
Divide-and-Conquer Bidirectional Search: First Results 

Richard E. K o r f 
Computer Science Department 

University of California, Los Angeles 
Los Angeles, CA 90095 

korf@cs.ucla.edu 

Abstract 

We present a new algorithm to reduce the space 
complexity of heuristic search. It is most effec­
tive for problem spaces that grow polynomially 
wi th problem size, but contain large numbers 
of short cycles. For example, the problem of 
finding a lowest-cost corner-to-corner path in 
a d-dimensional grid has application to gene 
sequence alignment in computational biology. 
The main idea is to perform a bidirectional 
search, but saving only the Open lists and not 
the Closed lists. Once the search completes, we 
have one node on an optimal path, but don't 
have the solution path itself. The path is then 
reconstructed by recursively applying the same 
algorithm between the in i t ia l node and the in ­
termediate node, and also between the inter­
mediate node and the goal node. If n is the 
length of the grid in each dimension, and d is 
the number of dimensions, this algorithm re­
duces the memory requirement from to 

The time complexity only increases 
by a constant factor of in two dimensions, 
and 1.8 in three dimensions. 

1 Introduction 
Consider an grid, where each edge has a poten­
t ial ly different cost associated wi th i t . We want a lowest-
cost path from the upper-lefthand corner to the opposite 
lower-righthand corner, where the cost of a path is the 
sum of the costs of the edges in i t . One important ap­
plication of this problem is finding the best alignment of 
two genes of lengths n and m, represented as sequences 
of amino acids [Carrillo and Lipman, 1988]. We omit 
the details of the mapping between these two problems, 
and present it only to suggest that the problem is of 
practical importance. If we want to align d different se­
quences simultaneously, the problem generalizes to find­
ing a lowest-cost path in a d-dimensional grid. 

Another example of this problem is that of finding a 
shortest path in a maze. In this case, an edge between 
two nodes either has a finite cost, indicating that there is 

a direct path between the two nodes, or an infinite cost, 
indicating there is a wall between them. 

In this paper, we consider only the orthogonal moves 
up, down, left and right, and want a lowest-cost path 
from one corner to another. The extension to include d i ­
agonal moves is straightforward. While our experiments 
use a two-dimensional grid, the algorithm t r iv ia l ly gen­
eralizes to multiple dimensions. In general, a lowest-cost 
path may not be a shortest path, in terms of the num­
ber of edges. For example, in going from upper-left to 
lower-right, a lowest-cost path may include some up and 
left moves, as our experiments wi l l show. 

2 Previous Work 

2.1 Problems that Fit in Memory 
If the grid is small enough to fit into memory, the prob­
lem is easily solved by existing methods, such as D i -
jkstra's single-source shortest path algorithm [Dijkstra, 
1959]. It requires 0(nm) time, since each node has a 
constant number of neighbors, and 0(nm) space, in the 
worst case. Since we are only interested in the cost to 
the goal, we can terminate the algorithm when this value 
is computed, but in practice almost the entire grid wi l l 
usually be searched, as our experiments wi l l show. 

If we restrict the problem to moves that go toward 
the goal, it can be solved by a much simpler dynamic 
programming algorithm. We simply scan the grid from 
left to right and from top to bot tom, storing at each 
point the cost of a lowest-cost path from the start node 
to that grid point. This is done by adding the cost of the 
edge from the left to the cost of the node immediately 
to the left, adding the cost of the edge from above to 
the cost of the node immediately above, and storing the 
smaller of these two sums in the current node. This also 
requires time and space. 

The difference between these two problems is that in 
the general case, any of the neighbors of a node can be its 
predecessor along an optimal path, and hence Dijkstra's 
algorithm must maintain an Open list of nodes generated 
but not yet expanded, and process nodes in increasing 
order of their cost from the root. 

Since both algorithms may have to store the whole 
graph in memory, the amount of memory is the main 
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constraint. We implemented Dijkstra's algorithm on 
a two-dimensional grid using randomly generated edge 
costs, on a SUN Ultra-Sparc Model 1 workstation wi th 
128 megabytes of memory. The largest problem that we 
can solve without exhausting memory is a 3500 x 3500 
grid. Our implementation takes about five and a half 
minutes on problems of this size. 

