
Optimizing Recursive Information Gathering Plans

Eric Lambrecht Subbarao Kambhampati Senthil Gnanaprakasam*
Department of Computer Science and Engineering
Arizona State University, Tempe AZ 85287-5406

Abstract

In this paper we describe two optimization tech­
niques that are specially tailored for information
gathering. The first is a greedy minimization algo­
rithm that minimizes an information gathering plan
by removing redundant and overlapping informa­
tion sources without loss of completeness. We then
discuss a set of heuristics that guide the greedy min­
imization algorithm so as to remove costlier infor­
mation sources first. In contrast to previous work,
our approach can handle recursive query plans that
arise commonly in practice. Second, we present a
method for ordering the access to sources to reduce
the execution cost. Sources on the Internet have
a variety of access limitations and the execution
cost in information gathering is affected both by
network traffic and by the connection setup costs.
We describe a way of representing the access capa­
bilities of sources, and provide a greedy algorithm
for ordering source calls that respects source l imi­
tations, and takes both access costs and traffic costs
into account, without requring full source statistics.
Finally, we wil l discuss implementation and em­
pirical evaluation of these methods in Emerac, our
prototype information gathering system.

1 Introduction
The explosive growth and popularity of the world-wide web
have resulted in thousands of structured queryable informa­
tion sources on the Internet, and the promise of unprece­
dented information-gathering capabilities to lay users. Un­
fortunately, the promise has not yet been transformed into re­
ality. While there are sources relevant to virtually any user-
queries, the morass of sources presents a formidable hurdle to
effectively accessing the information. One way of alleviating
this problem is to develop information gatherers (also called
mediators) which take the user's query, and develop and ex­
ecute an effective information gathering plan, that accesses
the relevant sources to answer the user's query efficiently.

*This research is supported in part by NSF young investigator
award (NYl) IRI-9457634, ARPA/Rome Laboratory planning ini­
tiative grant F30602-95-C-0247, Army AASERT grant DAAH04-
96-1-0247, AFOSR grant F20602-98-1-0182 and NSF grant IRI-
9801676. We thank Selcuk Candan for many helpful comments.

Several first steps have recently been taken towards the de­
velopment of a theory of such gatherers in both database and
artificial intelligence communities. The information gather­
ing problem is typically modeled by building a virtual global
schema for the information that the user is interested in, and
describing the accessible information sources as materialized
views on the global schema. The user query is posed in
terms of the relations of the global schema. Since the global
schema is virtual (in that its extensions are not stored ex­
plicitly anywhere), computing the answers requires rewrit­
ing the query such that all the extensional (EDB) predicates
in the rewrite correspond to the materialized view predicates
that represent information sources. Several researchers from
AI and database communities have addressed this rewriting
problem [13, 15, 10]. Recent research by Duschka and his
co-workers [5, 6J subsumes most of this work, and provides
a clean methodology for constructing information gathering
plans for user queries posed in terms of a global schema.

Generating source complete plans however is only a first
step towards efficient information gathering. A crucial next
step, which we focus on in this paper, is that of query plan
optimization. The plans produced by Dushka's methodology,
while complete, in that they wi l l retrieve all (accessible) an­
swers to the query, tend to be highly redundant in that they
access any information source that may be remotely relevant
to the query. They need to be minimized first by removing re­
dundant sources before being executed. The execution phase
also presents several challenges since traditional execution
optimization models and techniques [3] do not apply in the
context of information gathering on Internet.

In this paper we describe the query optimization techniques
that we have developed in the context of Emerac, a prototype
information gathering system that we are developing. Fig­
ure 1 provides a schematic illustration of the query planning
and optimization process in Emerac. It contains two steps:
logical optimization and execution optimization. For logical
optimization, we describe a technique that operates on the
recursive plans generated by Dushka's algorithm and greed­
ily minimizes them so as to remove access to costly and re­
dundant information sources, without affecting the complete­
ness of the plan. For this purpose, we use the so-called lo­
calized closed world (LCW) statements that characterize the
completeness of the contents of a source relative to either the
global (virtual) database schema or other sources. Our tech­
niques are based on an adaptation of Sagiv's [16] method for
minimizing datalog programs under uniform equivalence. A l -

