
Improvements to the Evaluation of Quantified Boolean Formulae

Jussi R in t anen
Universitat Ulm, Fakultat fur Informatik

Albert-Einstein-Allee, 89069 Ulm
Germany

A b s t r a c t

We present a theorem-prover for quantified
Boolean formulae and evaluate it on random
quantified formulae and formulae that repre­
sent problems from automated planning. Even
though the notion of quantified Boolean for­
mula is theoretically important, automated rea­
soning wi th Q B F has not been thoroughly in­
vestigated. Universal quantifiers are needed
in representing many computational problems
that cannot be easily translated to the propo-
sitional logic and solved by satisfiability algo­
rithms. Therefore efficient reasoning wi th QBF
is important. The Davis-Putnam procedure
can be extended to evaluate quantified Boolean
formulae. A straightforward algorithm of this
kind is not very efficient. We identify univer­
sal quantifiers as the main area where improve­
ments to the basic algorithm can be made. We
present a number of techniques for reducing the
amount of search that is needed, and evaluate
their effectiveness by running the algorithm on
a collection of formulae obtained from planning
and generated randomly. For the structured
problems we consider, the techniques lead to a
dramatic speed-up.

1 I n t r o d u c t i o n
Many computational problems can be conveniently for­
mulated in classical propositional logic. Examples of
such are many constraint satisfaction problems, forms of
planning, and many problems in graph-theory. A com­
mon property of these problems is that they belong to
the complexity class NP and that there are therefore
polynomial-time translations from them to the satisfia­
bi l i ty of formulae in the classical propositional logic.

However, there are many important problems that are
(under plausible complexity-theoretic assumptions) out­
side the complexity class NP, and therefore cannot be in
general efficiently translated to the problem of satisfia­
bil i ty of propositional formulae. Many such problems are
PSPACE-hard or harder and can be forced to NP only by
making restrictions that make the problems lose most of

their practically interesting aspects. There are, however,
a number of problems that belong to the classes in the
polynomial hierarchy, many of them to its lower levels.
These include determining the truth-value of quantified
Boolean formulae [Meyer and Stockmeyer, 1972], com­
puting the radius of a covering code [McLoughlin, 1984],
many decision problems in nonmonotonic logics [Gott-
lob, 1992], some forms of abduction [Eiter and Gottlob,
1995], and determining the Vapnik-Cervonenkis dimen­
sion in probability theory [Schafer, 1996].

Like satisfiability algorithms can be used for solving
problems in NP, a similar approach is applicable to prob­
lems higher in the polynomial hierarchy: implement an
efficient decision procedure for one problem, and give
good polynomial-time translations from other problems
to that problem. The use of QBF this way has not been
investigated partly because there have been no efficient
decision procedures. Translation to QBF1 has recently
been proposed as a solution method for conditional plan­
ning [Rintanen, 1999 .

In this work we present an algorithm for determining
the t ru th of quantified Boolean formulae, and evaluate
it w i th randomly generated quantified Boolean formulae
and formulae from conditional planning.

2 Pre l iminar ies
Quantified Boolean formulae are of the form

where is a propositional formula and
the prefix consists of universal and existential quan­
tifiers qI and the propositional variables occurring in

as the formula obtained from by re­
placing occurrences1 of the propositional variable x by
the formula The t ru th of formulae is defined recur­
sively as follows. The t ru th of a formula that does not
contain variables, that is, that consists of connectives
and the constants true and false is defined by the
truth-tables for the connectives. A formula is true
if and only if is true. A f o r m u l a i s
true if and only if ire true. Examples
of true formulae are and The
formulae are false.

1We assume that nested quantifiers do not quantify the
same variable.

1192 SEARCH

PROCEDURE decide
BEGIN

C := un i t (C) ;
IF THEN RETURN false;
IF THEN RETURN true;
remove from all variables not in
IF THEN

RETURN decide(not
member of

IF e THEN

THEN RETURN true;
ELSE

IF not
THEN RETURN false;

RETURN
END

Figure 1: The algorithm

3 The Basis A lgo r i t hm
We have designed and implemented an algorithm that
determines the truth-value of quantified Boolean formu­
lae. The Davis-Putnam procedure [Davis Et a/., 1962] is
a special case of the algorithm. The main differences are
that instead of only or-nodes, the search tree* for quanti­
fied Boolean formulae contains also arid-nodes that cor­
respond to universally quantified variables, and that the
order of the variables in the prefix constrains the order
in which the variables generate a search tree.

