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A b s t r a c t 

We present a theorem-prover for quantified 
Boolean formulae and evaluate it on random 
quantified formulae and formulae that repre­
sent problems from automated planning. Even 
though the notion of quantified Boolean for­
mula is theoretically important, automated rea­
soning wi th Q B F has not been thoroughly in­
vestigated. Universal quantifiers are needed 
in representing many computational problems 
that cannot be easily translated to the propo-
sitional logic and solved by satisfiability algo­
rithms. Therefore efficient reasoning wi th QBF 
is important. The Davis-Putnam procedure 
can be extended to evaluate quantified Boolean 
formulae. A straightforward algorithm of this 
kind is not very efficient. We identify univer­
sal quantifiers as the main area where improve­
ments to the basic algorithm can be made. We 
present a number of techniques for reducing the 
amount of search that is needed, and evaluate 
their effectiveness by running the algorithm on 
a collection of formulae obtained from planning 
and generated randomly. For the structured 
problems we consider, the techniques lead to a 
dramatic speed-up. 

1 I n t r o d u c t i o n 
Many computational problems can be conveniently for­
mulated in classical propositional logic. Examples of 
such are many constraint satisfaction problems, forms of 
planning, and many problems in graph-theory. A com­
mon property of these problems is that they belong to 
the complexity class NP and that there are therefore 
polynomial-time translations from them to the satisfia­
bi l i ty of formulae in the classical propositional logic. 

However, there are many important problems that are 
(under plausible complexity-theoretic assumptions) out­
side the complexity class NP, and therefore cannot be in 
general efficiently translated to the problem of satisfia­
bil i ty of propositional formulae. Many such problems are 
PSPACE-hard or harder and can be forced to NP only by 
making restrictions that make the problems lose most of 

their practically interesting aspects. There are, however, 
a number of problems that belong to the classes in the 
polynomial hierarchy, many of them to its lower levels. 
These include determining the truth-value of quantified 
Boolean formulae [Meyer and Stockmeyer, 1972], com­
puting the radius of a covering code [McLoughlin, 1984], 
many decision problems in nonmonotonic logics [Gott-
lob, 1992], some forms of abduction [Eiter and Gottlob, 
1995], and determining the Vapnik-Cervonenkis dimen­
sion in probability theory [Schafer, 1996]. 

Like satisfiability algorithms can be used for solving 
problems in NP, a similar approach is applicable to prob­
lems higher in the polynomial hierarchy: implement an 
efficient decision procedure for one problem, and give 
good polynomial-time translations from other problems 
to that problem. The use of QBF this way has not been 
investigated partly because there have been no efficient 
decision procedures. Translation to QBF1 has recently 
been proposed as a solution method for conditional plan­
ning [Rintanen, 1999 . 

In this work we present an algorithm for determining 
the t ru th of quantified Boolean formulae, and evaluate 
it w i th randomly generated quantified Boolean formulae 
and formulae from conditional planning. 

2 Pre l iminar ies 
Quantified Boolean formulae are of the form 

where is a propositional formula and 
the prefix consists of universal and existential quan­
tifiers qI and the propositional variables occurring in 

as the formula obtained from by re­
placing occurrences1 of the propositional variable x by 
the formula The t ru th of formulae is defined recur­
sively as follows. The t ru th of a formula that does not 
contain variables, that is, that consists of connectives 
and the constants true and false is defined by the 
truth-tables for the connectives. A formula is true 
if and only if is true. A f o r m u l a i s 
true if and only if ire true. Examples 
of true formulae are and The 
formulae are false. 

1We assume that nested quantifiers do not quantify the 
same variable. 
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PROCEDURE decide 
BEGIN 

C := un i t (C) ; 
IF THEN RETURN false; 
IF THEN RETURN true; 
remove from all variables not in 
IF THEN 

RETURN decide(not 
member of 

IF e THEN 

THEN RETURN true; 
ELSE 

IF not 
THEN RETURN false; 

RETURN 
END 

Figure 1: The algorithm 

3 The Basis A lgo r i t hm 
We have designed and implemented an algorithm that 
determines the truth-value of quantified Boolean formu­
lae. The Davis-Putnam procedure [Davis Et a/., 1962] is 
a special case of the algorithm. The main differences are 
that instead of only or-nodes, the search tree* for quanti­
fied Boolean formulae contains also arid-nodes that cor­
respond to universally quantified variables, and that the 
order of the variables in the prefix constrains the order 
in which the variables generate a search tree. 

