations of 
coverage and overlaps between sources. 
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