The main procedure of the algorithm sketched in
Figure 1 takes three parameters.2 The variable e is
true if the first, quantifier in the prefix of the formula
is The sequence represents the pre­
fix. For example, if the prefix is then

and The set C
consists o f clauses w h e r e a n d are
literals. The empty clause is false.

The subprocedure unit performs simplification by unit
resolution and unit subsumption; uni t (5) is defined as
the fixpoint of F under a set of clauses.

So for the purposes of this paper, our definition of unit
subsumption retains unit clauses in the clause set.

4 Prun ing Techniques
An important difference between the Davis-Putnam pro­
cedure and the algorithm for QBF is that the order in
which branching variables are chosen is dependent on

Figure 2: Inversion of quantifiers

their location in the prefix. The branching variable is
always quantified by the outermost quantifier. In struc­
tured problems it is often the case that many of the first
variables occur onlv in clauses that also contain vari-
ables quantified by inner quantifiers, and an almost ex­
haustive search through all truth-values for the variables
may be needed because unit propagation does not yield
the truth-values. Already for a small number of vari­
ables this can be prohibitively expensive;. For example

2The algorithm is simplified because we just want to indi­
cate what the main differences from the Davis-Putnam pro­
cedure are. For example, we do not require that the variable
x does not have a truth-value when it is branched on.

in a formula the variables in A'
induce a search tree with 220 leaf nodes, wi th a poten­
tially difficult QBF to evaluate in each.

In this section we first propose two pruning techniques
that are based on reasoning with variables that are not
quantified by the current outermost quantifier. The
third technique is an extension of the use of unit propa­
gation for detecting failed literals, and the fourth reduces
the computation needed in going through all valuations
of universally quantified variables.

4 .1 I n v e r t i n g Q u a n t i f i e r s

Given it is useful to look also at the formula
If for- some valuation of variables in Y only

certain valuations of A" are possible, these valuations are
the only possible ones also for the formula

The technique we propose is based on the above idea,
and we therefore call it the inversion of the quantifiers.
We randomly assign some truth-values to variables in
Y (it, may be possible and useful to try out all possible
valuations of V) , and then t ry to detect failed literals
with unit propagation [Li and Anbulagan, 1997]. Any
truth-values obtained for variables in X are those that
must be chosen when evaluating Inversion is
only applicable to formulae wi th as the first quantifier.
The program code in Figure 2 outlines how quantifier
inversion is performed. This code is run before the first
call to the main procedure is made. The function

produces a set of unit clauses from a set of
literals.

'The formula may contain quantifiers.

RINTANEN 1193

END
END

Figure 3: Sampling

4.2 Sampling
When choosing a truth-value for a variable in a
formula it would be useful to check that the
choice is possible under all valuations of variables in Y.
This is, however, expensive. Nevertheless, it has turned
out that t ry ing out at least some valuations of Y and per­
forming unit propagation helps in the detection of wrong
choices. The valuations of a small number of variables
in Y are chosen randomly. We call this sampling of Y.
This technique is similar to the first one, but because
it is performed for many variables in every node of the
search tree, valuations of Y cannot be covered very ex­
haustively.

Sampling is best combined wi th the use of unit prop­
agation in choosing branching variables and detecting
failed literals, but here we describe it separately. The
program code in Figure 3 outlines how sampling is per­
formed. The code is inserted right after the first call to
the function unit in the main procedure.

4.3 Failed L i tera l Detect ion
The third technique is the use of unit propagation for
detecting failed literals [Li and Anbulagan, 1997] also for
variables quantified by inner quantifiers. This proceeds
by adding a literal to the clause set, and then performing
unit propagation. If an empty clause is obtained and the
literal is existential, the complement of the l i teral must
be true and it is added to the clause set. If the l iteral is
universal, the formula is false.

In the quantified case also the occurrence of a clause
wi th universal variables only may yield a failed l i teral.
Here the ordering of variables in the prefix has to be
observed. Consider the formula which is
in clausal form If we t ry to see
whether y is a failed l i teral by adding the literal y to the
clause set and performing unit propagation, we get the
unit clause x wi th a universal variable. This would seem
to indicate that y should be assigned false. However,
the value of y is a function of the value of x, and y may
assume different values for different values of x.