2.2 Problems that Don't Fit in Memory 
The problem is much more difficult when the entire grid 
cannot fit in memory. This can happen if all the edge 
costs are not explicitly listed, but are implici t ly gener­
ated by some rule. For example, in the gene sequence 
alignment problem, the edge cost is based on the particu­
lar pair of amino acids being aligned at a particular point 
in the two genes, and hence the number of different edge 
costs is only the square of the number of amino acids. 
In an even simpler example, finding the longest common 
subsequence in a pair of character strings [Hirschberg, 
1975], the edge costs are just one or zero, depending on 
whether a pair of characters at a given position are the 
same or different, respectively. 

In our experiments, each edge of the grid is assigned 
a unique number. This number is then used as an index 
into the sequence of values returned by a pseudo-random 
number generator, and the corresponding random value 
is the cost of the edge. In particular, we use the pseudo­
random number generator on page 46 of [Kernighan and 
Ritchie, 1988]. This requires the ability to efficiently 
jump around in the pseudo-random sequence, an algo­
r i t hm for which is given in [Korf and Chickering, 1996]. 

One approach to the memory problem is to use a 
heuristic search, such as A* [Hart, Nilsson, and Raphael, 
1968] to reduce the amount of the problem space that 
must be searched. This assumes that we can efficiently 
compute a lower bound on the cost from a given node 
to the goal, and has been applied to the gene sequencing 
problem [Ikeda and Imai , 1998]. If we establish a non­
zero minimum edge cost in our random grids, we can use 
the manhattan distance to the goal times this minimum 
edge cost as a lower-bound heuristic. Unfortunately, A* 
must st i l l store every node it generates, and ultimately 
is l imited by the amount of available memory. 

The memory l imita t ion of algorithms like Dijkstra's 
and A* has been addressed by AI researchers over the 
last 15 years [Korf, 1995]. Many such algorithms, such 
as iterative-deepening-A* ( IDA*) [Korf, 1985], rely on a 
depth-first search to avoid the memory problems of best-
first search. The key idea is that a depth-first search 
only has to keep in memory the path of nodes from the 
start to the current node, and as a result only requires 
memory that is linear in the maximum search depth. 

While depth-first search is highly effective on problem 
spaces that are trees, or only contain a small number 
of cycles, it is hopeless on a problem space wi th a large 
number of short cycles, such as a grid. The reason is 
that a depth-first search must generate every distinct 
path to a given node. In an grid, the number of 
different paths of minimum length from one corner to 

the opposite corner is For example, a 
10 x 10 grid, which contains only 100 nodes, has 184,756 
different minimum-length paths from one corner to an­
other, and a 30 x 30 grid, w i t h only 900 nodes, has over 
1017 such paths. A minimum-length path only includes 
moves that go toward the goal, such as down and right 
moves in a path from upper-left to lower-right. 

Another technique, based on finite-state-machines 
[Taylor and Korf, 1993], has been used to avoid this 
problem in regular problem spaces such as grids. Unfor­
tunately, this method assumes that all minimum-length 
paths to a given node are equivalent, and does not apply 
when different edges have different costs. 

Other techniques, such as caching some nodes that are 
generated, have been applied to these problems [Miura 
and Ishida, 1998]. The problem w i t h these techniques 
is that they can only cache a small fraction of the tota l 
nodes that must be generated on a large problem. 

We implemented I D A * on our random grid problems, 
wi th pit iful results. The largest problems that we could 
ran were of size In addition to the problem of 
duplicate node generations, since most paths had differ­
ent costs, each iteration on average only expanded about 
four new nodes that weren't expanded in the previous 
iteration. As a result, five problems of size ex­
panded an average of 1.128 billion nodes each, and took 
an average of about an hour each to run. 

3 D i v i d e & Conquer B i d i r e c t i o n a l 
Search ( D C B D S ) 

We now present our new algorithm. While we discovered 
it independently, a subsequent search of the literature re­
vealed a special case of the main idea [Hirschberg, 1975]. 
For pedagogical purposes, we first describe our general 
algorithm, and then Hirschberg's special case. 

A best-first search, such as Dijkstra's algorithm or 
A*, stores both a Closed list of nodes that have been 
expanded, and an Open list of nodes that have been 
generated, but not yet expanded. The Open list corre­
sponds to the frontier of the search, while the Closed list 
corresponds to the interior region. Only nodes on the 
Open list are expanded, assuming the cost function is 
consistent, and thus we could execute a best-first search 
without storing the Closed list at al l . 