1204 SEARCH

Figure 1: Query planning phases in Emerac

though there exists some previous research on minimizing in­
formation gathering plans using LCW statements [4, 8), none
of it is applicable to minimization of information gathering
plans containing recursion. Our ability to handle recursion
is significant because recursion appears in virtually all infor­
mation gathering plans either due to functional dependencies,
binding constraints on information sources, or recursive user
queries |5). Additionally, in contrast to existing methods,
which do pairwise redundancy checks on source accesses,
our approach is capable of exploiting cases where access to
one information source is rendered redundant by access to
a combination of sources together. Large performance im­
provements in our prototype information gatherer, Emenic,
attest to the cost-effectiveness of our minimization approach.

Ultimately execution optimization boils down to doing
joins between the sources efficiently. This problem differs
significantly from the traditional database query optimization
problem, as sources on the Internet have a variety of access
limitations (aka "source capabilities") and the execution cost
in information gathering is affected both by network traffic
and by the connection setup costs. Our second contribution
is a way of representing the access capabilities of sources,
and a greedy algorithm for ordering source calls that respects
source limitations. The algorithm also takes both access costs
and traffic costs into account, without requring full source
statistics.

The paper starts with a brief review of Dushka's query plan
formation methodology in Section 2. Section 3 presents plan
minimization preliminaries, and Section 4 presents our plan
minimization algorithm. Section 5 explains how source ac-
cesses in the minimized plan can be ordered using the knowl­
edge of sourece access capabilities. Section 6 describes em­
pirical evaluation of our ideas in the context of Emerac sys­
tem. Section 7 discusses the related work and Section 8
presents our conclusions.

2 Building Query Plans: Background

Suppose our global schema contains the world relation
advisor (S, A), where A is the advisor of S. Further more,
suppose we have an information source A D D B , such that
for every tuple (S,A) returned by it, A is the advisor of S.
This can be represented as a materialized view on the global
schema as follows:

Suppose we want to retrieve all the students advised by
Weld. We can represent our goal by the query Q:

Dushcka et. al. [5, 6] show how we can generate an infor­
mation gathering plan that is "maximally contained" in that
it returns every query-satisfying tuple that is stored in any of
the accessible information sources. This method works by in­
verting all source (materialized view) definitions, and adding

them to the query. The inverse, , of the materialized view
definition with head is a set of logic rules in
which the body of each new rule is the head of the original
view, and the head of each new rule is a relation from the body
of the original view. When we invert our definition above, we
get:

When this rule is added to the original query we effec­
tively create a datalog1 program whose execution produces
all the tuples satisfying the query.
Constrained sources & Recursion: The materialized view
inversion algorithm can be modified in order to model
databases that have binding pattern requirements. Suppose
we have a second information source, CONDB that requires
the student argument to be bound, and returns the advisor of
that given student. We denote this in its view as follows:

The notation denotes that S must be bound for any
query sent to C O N D B . A straightforward inversion of this
source will get us a rule of the form:

which is ununexecutable as S is not bound. This is handled
by making up a new relation called dom whose extension is
made to correspond to all possible constants that can be sub­
stituted for S. In our example, assuming that we have both
the ADDB source and the CON DB source, the complete plan
for the query, which we shall refer to as P, is:

Notice that all extensional (EDB) predicates in the progam
correspond to source predicates (materialized views). Notice
also the presence of dom(S) relation in the rule r3. Rules
7*4, r5 and r7 define the extension of dom by collecting all
possible constants that can be derived from source calls. Fi­
nally, note that rule r6 is recursive, which makes the overall
plan recursive, even though the original query as well as the
source description are non-recursive. Given the ubiquitous-
ness of constrained sources on the Internet, it is thus impor­
tant that we know how to handle recursive information gath­
ering plans.

3 Plan minimization preliminaries
The plan V above accesses two different advisor databases to
answer the query. It would be useful to try and cut down re­
dundant accesses, as this would improve the execution cost of
the plan. To do this however, we need more information about
the sources. While the materialized view characterizations
of sources explicate the world relations that are respected by

1 Things get a bit more complicated when there are variables in
the body of the view that do not appear in the head. During in­
version, every such variable is replaced with a new function term

The function symbols can then be eliminated by
a flattening procedure, as there wil l be no recursion through them in
the eventual plan, resulting in a datalog program in the end.