L e m m a 1 Let be a QBF.
Assume such that the propo-

sitional variables occur respectively in lit-
erals Then F is false if

for some and for some

4 .4 S p l i t t i n g C l a u s e S e t s

Apart from the above techniques specific to QBF, we
maintain a graph describing the dependencies between
variables: there is an edge between two variables if they
occur in the same clause. In each node of the search
tree, for separate connected components separate recur­
sive calls to the main procedure of the algorithm are
made. This has a noticeable effect on the efficiency of
the algorithm on certain random problems as well as on
some structured problems. For example, for a true
QBF not all combinations of truth-values for universally
quantified variables have to be considered if the variables
occupy different connected components. This is often
the case for random Q B F wi th a low clauses/variables
ratio. Consider a formula wi th n universal variables.
Normally a tree w i th leaves has to be traversed, but
if the clause set is split so that universal variables are
evenly in m components, m search trees wi th only
leaves have to be traversed. For example, for = 20 and
m = 2 this means a decrease from about to 2000.

5 Exper imen ts

We have tested the implementation of our algorithm and
the new techniques on a number of problems from con­
dit ional planning and on a number of random quantified
Boolean formulae. Our Davis-Putnam implementation
that we have extended to handle QBF and on top of
which all the new techniques have been implemented, is
closest to Li and Anbulagan's [1997] SatO, but slower.

The basis of the generation of random quantified
Boolean formulae is the fixed clause length model
[Mitchell et al., 1992] for generation of random propo-
sitional formulae, in which 3-literal clauses are gener­
ated by randomly choosing three variables from a set
of N variables and negating each wi th probabil i ty 0.5.
The presence of clauses wi th less than two existential
variables asymptotically causes all formulae to be false
when the number of variables increases [Gent and Walsh,
1998]. This is because the probabil i ty of a clause wi th
universal literals only or two clauses wi th complementary
existential literals and both wi th two universal literals
becomes very high. Hence for the generation of random
quantified formulae we use model A of Gent and Walsh
[1998] in which no clauses wi th less than two existential
literals are generated. In our test runs N = 50 and the
QBF have the prefix Effect of the techniques on
formulae wi th prefixes and is similar. We ran
our program by varying two parameters, the proportion
of universal variables in the prefix and the number of
clauses. The proport ion of universal variables was in­
creased by 3 per cent steps and the clauses/variables
ratio by steps of 0.2. If we have 100 variables and 50 per
cent of them are universal, the first quantifier quantifies
the variables 1-25, the second quantifier the variables

1194 SEARCH

Figure 4: T ru th of random formulae Figure 6: Runtimes on random formulae without S4.3

Figure 5: Runtimes on random formulae Figure 7: Runtimes on random formulae without S4.4

26-75, and the th i rd quantifier the variables 76-100. We
have observed that (in the presence of the other tech­
niques) both inversion and sampling the techniques
that turn out to be most effective for the structured prob­
lems we consider - affect very l i t t le the number of nodes
in search trees. Therefore the test runs were wi th these
techniques disabled.

The results from the test runs are depicted in Figures
4, 5, 6, 7 and 8. The runtime for every combination
of parameter values is the average of runtimes for 60000
formulae. Al l the runs were on a Sun Ul t ra II worksta­
t ion wi th a 296 MHz processor. The execution times
are not very accurate because the smallest measurable
unit of CPU time was 10 milliseconds. Figure 4 depicts
the proportion of true formulae for all parameter values
considered. When increasing the proportion of universal
variables, the region of formulae that are more difficult, to
evaluate shifts to the direction of lower clauses/variables Figure 8: Runtimes on random formulae without S4.4

RINTANEN

ratios. The phase transition region from true to false
shifts similarly. Figure 5 shows the runtimes wi th full
detection of failed literals (Section 4.3) and parti t ioning
of clause sets (Section 4.4.) Figure 6 shows runtimes
without full detection of failed literals and Figures 7 and
8 runtimes without part i t ioning. The peak in Figure 7
is due to a very small number of difficult formulae. As
is obvious from a comparison between Figures 5 and 8,
the effect of part i t ioning on formulae wi th few universal
variables is small.