The main procedure of the algorithm sketched in 
Figure 1 takes three parameters.2 The variable e is 
true if the first, quantifier in the prefix of the formula 
is The sequence represents the pre­
fix. For example, if the prefix is then 

and The set C 
consists o f clauses w h e r e a n d are 
literals. The empty clause is false. 

The subprocedure unit performs simplification by unit 
resolution and unit subsumption; uni t (5) is defined as 
the fixpoint of F under a set of clauses. 

So for the purposes of this paper, our definition of unit 
subsumption retains unit clauses in the clause set. 

4 Prun ing Techniques 
An important difference between the Davis-Putnam pro­
cedure and the algorithm for QBF is that the order in 
which branching variables are chosen is dependent on 

Figure 2: Inversion of quantifiers 

their location in the prefix. The branching variable is 
always quantified by the outermost quantifier. In struc­
tured problems it is often the case that many of the first 
variables occur onlv in clauses that also contain vari-
ables quantified by inner quantifiers, and an almost ex­
haustive search through all truth-values for the variables 
may be needed because unit propagation does not yield 
the truth-values. Already for a small number of vari­
ables this can be prohibitively expensive;. For example 

2The algorithm is simplified because we just want to indi­
cate what the main differences from the Davis-Putnam pro­
cedure are. For example, we do not require that the variable 
x does not have a truth-value when it is branched on. 

in a formula the variables in A' 
induce a search tree with 220 leaf nodes, wi th a poten­
tially difficult QBF to evaluate in each. 

In this section we first propose two pruning techniques 
that are based on reasoning with variables that are not 
quantified by the current outermost quantifier. The 
third technique is an extension of the use of unit propa­
gation for detecting failed literals, and the fourth reduces 
the computation needed in going through all valuations 
of universally quantified variables. 

4 .1 I n v e r t i n g Q u a n t i f i e r s 

Given it is useful to look also at the formula 
If for- some valuation of variables in Y only 

certain valuations of A" are possible, these valuations are 
the only possible ones also for the formula 

The technique we propose is based on the above idea, 
and we therefore call it the inversion of the quantifiers. 
We randomly assign some truth-values to variables in 
Y (it, may be possible and useful to try out all possible 
valuations of V ) , and then t ry to detect failed literals 
with unit propagation [Li and Anbulagan, 1997]. Any 
truth-values obtained for variables in X are those that 
must be chosen when evaluating Inversion is 
only applicable to formulae wi th as the first quantifier. 
The program code in Figure 2 outlines how quantifier 
inversion is performed. This code is run before the first 
call to the main procedure is made. The function 

produces a set of unit clauses from a set of 
literals. 

'The formula may contain quantifiers. 

RINTANEN 1193 



END 
END 

Figure 3: Sampling 

4.2 Sampling 
When choosing a truth-value for a variable in a 
formula it would be useful to check that the 
choice is possible under all valuations of variables in Y. 
This is, however, expensive. Nevertheless, it has turned 
out that t ry ing out at least some valuations of Y and per­
forming unit propagation helps in the detection of wrong 
choices. The valuations of a small number of variables 
in Y are chosen randomly. We call this sampling of Y. 
This technique is similar to the first one, but because 
it is performed for many variables in every node of the 
search tree, valuations of Y cannot be covered very ex­
haustively. 

Sampling is best combined wi th the use of unit prop­
agation in choosing branching variables and detecting 
failed literals, but here we describe it separately. The 
program code in Figure 3 outlines how sampling is per­
formed. The code is inserted right after the first call to 
the function unit in the main procedure. 

4.3 Failed L i tera l Detect ion 
The third technique is the use of unit propagation for 
detecting failed literals [Li and Anbulagan, 1997] also for 
variables quantified by inner quantifiers. This proceeds 
by adding a literal to the clause set, and then performing 
unit propagation. If an empty clause is obtained and the 
literal is existential, the complement of the l i teral must 
be true and it is added to the clause set. If the l iteral is 
universal, the formula is false. 

In the quantified case also the occurrence of a clause 
wi th universal variables only may yield a failed l i teral. 
Here the ordering of variables in the prefix has to be 
observed. Consider the formula which is 
in clausal form If we t ry to see 
whether y is a failed l i teral by adding the literal y to the 
clause set and performing unit propagation, we get the 
unit clause x wi th a universal variable. This would seem 
to indicate that y should be assigned false. However, 
the value of y is a function of the value of x, and y may 
assume different values for different values of x. 