LAMBRECHT, KAMBHAMPATI, AND GNANAPRAKASAM 1205

each tuple returned by the source, there is no guarantee that
all tuples satisfying those properties are going to be returned
by that source.

One way to support minimization is to augment the source
descriptions with statements about their relative coverage, us­
ing the so-called localized closed world (LCW) statements
[7]. An LCW statement attempts to characterize what infor­
mation (tuples) the source is guaranteed to contain in terms
of the global schema. Suppose, we happen to know that the
source ADDB is guaranteed to contain all the students ad­
vised by Weld and Hanks. We can represent this information
by the statement (note the direction of the arrow):

ADDB(S. A)
ADDB(S, A)

Pair-wise rule subsumption: Given the LCW statement
above, intuitively it is obvious that we can get all the tuples
satisfying the query Q by accessing just A D D B . We now
need to provide an automated way of making these determi­
nations. Suppose we have two datalog rules, each of which
has one or more materialized view predicates in its body
that also have LCW statements, and we wish to determine
if one rule subsumes the other. The obvious way of check­
ing the subsumption is to replace the source predicates from
the first rule with the bodies of their view description state­
ments, and the source predicates from the second rule with the
bodies of the LCW statements corresponding to those pred­
icates. We now have the transformed first rule providing a
"liberal" bound on the tuples returned by that rule, while the
transformed second rule gives a "conservative" bound. If the
conservative bound subsumes the liberal bound, i.e., if the
transformed second rule "contains" (entails) the transformed
first rule, we know that second rule subsumes the first rule.
Duschka [4) shows that this check, while sufficient, is not a
necessary condition for subsumption. He proposes a modified
version that involves replacing each source predicate s with
sAv in the first rule, and with in the second rule, where v
is the view description of s, and is the conjunction of LCW
statements of .s. If after this transformation, the second rule
contains the first, then the first rule is subsumed by it.2

Minimization under uniform equivalence: Pair-wise rule
subsumption checks alone are enough to detect redundancy
in non-recursive plans 112, 8], but are inadequate for mini­
mizing recursive plans. Specifically, recursive plans corre­
spond to infinite union of conjunctive queries and checking if
a particular rule of the recursive plan is redundant will involve
trying to see if that part is subsumed by any of these infinite
conjuncts [17, pp. 908]. We instead base our minimization
process on the notion of uniform containment for datalog pro­
grams, presented in (16). To minimize a datalog program, we
might try removing one rule at a time, and checking if the new
program is equivalent to the original program. Two datalog
programs are equivalent if they produce the same result for
all possible assignments of EDB predicates f 16]. Checking
equivalence is known to be undecidable. Two datalog pro­
grams are uniformly equivalent if they produce the same re­
sult for all possible assignments of EDB and 1DB predicates.
Uniform equivalence is decidable, and implies equivalence.
Sagiv [16] offers a method for minimizing a datalog program
under uniform equivalence that we illustrate by an example

2The next section contains an example illustrating this strategy.

(and later adapt for our information gathering plan minimiza­
tion). Suppose that we have the following datalog program:

We can check to see if rl is redundant by removing it from
the program, then instantiating its body to see if the remain­
ing rules can derive the instantiation of the head of this rule
through simple bottom-up evaluation. Our initial assignment
of relations is . If the remaining rules in
the datalog program can derive from the assignment
above, then we can safely leave rule rl out of the datalog pro­
gram. This is indeed the case. Given we can assert

via rule r3. Then, given and we
can assert from rule r2 . Thus the above program will
produce the same results without rule rl in it.