In an exponential problem space wi th a branching fac­
tor of two or more, the Open list is larger than the Closed 
list, and not storing the Closed list doesn't save much. 
In a polynomial space, however, the dimensionality of 
the frontier is one less than that of the interior, resulting 
in significant memory savings. For example, in a two-
dimensional problem space, the size of the Closed list is 
quadratic, while the size of the Open list is only linear. 

There are two problems w i th this approach that must 
be addressed. The first is that duplicate node expansions 
are normally eliminated by checking new nodes against 
the Open and Closed lists. Wi thou t the Closed list, to 
prevent the search from "leaking" back into the closed 
region, we store w i th each Open node a list of forbid-
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Figure 1: Divide and Conquer Bidirectional Search 

den operators that would take us into the closed region. 
For each node, this is initially just the the operator that 
generates its parent. As each node is generated, it is 
compared against the nodes on the Open list, and if it 
already appears on Open, only the copy arrived at via 
the lowest-cost path is saved. When this happens, the 
new list of forbidden operators for the given state be­
comes the union of the forbidden operators of each copy. 

In fact, this technique can be used to speed up the 
standard Dijkstra's and A* algorithms with a Closed list 
as well. It is faster to not generate a node at all, than to 
generate it and search for it in Open and Closed lists. In 
our grid experiments, this technique alone sped up our 
implementation of Dijkstra's algorithm by over 25%. 

The main value of this technique, however, is that it 
executes a best-first search without a Closed list, and 
never expands the same state more than once. When the 
algorithm completes, we have the cost of an optimal path 
to a goal node, but unfortunately not the path itself. If 
we store the path to each node with the node itself, each 
node will require space linear in its path length, elim­
inating all of our space savings. In fact, this approach 
requires more space than the standard method of storing 
the paths via pointers through the Closed list, since it 
doesn't allow us to share common subpaths. 

One way to construct the path is the following. We 
perform a bidirectional search from both the initial state 
and the goal state simultaneously, until the two search 
frontiers meet, at which point a node on a solution path 
has been found. Its cost is the sum of the path costs 
from each direction. We continue the search, keeping 
the intermediate node on the best solution found so fax, 
until the total solution cost is less than or equal to the 
sum of the lowest-cost nodes on each search frontier. At 
this point we are guaranteed to have a node on a lowest-
cost solution path. We save this intermediate node in 
a solution vector. Then, we recursively apply the same 
algorithm to find a path from the initial state to the 
intermediate node, and from the intermediate node to 
the goal state. Each of these searches wil l add another 

node to the final solution path, and generate two more 
recursive subproblems, etc, until we have built up the en­
tire solution. We call this algorithm divide-and-conquer 
bidirectional search, or DCBDS. 

Figure 1 shows an idealized view of DCBDS. The left 
panel shows the final search horizons of the first bidi­
rectional search. Their intersection, node a, is the first 
node found on the optimal solution. The center panel 
shows the next two searches, from node a toward both 
the initial and goal states, adding the intersections at 
nodes b and c, respectively, to the solution. Finally, 
the right panel shows the next level of searches, adding 
nodes d, e, /, and g to the solution path. The reason 
the search frontiers look like circles and arcs of circles is 
that they represent an uniformed Dijkstra's algorithm, 
which doesn't know the direction to the goal. 

3.1 Hirschberg's A l g o r i t h m 
[Hirschberg, 1975] gives an algorithm for computing a 
maximal common subsequence of two character strings 
in linear space. It generates a two-dimensional matrix, 
with each of the original strings placed along one axis. 
An element of the matrix corresponds to a pair of initial 
substrings of the original stings, and contains the length 
of the maximal common subsequence of the substrings. 

If n and m are the lengths of the original strings, 
the standard dynamic programming algorithm for this 
problem computes this matrix by scanning from left to 
right and top to bottom. This requires 0(nm) time and 
0(nrn) space. However, to compute any element of this 
matrix, we only need the value immediately to its left 
and immediately above i t . Thus, we can compute the 
entire matrix by only storing two rows at a time, delet­
ing each row as soon as the next row is completed. In 
fact, only one row needs to be stored, since we can re­
place elements of the row as soon as they are used. Un­
fortunately, this only yields the length of the maximal 
common subsequence, and not the subsequence itself. 