L e m m a 1 Let be a QBF. 
Assume such that the propo-

sitional variables occur respectively in lit-
erals Then F is false if 

for some and for some 

4 .4 S p l i t t i n g C l a u s e S e t s 

Apart from the above techniques specific to QBF, we 
maintain a graph describing the dependencies between 
variables: there is an edge between two variables if they 
occur in the same clause. In each node of the search 
tree, for separate connected components separate recur­
sive calls to the main procedure of the algorithm are 
made. This has a noticeable effect on the efficiency of 
the algorithm on certain random problems as well as on 
some structured problems. For example, for a true 
QBF not all combinations of truth-values for universally 
quantified variables have to be considered if the variables 
occupy different connected components. This is often 
the case for random Q B F wi th a low clauses/variables 
ratio. Consider a formula wi th n universal variables. 
Normally a tree w i th leaves has to be traversed, but 
if the clause set is split so that universal variables are 
evenly in m components, m search trees wi th only 
leaves have to be traversed. For example, for = 20 and 
m = 2 this means a decrease from about to 2000. 

5 Exper imen ts 

We have tested the implementation of our algorithm and 
the new techniques on a number of problems from con­
dit ional planning and on a number of random quantified 
Boolean formulae. Our Davis-Putnam implementation 
that we have extended to handle QBF and on top of 
which all the new techniques have been implemented, is 
closest to Li and Anbulagan's [1997] SatO, but slower. 

The basis of the generation of random quantified 
Boolean formulae is the fixed clause length model 
[Mitchell et al., 1992] for generation of random propo-
sitional formulae, in which 3-literal clauses are gener­
ated by randomly choosing three variables from a set 
of N variables and negating each wi th probabil i ty 0.5. 
The presence of clauses wi th less than two existential 
variables asymptotically causes all formulae to be false 
when the number of variables increases [Gent and Walsh, 
1998]. This is because the probabil i ty of a clause wi th 
universal literals only or two clauses wi th complementary 
existential literals and both wi th two universal literals 
becomes very high. Hence for the generation of random 
quantified formulae we use model A of Gent and Walsh 
[1998] in which no clauses wi th less than two existential 
literals are generated. In our test runs N = 50 and the 
QBF have the prefix Effect of the techniques on 
formulae wi th prefixes and is similar. We ran 
our program by varying two parameters, the proportion 
of universal variables in the prefix and the number of 
clauses. The proport ion of universal variables was in­
creased by 3 per cent steps and the clauses/variables 
ratio by steps of 0.2. If we have 100 variables and 50 per 
cent of them are universal, the first quantifier quantifies 
the variables 1-25, the second quantifier the variables 
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Figure 4: T ru th of random formulae Figure 6: Runtimes on random formulae without S4.3 

Figure 5: Runtimes on random formulae Figure 7: Runtimes on random formulae without S4.4 

26-75, and the th i rd quantifier the variables 76-100. We 
have observed that (in the presence of the other tech­
niques) both inversion and sampling the techniques 
that turn out to be most effective for the structured prob­
lems we consider - affect very l i t t le the number of nodes 
in search trees. Therefore the test runs were wi th these 
techniques disabled. 

The results from the test runs are depicted in Figures 
4, 5, 6, 7 and 8. The runtime for every combination 
of parameter values is the average of runtimes for 60000 
formulae. Al l the runs were on a Sun Ul t ra II worksta­
t ion wi th a 296 MHz processor. The execution times 
are not very accurate because the smallest measurable 
unit of CPU time was 10 milliseconds. Figure 4 depicts 
the proportion of true formulae for all parameter values 
considered. When increasing the proportion of universal 
variables, the region of formulae that are more difficult, to 
evaluate shifts to the direction of lower clauses/variables Figure 8: Runtimes on random formulae without S4.4 
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ratios. The phase transition region from true to false 
shifts similarly. Figure 5 shows the runtimes wi th full 
detection of failed literals (Section 4.3) and parti t ioning 
of clause sets (Section 4.4.) Figure 6 shows runtimes 
without full detection of failed literals and Figures 7 and 
8 runtimes without part i t ioning. The peak in Figure 7 
is due to a very small number of difficult formulae. As 
is obvious from a comparison between Figures 5 and 8, 
the effect of part i t ioning on formulae wi th few universal 
variables is small. 

The diagrams show that detection of failed literals for 
all variables is useful, although the effect is not dramatic. 
Part i t ioning of clause sets reduces the amount of compu­
tation dramatically for a small number of formulae with 
many universal variables and a small clauses/variables 
ratio. This is because parti t ioning produces several small 
clause sets w i th disjoint variables, and hence considering 
all valuations of universal variables takes much less 
than time. 