4 Greedy Minimization of Recursive plans

We now adapt the algorithm for minimizing datalog programs
under uniform equivalence to remove redundant sources and
unnecessary recursion from the information gathering plans.
Our first step is to transform the query plan such that the query
predicate is directly related to the source calls. This is done by
removing global schema predicates, and replacing them with
bodies of inversion rules that define those predicates (see [17,
Sec. 13.4]).3 Our example plan P, from Section 2, after this
transformation with the LCW statements in Section 3 looks
as follows:

We are now ready to consider minimization. Our basic
idea is to iteratively try to remove each rule from the infor­
mation gathering plan. At each iteration, we use the method
of replacing information source relations with their views or
LCW's as in the rule subsumption check (see previous sec­
tion) to transform the removed rule into a representation of
what could possibly be gathered by the information sources in
it, and transform the remaining rules into a representation of
what is guaranteed to be gathered by the information sources
in them. Then, we instantiate the body of the transformed
removed rule and see if the transformed remaining rules can
derive its head. If so, we can leave the extracted rule out of the
information gathering plan, because the information sources
in the remaining rules guarantee to gather at least as much
information as the rule that was removed. The full algorithm
is shown in Figure 2.

For our example plan above, we will try to prove that rule
r.?, containing an access to the source C O N D B , is unneces­
sary. First we remove r3, from our plan, then transform it and
the remaining rules so they represent the information gath-
erered by the information sources in them. For the removed
rule, we want to replace each information source in it with a
representation of all the possible information that the infor-

3Note that this step is safe because there is no recursion through
global schema predicates. This step also removes any new predicates
introduced through flattening of function symbols.

1206 SEARCH

Replace all global schema predicates in
with bodies of their inversion rules.

repeat
let be a rule in that has not yet been considered
let be the program obtained by deleting rule r from
and simplifying it by deleting any unreachable rules.
let
let
if there is a rule,
such that is uniformly contained by

then replace with
until each rule in has been considered once

Figure 2: The greedy plan minimization algorithm

mation source could return. Specifically, we want to trans­
form it to This produces:

query(S,A) :- dom(S) CONDBfS, A)

For the remaining rules, we transform them into
which represents the information

guaranteed to be produced by the information sources in the
rules. For our example, we produce:

r21: query(S, A) :-
r22: query(S, A) :-
r23: querv($, A)

dom(S) :- ADDB(S.A)
dom(S) > advisor(S, A)
dom(A) :- ADDB(S.A)
dom(A) :- advisor(S, A)
dom(A)
dom(A) :-

When we instantiate the body of the transformed removed
rule r3, wc get the ground terms: dom("S"), conDB("S,"
"A"), A="Weld'', advisories", "A"). After evaluating V
the remaining rules given with these constants, we find that
we can derive query("S", "A") , using the rule r22, which
means we can safely leave out the rule r3 that we've removed
from our information gathering program.

If we continue with the algorithm on our example problem,
we wil l not be able to remove any more rules. The remaining
dam rules can be removed if we do a simple reachability test
from the user's query, as they are not referenced by any rules
reachable from the query.
Heuristics for ordering rules for removal: The final infor­
mation gathering plan that we end up with after executing the
minimization algorithm wi l l depend on the order in which
we remove the rules from the original plan. In the example
above, suppose we had another LCW statement:

CONDBfS, A) advisor(S, A)

In such a case, we could have removed r2 from the original
information gathering plan p, instead of removing r3. Since
both rules wi l l lead to the generation of the same informa­
tion, the removal would succeed. Once r2 is removed how­
ever, we can no longer remove r3. This is significant, since in
this case, a plan with rule r3 in it is much costlier to execute
than the one with rule r2 in it. The presence of r3 triggers the
dom recursion through rules r4...r6, which would have been
eliminated otherwise. Recursion greatly increases the execu­
tion cost of the plan, as it can generate potentially boundless

number of accesses to remote sources (see Section 6). We
thus consider for elimination rules containing non-recursive
predicates before those containing recursive predicates (such
as dom terms). Beyond this, we also consider any gathered
statistics about the access costs of the sources (such as con­
tact time, response time, probability of access etc.) to break
ties [11].
Complexity of Minimizat ion: The complexity of the min­
imization algorithm in Figure 2 is dominated by the cost of
uniform containment checks. As Sagiv [16] points out, the
running time of the uniform containment check is in the worst
case exponential in the size of the query plan being mini­
mized. However, things are brighter in practice since the ex­
ponential part of the complexity comes from the "evaluation"
of the datalog program. The evaluation here is done with re­
spect to a "small" database - consisting of the grounded liter­
als of the tail of the rule being considered for removal. Nev­
ertheless, the exponential complexity justifies our greedy ap­
proach for minimization, as finding a globally minimal plan
would require considering all possible rule-removal orders.