Hirschberg's algorithm computes the first half of the 
matrix from the top down, storing only one row at at 
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time, and the second-half from the bottom up, again 
only storing one row. Then, given the two different ver­
sions of the middle row, one from each direction, he finds 
the column for which the sum of the two corresponding 
elements from each direction is a maximum. This point 
splits both original strings in two parts, and the algo­
rithm is then called recursively on the initial substrings, 
and on the final substrings. 

The most important difference between DCBDS and 
Hirschberg's dynamic programming algorithm is that the 
latter scans the matrix in a predetermined systematic or­
der, while DCBDS expands nodes in order of cost. The 
dynamic programming algorithm can only be used when 
we can distinguish the ancestors of a node from its de-
scendents a priori. For example, it could be modified 
to find a lowest-cost path in a grid only if we restrict 
ourselves to minimum-length paths. DCBDS generalizes 
Hirschberg's dynamic programming algorithm to best-
first search of arbitrary graphs. 

4 Complex i ty of D C B D S 

In a problem of size DCBDS reduces the space 
complexity from a very significant 
improvement. For example, if we can store ten mil­
lion nodes in memory, this increases the size of two-
dimensional problems we can solve from about 3,000 x 
3,000 to about 2,500,000 x 2,500,000 before memory is 
exhausted, since the maximum size of a search frontier is 
roughly the sum of the lengths of the axes. In practice, 
time is the l imiting factor on large grids, and not space. 

The asymptotic time complexity of Hirschberg's algo­
rithm, which only considers moves directly toward the 
goal, is the same as for the standard dynamic program­
ming algorithm, or on a d-dimensional grid. 

To analyze the time complexity of DCBDS, we model 
the search frontiers as circles and arcs of circles. A search 
frontier represents an Open list, and consists of a set of 
nodes whose costs from the start node are approximately 
equal, since the lowest-cost node is always expanded 
next. In our experiments, we only consider the moves 
up, down, left, and right. Thus, a set of nodes whose 
distance from the start are equal, in terms of number of 
edges, would be diamond shaped, with points at the four 
compass points. In this diamond, however, the nodes at 
the points only have a single path of minimal distance 
to them, but the nodes closest to the diagonals through 
the center have a great many different paths to them, 
all of minimal distance. Thus, the lowest-cost path to 
a node near the diagonal is likely to be much smaller 
than the lowest-cost path to a node near a point of the 
diamond. Since the frontier represents a set of nodes of 
nearly equal lowest-path cost, the frontier near the di­
agonals bows out relative to the points of the diamond, 
approximating the circular shape. In fact, our graphic 
simulation of best-first search on a grid shows that the 
search frontiers are roughly circular in shape. 

The time complexity can be approximated by the 
number of nodes expanded, which is proportional to the 

area contained within the search frontier. Assume that 
we have a square grid of size whose lowest-cost 
path is along the diagonal, which is of length The 
first bidirectional search, to determine point a in Figure 
1, will cover two quarter circles, each of which is of ra-
dius for a total area o f w h i c h 
equals At the next level, we need two bidirec­
tional searches, one to determine point 6, and one for 
point c. This generates two quarter circles from the ini­
tial and goal corners, plus the full circle centered at node 
a and reaching nodes b and c. This full circle wil l be gen­
erated twice, once to find node 6, and once for node c. 
Thus, we generate circles, each of which are 
of radius for a total area of or 

At the third level, which generates nodes d, e, 
/, and g, we generate three full circles twice each, plus 
two quarter circles, all of radius In general, the 
set of searches at the nth level of recursion sweep out a 
total area of circles, each of radius 

for a total area of 

The total area of all the searches is the sum of these 
terms from n = 1 to the number of levels. As an upper 
bound, we can write it as the infinite sum 

It is easy to show that this sum converges to one, so the 
total area, and hence time complexity of DCBDS, is 

To find a lowest-cost corner-to-corner path, the search 
frontier of Dijkstra's algorithm will spread in a circular 
arc from the initial corner to the goal corner, at which 
point the entire grid will usually be covered. Since the 
area of the grid is r2, the overhead of DCBDS compared 
to Dijkstra's algorithm is a constant factor of 

We can perform the same analysis in three dimensions, 
the differences being that the searches sweep out volumes 
of spheres instead of areas of circles, the main diagonal of 
a cube is instead of and the searches from the 
initial and goal states only generate eighths of a sphere, 
instead of quarters of a circle. In three dimensions, 
DCBDS generates a constant factor of 1.8138 
more nodes than Dijkstra's algorithm. 