The diagrams show that detection of failed literals for
all variables is useful, although the effect is not dramatic.
Part i t ioning of clause sets reduces the amount of compu­
tation dramatically for a small number of formulae with
many universal variables and a small clauses/variables
ratio. This is because parti t ioning produces several small
clause sets w i th disjoint variables, and hence considering
all valuations of universal variables takes much less
than time.

The structured problems we consider are translations
from conditional planning to QBF [Rintanen, 1999]. The
most basic form of planning is the identification of se­
quences of operations that, reach a goal state from a
given init ial state. That problem has been success­
fully solved by algorithms that test propositional sat­
isfiability [Kautz and Selman, 1996]. In conditional
planning, plans that work under several different cir­
cumstances are constructed. A conditional plan is es­
sentially a program in a simple programming language
wi th conditional statements that chooses at execution
time which operations to apply. When there is only
one init ial state, planning can be represented by formu­
lae that say that there is a plan
(represented by the variables such that its execution
(represented by the variables produces a goal state.
Conditional planning can be represented by formulae

where variables repre­
sent, the different circumstances the plan has to work in .

Runtimes for formulae from conditional planning are
given in Table 1. These formulae encode the problem
of existence of conditional plans for taking three or four
blocks from all possible ini t ial configurations to a unique
goal configuration. We have evaluated the effect of each
technique separately. The first column identifies the for­
mulae in question. The second column gives the number
of propositional variables in each QBF, and the third the
number of clauses. The fourth column gives the t ruth-
value of the formula. The fifth gives the runtime of our
theorem-prover wi th all techniques enabled. The sixth
gives the runtime wi th inversion disabled. The seventh
wi th sampling disabled. The eighth with detection of
failed literals for inner quantifiers disabled. The ninth
without part i t ioning of clause sets. For sampling the
number of samples was 10 with at most 16 variables in
each sample (the formulae all have less than 16 univer­
sal variables), and for inversion the number of valuations
considered was at most 100.

In some cases disabling one of the pruning techniques
leads to a better runtime, but these are the easier for­

mulae and the differences are relatively small. The only
technique that in most cases does not have any effect is
the parti t ioning of clause sets. Only for three formulae
there is a significant decrease in the runtimes, from 14.6
to 1.7, from 165.1 to 76.1 and from 13802.7 to 192.5.
We would expect that on many structured problems the
decrease is small. When none of the techniques is used,
none of the runs end in 4 hours. Sampling and inversion
are the most effective techniques: without them four of
the formulae could not be evaluated in 4 hours.

6 Related work
Automated reasoning wi th quantified Boolean formulae
has been investigated by Kleine Bl ining et al. [1995] who
define a resolution rule for quantified Boolean formulae
and a polynomial time decision procedure for quantified
Horn clauses. Asp vail et al. [1979] give a polynomial
time decision procedure for quantified 2-literal clauses.

Cadoli et al. [1998] extend the Davis-Putnam pro­
cedure to handle quantified Boolean formulae. Their
algorithm is similar to the one in Section 3. Cadoli
et al. generalize techniques familiar from the Davis-
Putnam procedure to QBF. For example, they introduce
the pure literal rule for universal variables and a rule
that concludes that formulae wi th clauses without exis­
tential variables are false. A technique not employed by
us is testing whether the set of clauses with all univer­
sal literals deleted is satisftable. If it is, the formula is
true. Cadoli et al. perform this test in every node of the
search tree. It seems to us that on random problems wi th
many universal variables and a low clauses/variables ra-
tio it may be beneficial like the technique we present in
Section 4.4. The algorithm by Cadoli et al. does not
evaluate any of the formulae in Table 1 in 16 hours. We
also ran an experiment on a small set of random for­
mulae wi th 150 variables and parameters varying like in
the experiments reported in this paper. A small number
of the formulae were much more difficult for the program
by Cadoli et al. and some of the very easy formulae were
evaluated faster. The sum of the runtimes for our pro­
gram was 85.7 seconds versus 4965.28 seconds for the
Cadoli et al. program. For a bigger set of random for­
mulae wi th 100 variables the runtimes were 25.36 seconds
versus 110.79 seconds.