5 Ordering source calls during Execution
After the minimization phase, the information gathering plan
is ready for execution. A crucial practical choice we have to
make during the execution of the minimized plans (datalog
programs) is the order in which predicates are evaluated. Ul­
timately plan execution in our context largely boils down to
doing joins between the sources efficiently. Although there is
a large body of work on join-ordering [3], most of it assumes
that all data sources are fully relational databases, ignores
source access costs (concentrating only on the traffic costs),
and assumes the availability of elaborate source statistics.
Such approaches are not particularly suited for Emcrac. In
the information gathering domain, the assumption that infor­
mation sources are fully relational databases is rarely valid,
as sources tend to have a variety of access limitations. Source
access costs (connection set up costs etc.) can outweigh the
traffic costs. Finally, due to the decentralized nature of In­
ternet, full statistics about sources arc rarely available. We
now discuss how Emcrac represents the source limiations,
and provide a greedy algorithm for ordering sources that uses
this representation to reduce both traffic and access costs dur­
ing execution.

5.1 Representing source l imi ta t ions
On Internet, an information source may be a wrapped
web page, a form interfaced database, or a fully relational
database. A wrapped web page is a WWW document inter­
faced through a wrapper program to make it appear as a rela­
tional database. The wrapper retrieves the web page, extracts
the relational information from it, then answers relational
queries. Normal selection queries are not supported. A form-
interfaced database refers to a database with an H T M L form
interface on the web which only answers selection queries
over a subset of the attributes in the database. A WWW air­
line database that accepts two cities and two dates and returns
flight listings is an example of a form interfaced database.

In Emcrac, we use a simple way to inform the gatherer
as to what types of queries on an information source would
accept. We use the "$" annotation to identify variables that
must be bound, and "%" annotation to identify unselectable

LAMBRECHT, KAMBHAMPATI, AND GNANAPRAKASAM 1207

attributes (i.e., those that must not be bound). Thus a fully
relational source would be adorned source(X, Y), a form in­
terfaced web-page that only accepts bindings for its first ar­
gument would be adorned source(X, % K) , while a wrapped
web-page source would have all its attributes marked unse-
lectable, represented as source(%X,%Y). Finally, a form
interfaced web-page that requires bindings for its first argu­
ment, and is able to do selections only on the second argument
would be adorned as source($X, Y, %Z).

Given a source with annotations S1 ($Ar, %Y, Z) , only the
binding patterns of the form are feasible (where " - "
stands for either bound or /ree argument). Similarly, we are
not allowed to push selection constraints on Y to the source

(they must be filtered locally). Thus the call must
be executed as filtered locally with the binding on Y.
Finally, given two binding patterns a and for a source 5,

is said to be more general than (written
if every selectable (non '%"-annotated) variable that is free
in is also free in a, but not vice versa. Finally, we de­
fine as as the number of bound variables in a that are
not %-annotated. Notice that holds only between binding
patterns of the same source while can be used to relate
binding patterns of different sources.

5.2 A greedy a l g o r i t h m for o r d e r i n g source calls
The normal heuristic for ordering subgoals in a datalog pro­
gram is to use "'bound is easier" assumption [17], and call
sources with more specific binding patterns before those with
more general ones. The idea is to reduce costs associated with
data transfer (number of tuples transferred). It turns out that
bound-is-easier assumption can wind up increasing the con­
nection and access costs. To elaborate, reducing the network
traffic involves accessing sources with less general binding
patterns. This in turn typically increases the number of sep
arate calls made to a source, and leads to increased access
costs.

Emerac source-call ordering method considers the connec­
tion costs to be of primary importance and the network traf­
fic costs to be of secondary importance. To reduce connec­
tion costs, we attempt to access sources with the most gen­
eral feasible binding patterns. To take traffic costs into ac­
count, we also maintain a table HTBP of least general (w.r.t.

source binding patterns that are still known to be high-
tralfic producing. Our algorithm, shown in Figure 3 attempts
to pick, for each source, the most general feasible binding
pattern that is neither equal to, nor more general than any
binding pattern for that source listed in HTBP. An assumption
motivating this approach is that while full source statistics are
rarely available, one can easily gain partial information on the
types of binding patterns that cause excessive traffic.