5 Experiments 

We tested DCBDS on the problem of finding a lowest-
cost corner-to-corner path on a two-dimensional grid. 
Each edge of the grid is assigned a random cost, and 
the cost of a path is the sum of the edge costs along it. 
We considered the general lowest-cost problem, which 
allows moves away from the goal as well as toward the 
goal. Using a technique that allows us to efficiently jump 
around in a pseudo-random number sequence without 
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Size 
1,000 
2,000 
3,000 
4,000 
5,000 

10,000 
20,000 
30,000 
40,000 
50,000 

Shortest Path 
1,998 
3,998 
5,998 
7,998 
9,998 

19,998 
39,998 
59,998 
79,998 
99,998 

Solution Length 
2,077 
4,175 
6,251 
8,362 

10,493 
20,941 
41,852 
62,787 
83,595 

104,573 

Total Nodes 
1,000,000 
4,000,000 
9,000,000 

16,000,000 
25,000,000 

100,000,000 
400,000,000 
900,000,000 

1,600,000,000 
2,500,000,000 

Dijkstra Nodes 
999,995 

3,999,998 
8,999,999 

DCBDS Nodes 
3,051,861 

12,335,057 
28,048,471 
50,034,676 
78,430,448 

316,354,315 
1,274,142,047 
2,877,505,308 
5,118,240,659 
8,001,200,854 

Ratio 
3.052 
3.084 
3.116 
3.127 
3.137 
3.164 
3.185 
3.197 
3.199 
3.200 

Table 1: Experimental Results for Corner-to-Corner Paths on Square Grids 

generating all the intermediate values [Korf and Chick-
ering, 1996], we can search much larger random grids 
than we can store in memory. 

Table 1 shows our experimental results. For each grid 
size, we tested DCBDS on three different random prob­
lem instances, generated f rom different in i t ia l random 
seeds, and averaged the results for the problem instances. 
The results f rom one instance to the next are very simi­
lar, allowing such a small sample size. The first column 
gives the length of the gr id in each dimension, and the 
second gives the number of edges in a shortest corner-to-
corner path, which is twice the grid size minus two. The 
th i rd column gives the average number of edges in the 
lowest-cost corner-to-corner path. The reason some of 
these values are odd is because they are averages of three 
trials each. This data shows that in general a lowest-cost 
path is usually not a path of minimum length. 

The fourth column gives the total number of nodes in 
the gr id, which is the square of the grid size. The fifth 
column shows the average number of nodes expanded by 
Dijkstra's algor i thm, for problems small enough to fit 
in memory. This data shows that Dijkstra's algorithm 
generates almost all the nodes in the gr id. Since grids of 
size 4000 and greater are too large to fit in 128 megabytes 
of memory, we were unable to run Dijkstra's algorithm 
on these problems, and hence those entries are empty. 

The sixth column shows the average number of nodes 
expanded by DCBDS, and the sixth column shows the 
ratio of the number of nodes expanded by DCBDS, d i ­
vided by the number of nodes that would be expanded 
by Dijkstra's algor i thm, given sufficient memory. Even 
though we can't run Dijkstra's algorithm on problems 
greater than 3000 nodes on a side, we compute the ratio 
on the assumption that Dijkstra's algorithm would gen­
erate the entire gr id, if there were sufficient memory. As 
predicted by our analysis, the number of nodes expanded 
by DCBDS is approximately times the total number of 
grid points. This factor seems to increase slightly wi th 
increasing problem size, however. 

The actual asymptotic running t ime of both algo­
ri thms is where n is the size of the grid in one 
dimension. The term comes from the total number 
of nodes in the grid that must be examined. The logn 
term comes from the fact that both algorithms store the 

Open list as a heap, and the size of the Open list is 0(n), 
resulting in t ime per node to access the heap. 

Even though DCBDS expands over three times as 
many nodes as Dijkstra's algor i thm, it takes less than 
twice as long to run. The main reason is that by sav­
ing the operators that have already been applied to a 
node, and not reapplying them, expanding a node takes 
less t ime than applying all operators and checking for 
duplicates in the Closed list. The grids of size 10,000 
take DCBDS about two hours to run, and those of size 
50,000 take about 3 days. The grids of size 50,000 require 
the storage of about 200,000 nodes, and w i th only 128 
megabytes of memory, we can store over twelve mil l ion 
nodes. Thus, memory is no longer a constraint. 