7 Conclusions and Future W o r k
Future work includes a systematic study of computa­
tional properties of QBF arising from applications, in­
cluding Al planning, automated theorem-proving and
computer-aided verification, and then improving the
QBF algorithm accordingly. There are several degrees
of freedom in the use of the new techniques, and only
by analyzing a wider range of problems it is possible to
determine what is the best way of using them.

As an important research topic we see the reduction of
exhaustive search needed in handling universal quanti­
fiers. The technique presented in this paper is applicable
only in relatively simple cases.

1196 SEARCH

Table 1: Runtimes of our program on formulae from planning (in seconds)

Acknowledgements

This research was funded by the Deutsche Forschungsge-
meinschaft th rough the SFB 527. We thank the referees
for comments on the generation of random Q B F and
Marco Cadol i et al . for access to their program.

References

[Aspvall et al, 1979] B. Aspvall , M. F. Plass, and R. E.
Tarjan. A linear t ime a lgor i thm for testing the t r u t h
of certain quantified Boolean formulas. Information
Processing Letters, 8(3):121 123, 1979.

[Cadoli el al., 1998] M. Cadol i , A. Giovanardi, and
M. Schaerf. An a lgor i thm to evaluate quantified
Boolean formulae. In Proceedings of the Fifteenth Na­
tional Conference on Artificial Intelligence (AAA1-98)
and the Tenth Conference on Innovative Applications
of Artificial Intelligence (1AAI-98), pages 262 267,
Ju ly 1998.

[Davis et al, 1962] M. Davis, G. Logemann, and
D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394 397, 1962.

[Eiter and Go t t lob , 1995] Thomas Eiter and Georg Got -
t lob . The complexi ty of logic-based abduction. Jour-
nal of the ACM, 4 2 (l) : 3 - 4 2 , 1995.

[Gent and Walsh, 1998] Ian Gent and Toby Walsh. Be­
yond N P : the Q S A T phase t ransi t ion. Technical Re­
por t APES-05-1998, Universi ty of Strathclyde, De­
par tment of Computer Science, July 1998.

[Got t lob , 1992] Georg Got t lob . Complexi ty results for
nonmonotonic logics. Journal of Logic and Computa­
tion, 2(3):397 425, June 1992.

[Kautz and Selman, 1996] Henry Kautz and Bar t Sel-
man. Pushing the envelope: planning, propositional
logic, and stochastic search. In Proceedings of the

Thirteenth National Conference on Artificial Intelli­
gence and the Eight Innovative Applications of Artifi­
cial Intelliqence Conference, pages 1194 1201, Menlo
Park, California, August 1996. A A A I Press / The M I T
Press.

[Kleine Buning et a/., 1995] Hans Kleine Bul l ing , Marek
Karpinski , and Andreas Flogel. Resolution for quant i ­
fied Boolean formulas. Information and Computation,
117:12 18, 1995.

Li and Anbulagan, .1997] Chu M i n Li and Anbulagan.
Heuristics based on unit, propagation for satisfiabil­
ity problems. In Proceedings of the 15th International
Joint Conference on Artificial Intelligence, pages 366
371, Nagoya, Japan, August 1997.

McLoughl in , 1984] A. McLoughl in . Complexity of com­
put ing the covering radius of a code. IEEE Transac­
tions on Information Theory, 30(6):800-804, 1984.

[Meyer and Stockmeyer, 1972] A. R. Meyer and L. J.
Stockmeyer. The equivalence problem for regular
expressions w i t h squaring requires exponential t ime.
In Proceedings of the 13th Annual Symposium on
Switching and Automata Theory, pages 125 129, Long
Beach, California, 1972. I E E E Computer Society.

Mitchel l et al, 1992] David Mi tche l l , Bar t Selman, and
Hector Levesquc. Hard and easy distr ibutions of SAT
problems. In W i l l i a m Swartout, editor, Proceedings
of the 10th National Conference on Artificial Intelli­
qence, pages 459 465, San Jose, California, July 1992.
The M I T Press.

Rintanen, 1999] Jussi Rintanen. Construct ing condi­
tional plans by a theorem-provcr. Journal of Artificial
Intelligence Research, 1999. to appear.

Schafer, 1996] Marcus Schafer. Deciding the Vapnik-
Cervonenkis dimension is Ep3'-complete. In Proceedings
of the. 11th. Conference on Computational Complexity,
pages 77 80, 1996.

RINTANEN 1197