If all of the feasible binding patterns of all sources are
found to be in HTBP in a given step, then the algorithm
selects the source with the binding pattern containing most
number of bound variables that are not %-annotated (adopt­
ing the "bound-is-easier" assumption). This selection then
gives rise to further bound variables (enlarges Vr in the algo­
rithm above), and makes low traffic binding patterns feasible
at the next step.

When the algorithm terminates successfully, the array C
specifies which sources are to be called in each stage, and
what binding patterns are to be used in those calls. Execution

Inputs: FBP: table of forbidden binding patterns
HTBP: table of high traffic binding patterns
V := all variables bound by the head;

Array where lists sources chosen at stage;
Array where lists sources postponed at stage

for i := 1 to m (where m is the number of subgoals) do begin
C[i]
for each unchosen subgoal S do begin

B := All feasible binding patterns for 5 w.r.t. V and FBP
sorted using " relation.

for each do begin

then begin
Push S with binding pattern into
Mark S as "chosen";
add to V all variables appearing in S;

end
end
if and S is not chosen

then Push into where
has the maximuni value;

end
if

then begin
Take the source with maximum value
and push it into
add to V all variables appearing in 5;

else fail
end
Return the array

Figure 3: A greedy source call ordering algorithm that con­
siders both access costs and traffic costs.

involves issuing calls to sources with the specified binding
pattern; where each bound variable in the binding pattern is
instantiated to all values of that variable collected upto that
point during execution. If the bound variable is a %-annotated
variable, then the call is issued without variable instantiation,
and the filtering on the variable values is done locally. The
tuples returned by the source calls in each stage are locally
joined.

Notice that each element of C is a (possibly non-singleton)
set of source calls with associated binding patterns (rather
than a single source call). This parallelism supports "bushy
join trees" |3 | and cuts down the overall time wasted during
connection delays. The complexity of our ordering algorithm
is where n is the length of the rule.

It is worth noting that the behavior of our algorithm de­
pends on the contents of the HTBP table. When HTBP con­
tains no binding patterns, the algorithm essentially concen­
trates on reducing the source accesses (similar to [14]). When
all source binding patterns are listed in HTBP, the algorithm
winds up focusing on the network traffic, and reduces to a
variant of conjunct ordering by bound-is-easicr assumption
[17].

6 Implementation and Evaluation
Emerac is a prototype information gathering system underde­
velopment that implements the ideas in this paper. It is writ­
ten in Java, and is intended to be a library used by applications
that need a uniform interface to multiple information sources.
Emerac is internally split into two parts: the query planner
and the plan executor. The default planner uses Duschka's

1208 SEARCH

(a) Cumulative costs of LCW vs.
Naive (artificial sources)

(b) Cumulative costs of LCW vs.
Naive (artificial sources)

(c) Effect of unsubsumed constrained
sources on LCW

Figure 4: Results characterizing utility of minimization algorithm.

|5 | plan generation techniques coupled with our plan mini­
mization techniques. The plan is executed by traversing the
relational operator graph [171 corresponding to the minimized
plan. When a union node is encountered during traversal,
new threads of execution arc created to traverse the children
of the node in parallel. Use of separate threads also allows us
to return answers to the user asynchronously. The executor
uses the algorithm in Section 5 to determine the order to ac­
cess each information source in a join of multiple sources, as
described in Section 5. Recursion in the relational operator
graph is controlled by using a depth-limit.

We used the prototype implementation of Emeruc to evalu­
ate the effectiveness of the optimization techniques proposed
in this paper. We used two sets of experimental data. The
first were a set of small artificial sources containing 5 tu­
ples each. Our second data set was derived from the Uni­
versity of Trier's Database and Logic Programming (DBLP)
online database, which contains bibliographical information
on database-related publications. Individual sources used in
the experiments corresponded to different subsets of DBLP
data (ranging from 128 to 2048 tuples). In each case, some
of the sources are unconstrained, while others have binding
restrictions (leading to recursive plans). To normalize for dif­
ferences caused by individual source implementations, we ex-
tracted the data into tables which we stored on disk as Java
serialized data. Al l experiments were conducted using a sim­
ple wrapper (written in compiled Java) to return the contents
of the serialized tables.