6 Further Work 
An obvious source of waste in DCBDS is that most of the 
individual searches are performed twice. For example, 
in the center panel of Figure 1, the ful l circle centered 
at node a is searched twice, once to locate node 6, and 
then again to locate node e. By performing the search 
for nodes b and c simultaneously, we would only have 
to generate the circle once. The same optimization can 
be applied to all the full-circle searches. Since most of 
the searches are ful l circles, this would reduce the t ime 
complexity by up to a factor of two, making DCBDS run 
almost as fast as Dijkstra's algori thm. 

The drawback of this optimization is that it compli­
cates the algori thm. In particular, all the searches at 
the same level of recursion must be performed simulta­
neously. For example, in the right panel of Figure 1, the 
searches corresponding to the ful l circles must be inter­
leaved. This destroys the simple recursive structure of 
the algori thm, replacing it w i th an iterative outer loop 
wi th increasing numbers of interleaved searches in each 
iteration. In addit ion, some of these searches wi l l termi­
nate before others, and some may not even be necessary. 

Our current implementation continues executing re­
cursive bidirectional searches unt i l the in i t ia l and goal 
nodes are the same. Another obvious optimization would 
be to terminate the recursion when the problem size is 
small enough that there is sufficient memory to hold the 
entire subgrid in memory, and then execute Dijkstra's al­
gor i thm at that point. Since our analysis suggests that 
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the lower-level searches in the recursion hierarchy con­
tribute diminishingly less to the overall time, this opti­
mization may not result in significant savings. 

The idea of storing only the Open list in memory sug­
gests yet another algorithm for this problem. What we 
could do is to execute a single pass of Dijkstra's algo­
r i thm, saving only the Open list, but wri t ing out each 
node as it is expanded or closed to a secondary storage 
device, such as disk or magnetic tape, along wi th its par­
ent node on an optimal path from the root. Then, once 
the search is completed, we reconstruct the solution path 
by scanning the file of closed nodes backwards, looking 
for the parent of the goal node, then the parent of that 
node, etc. Since nodes are expanded in nondecreasing 
order of their cost, we are guaranteed that the complete 
solution path can be reconstructed in a single backward 
pass through the file of closed nodes. 

The advantage of this approach is that the capacity of 
most secondary storage devices is considerably greater 
than that of main memory, and we can access the device 
sequentially rather than randomly. Unfortunately, most 
such devices can't be read backwards very efficiently. 
The best we could do would be to simulate this by read­
ing a disk or tape file in blocks large enough to fit in 
main memory, and then access these blocks in reverse or­
der. Given the efficiency of DCBDS, and the slow speed 
of secondary storage devices, however, it's unlikely that 
this w i l l lead to a faster algorithm. 

7 Conclusions 
We generalized Hirschberg's dynamic programming al­
gorithm to reduce the memory requirement of best-first 
search in arbitrary graphs wi th cycles. The most impor­
tant difference between DCBDS and the dynamic pro-
gramming algorithm is that the latter only works when 
we know a priori which neighbors of a node can be its 
ancestors and descendents, respectively, while DCBDS 
requires no such knowledge. For example, Hirschberg's 
algorithm can find a lowest-cost path in a grid if we only 
allow edges in the direction of the goal, whereas DCBDS 
allows arbitrary solution paths. Our experiments show 
that in general the lowest-cost path in a two-dimensional 
grid is not of minimal length. 

DCBDS is most effective on polynomial-sized prob­
lems that are too big to fit in memory. In such prob­
lems, it reduces the memory requirement from 

Our analysis suggests that the time cost of 
this reduction is only a constant factor of in two dimen­
sions, which is supported by our experimental results. In 
three dimensions, our analysis predicts a constant over­
head of Further optimizations could 
reduce these constants by up to a factor of two, and <ad-
ditional constant savings may reduce the actual running 
time to no more that tradit ional best-first search. 

While we used Dijkstra's algorithm in our experi­
ments, the generalization of DCBDS to A* is straightfor­
ward. A* may prune more of the search space, allowing 
larger problems to be solved, but it is also space-bound 

in practice, and hence wi l l benefit from this technique. 
The traditional drawback of bidirectional search has 

been its memory requirements. Ironically, DCBDS 
shows that bidirectional search can be used to save mem­
ory, and has the potential to revive study of this area. 
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