The structured problems we consider are translations 
from conditional planning to QBF [Rintanen, 1999]. The 
most basic form of planning is the identification of se­
quences of operations that, reach a goal state from a 
given init ial state. That problem has been success­
fully solved by algorithms that test propositional sat­
isfiability [Kautz and Selman, 1996]. In conditional 
planning, plans that work under several different cir­
cumstances are constructed. A conditional plan is es­
sentially a program in a simple programming language 
wi th conditional statements that chooses at execution 
time which operations to apply. When there is only 
one init ial state, planning can be represented by formu­
lae that say that there is a plan 
(represented by the variables such that its execution 
(represented by the variables produces a goal state. 
Conditional planning can be represented by formulae 

where variables repre­
sent, the different circumstances the plan has to work in . 

Runtimes for formulae from conditional planning are 
given in Table 1. These formulae encode the problem 
of existence of conditional plans for taking three or four 
blocks from all possible ini t ial configurations to a unique 
goal configuration. We have evaluated the effect of each 
technique separately. The first column identifies the for­
mulae in question. The second column gives the number 
of propositional variables in each QBF, and the third the 
number of clauses. The fourth column gives the t ruth-
value of the formula. The fifth gives the runtime of our 
theorem-prover wi th all techniques enabled. The sixth 
gives the runtime wi th inversion disabled. The seventh 
wi th sampling disabled. The eighth with detection of 
failed literals for inner quantifiers disabled. The ninth 
without part i t ioning of clause sets. For sampling the 
number of samples was 10 with at most 16 variables in 
each sample (the formulae all have less than 16 univer­
sal variables), and for inversion the number of valuations 
considered was at most 100. 

In some cases disabling one of the pruning techniques 
leads to a better runtime, but these are the easier for­

mulae and the differences are relatively small. The only 
technique that in most cases does not have any effect is 
the parti t ioning of clause sets. Only for three formulae 
there is a significant decrease in the runtimes, from 14.6 
to 1.7, from 165.1 to 76.1 and from 13802.7 to 192.5. 
We would expect that on many structured problems the 
decrease is small. When none of the techniques is used, 
none of the runs end in 4 hours. Sampling and inversion 
are the most effective techniques: without them four of 
the formulae could not be evaluated in 4 hours. 

6 Related work 
Automated reasoning wi th quantified Boolean formulae 
has been investigated by Kleine Bl ining et al. [1995] who 
define a resolution rule for quantified Boolean formulae 
and a polynomial time decision procedure for quantified 
Horn clauses. Asp vail et al. [1979] give a polynomial 
time decision procedure for quantified 2-literal clauses. 

Cadoli et al. [1998] extend the Davis-Putnam pro­
cedure to handle quantified Boolean formulae. Their 
algorithm is similar to the one in Section 3. Cadoli 
et al. generalize techniques familiar from the Davis-
Putnam procedure to QBF. For example, they introduce 
the pure literal rule for universal variables and a rule 
that concludes that formulae wi th clauses without exis­
tential variables are false. A technique not employed by 
us is testing whether the set of clauses with all univer­
sal literals deleted is satisftable. If it is, the formula is 
true. Cadoli et al. perform this test in every node of the 
search tree. It seems to us that on random problems wi th 
many universal variables and a low clauses/variables ra-
tio it may be beneficial like the technique we present in 
Section 4.4. The algorithm by Cadoli et al. does not 
evaluate any of the formulae in Table 1 in 16 hours. We 
also ran an experiment on a small set of random for­
mulae wi th 150 variables and parameters varying like in 
the experiments reported in this paper. A small number 
of the formulae were much more difficult for the program 
by Cadoli et al. and some of the very easy formulae were 
evaluated faster. The sum of the runtimes for our pro­
gram was 85.7 seconds versus 4965.28 seconds for the 
Cadoli et al. program. For a bigger set of random for­
mulae wi th 100 variables the runtimes were 25.36 seconds 
versus 110.79 seconds. 

7 Conclusions and Future W o r k 
Future work includes a systematic study of computa­
tional properties of QBF arising from applications, in­
cluding Al planning, automated theorem-proving and 
computer-aided verification, and then improving the 
QBF algorithm accordingly. There are several degrees 
of freedom in the use of the new techniques, and only 
by analyzing a wider range of problems it is possible to 
determine what is the best way of using them. 

As an important research topic we see the reduction of 
exhaustive search needed in handling universal quanti­
fiers. The technique presented in this paper is applicable 
only in relatively simple cases. 
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Table 1: Runtimes of our program on formulae from planning ( in seconds) 
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