The sources delay answering each query for a set period
of time in order to simulate actual latency on the Internet. In
all our experiments, this delay was set to 2 seconds, which is
quite reasonable in the context of current day Internet sources.

Uti l i ty of minimization: To see how the planner and execu­
tor performed with and without minimization, we varied the
number of duplicate information sources available and rele­

vant to the query, and compared the total time taken for op­
timization (if any) and exection. Given that the minimization
step involves an exponential "uniform containment" check,
it is important to ensure that the time spent in minimization
is made up in improved execution cost. Notice that we are
looking at only the execution time, and ignoring other costs
(such as access cost for premium sources), which also can be
reduced significantly with the minimization step. The naive
method simply builds and executes source complete plans.
The "LCW" method builds source complete plans, then ap-
plies the minimization algorithm described in Section 4 be­
fore executing the plans. For both methods, we support fully
parallel execution at the union nodes in the r/g graph. Since
in practice, recursive plans are handled with depth bounded
recursion, we experimented with a variety of depth limits
(i.e., the number of times a node is executed in the rule-goal
graph), starting from I (which in essence prunes the recursion
completely).

The plots in Figure 4 show the results of our experiments.
Plot a is for the artificial sources, and shows the relative time
performances of LCW against the naive algorithm when the
number of redundant constrained sources is increased. In this
set of experiments, LCW statements allow us to prove all con­
strained sources to be redundant, and the minimization algo-
rithm prunes them. The y-axis shows the cumulative time
taken for minimization and execution. We note that the time
taken by the LCW algorithm remains fairly independent of re­
cursion depth as well as number of constrained sources. The
naive algorithm, in contrast, worsens exponentially with in­
creasing number of constrained sources. The degradation is
more pronounced for higher recursion depths, with the LCW
method outperforming the naive one when there are two or
more redundant constrained sources. Plot b repeats the same
experiment, but with the sources derived from the DBLP data.
The sources are such that the experimental query returns upto

LAMBRECHT, KAMBHAMPATI, AND GNANAPRAKASAM 1209

256 tuples. The experiment is conducted for recursion depth
limits 1 and 3. We note once again, that LCW method re­
mains fairly unaffected by the presence of redundant con­
strained sources, while the naive method degrades exponen­
tially. Plot c considers DBLP data sources in a scenario where
some constrained sources are left unsubsumed after the min­
imization. As expected, LCW performance degrades grace­
fully with increased number of constrained sources. Naive
algorithm would not have shown such graceful degradation
no sources would be removed through subsumption.

Although we have not completed a formal evaluation of
the source ordering strategy described in Section 5, informal
experiments with artificial sources indicate that the technique
produces plans with better cumulative access and traffic costs
than those offered by ordering based on bound-is-easier as­
sumption.

7 Related Work
Early work on optimizing information gathering plans (c.f.
[10,2]) combined the phases of query plan generation and op­
timization and posed the whole thing as a problem of search
through the space of different executable plans. By starting
with Duschka's work (5, 6] which gives a maximally con­
tained plan in polynomial time, and then optimizing it, we
make a clean separation between generation and optimization
phases.

Friedman and Weld 18] offer an efficient algorithm for min­
imizing a non-recursive query plan through the use of LCW
statements. Their algorithm is based on pair-wise subsump­
tion checks on conjunctive rules. Recursive rules correspond
to infinite unions of conjunctive queries, and trying to prove
subsumption through pair-wise conjunctive rule containment
checks wil l not be decidable. The approach in Duschka [4]
also suffers from similar problems as it is based on the idea
of conjunctive (un)foldings of a query in terms of source re­
lations f 15]. In the case of recursive queries or sources with
binding restrictions, the number of such foldings is infinite.
In contrast, our minimization algorithm is based on the no­
tion of uniform containment for recursive datalog programs.
This approach can check if sets of rules subsume a single rule.
Thus it can minimize a much greater range of plans.

Our source-access ordering technique assumes that statis­
tics regarding source relations are not easily available, and
thus traditional join-ordering strategies are not applicable. An
interesting alternative is to try and learn the source statistics
through experience. Zhu and Larson 118] describe techniques
for developing regression cost models for multi-database sys­
tems by selective querying. Adali et. al [1] discuss how keep­
ing track of rudimentary access statistics can help in doing
cost-based optimizations.

8 Conclusion
In this paper, we considered the query optimization prob­
lem for information gathering plans, and presented two novel
techniques. The first technique makes use of LCW statements
about information sources to prune unnecessary information
sources from a plan. For this purpose, we have modified an
existing method for minimizing datalog programs under uni­
form containment, so that it can minimize recursive informa­
tion gathering plans with the help of source subsumption in­
formation. The second technique is a greedy algorithm for or­

dering source calls that respects source limitations, and takes
both access costs and traffic costs into account, without requr-
ing full source statistics. We have then discussed the status
of a prototype implementation system based on these ideas
called Emerac, and presented an evaluation of the effective­
ness of the optimization strategies in the context of Emerac.
Our current directions involve integrating the minimization
and source-call ordering phases more tightly, explicitly mod­
eling and exploiting cost/quality tradeoffs, dealing with run­
time exceptions such as sources that become inaccessible,
as well as run-time opportunities such as the use of caches
[1[. We are also exploring the utility of learning rudimentary
source models by keeping track of time and solution quality
statistics, and the utility of probabilistic characterizations of
coverage and overlaps between sources.

References
[1] Adali, S., Candan, K.S., Papakonstantinou, Y., and Subrah-

manian, V.S., Query caching and optimization in distributed
mediator systems. In Proc. SlGMOD-96, pp. 137-148, 1996.

[2] Arens, Y, Knoblock, C, and Shen, W-M., Query refor­
mulation for dynamic information integration. International
Journal on Intelligent and Cooperative Information Systems,
6(2/3):99-130, June 1996.

[3] Chaudhuri, S. An overview of query optimization in relational
systems. In Proc. PODS-9H, pp. 34-43, 1998.

[4] Duschka, O. Query optimization using local completeness. In
Proc. AAAI97, pp. 249-255.

[51 Duschka, O. and Genesereth, M. Answering recursive queries
using views. In Proe. PODS-97, pp. 109 - 116.

[6] Duschka, O and Levy, A. Recursive plans for information
gathering. In Pmc. IJCAl-97. 1997.

[71 Etzioni, O., Golden, K., and Weld, D. Sound and efficient
closed-world reasoning for planning. Artificial Intelligence,
89(1-2): 113-148, January 1997.

|8J Friedman, M. and Weld, D. Efficiently executing information-
gathering plans. In Proe. IJCAI-97. 1997.

[9] Kambhampati, S. and Gnanaprakasam, S. Optimizing source-
call ordering in information gathering plans. In Proc. UCAI-99
workshop on Intelligent Information Integration. 1999.

[10] Kwok, C, and Weld, D. Planning to gather information. In
Proc. AAAI-96. 1996.

[11| Lambrecht, E. and Kambhampati, S. Optimization strategies
Cor information gathering plans. ASU CSE TR 98-018. 1998.

[12] Levy, A. Obtaining complete answers from incomplete
databases. In Proc. 22nd VLDB, pp. 402-412. 1996.

[13] Levy, A., Rajaraman, A., and Ordille, J. Querying heteroge­
neous information sources using source descriptions. In Proc.
22nd VLDB, pp. 251-262. 1996!

[14) Yemeni, R., and Li , C. Optimizing large join queries in medi­
ation systems. In Proc. Intl. Conf. on Database Theory, 1999.

[15] Qian, X. Query folding. In Proc. 12th Intl. Conf. on Data
Engineering, pp. 48-55. 1996.

[16] Sagiv, Y. Optimizing Datalog Programs, in Foundations of
Deductive Databases and Logic Programming, chapter 17. M.
Kaufmann Publishers, 1988.

[17| Ullman, J. Principles of Database and Knowledgebase Sys­
tems, volume 2. Computer Science Press, 1989.

[18] Zhu, Q., and Larson, P-A. Developing regression cost models
for multidatabase systems. In In Proe. of PDIS, 1996.

1210 SEARCH

