
Divide-and-Conquer Bidirectional Search: First Results

Richard E. K o r f
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract

We present a new algorithm to reduce the space
complexity of heuristic search. It is most effec­
tive for problem spaces that grow polynomially
wi th problem size, but contain large numbers
of short cycles. For example, the problem of
finding a lowest-cost corner-to-corner path in
a d-dimensional grid has application to gene
sequence alignment in computational biology.
The main idea is to perform a bidirectional
search, but saving only the Open lists and not
the Closed lists. Once the search completes, we
have one node on an optimal path, but don't
have the solution path itself. The path is then
reconstructed by recursively applying the same
algorithm between the in i t ia l node and the in ­
termediate node, and also between the inter­
mediate node and the goal node. If n is the
length of the grid in each dimension, and d is
the number of dimensions, this algorithm re­
duces the memory requirement from to

The time complexity only increases
by a constant factor of in two dimensions,
and 1.8 in three dimensions.

1 Introduction
Consider an grid, where each edge has a poten­
t ial ly different cost associated wi th i t . We want a lowest-
cost path from the upper-lefthand corner to the opposite
lower-righthand corner, where the cost of a path is the
sum of the costs of the edges in i t . One important ap­
plication of this problem is finding the best alignment of
two genes of lengths n and m, represented as sequences
of amino acids [Carrillo and Lipman, 1988]. We omit
the details of the mapping between these two problems,
and present it only to suggest that the problem is of
practical importance. If we want to align d different se­
quences simultaneously, the problem generalizes to find­
ing a lowest-cost path in a d-dimensional grid.

Another example of this problem is that of finding a
shortest path in a maze. In this case, an edge between
two nodes either has a finite cost, indicating that there is

a direct path between the two nodes, or an infinite cost,
indicating there is a wall between them.

In this paper, we consider only the orthogonal moves
up, down, left and right, and want a lowest-cost path
from one corner to another. The extension to include d i ­
agonal moves is straightforward. While our experiments
use a two-dimensional grid, the algorithm t r iv ia l ly gen­
eralizes to multiple dimensions. In general, a lowest-cost
path may not be a shortest path, in terms of the num­
ber of edges. For example, in going from upper-left to
lower-right, a lowest-cost path may include some up and
left moves, as our experiments wi l l show.

2 Previous Work

2.1 Problems that Fit in Memory
If the grid is small enough to fit into memory, the prob­
lem is easily solved by existing methods, such as D i -
jkstra's single-source shortest path algorithm [Dijkstra,
1959]. It requires 0(nm) time, since each node has a
constant number of neighbors, and 0(nm) space, in the
worst case. Since we are only interested in the cost to
the goal, we can terminate the algorithm when this value
is computed, but in practice almost the entire grid wi l l
usually be searched, as our experiments wi l l show.

If we restrict the problem to moves that go toward
the goal, it can be solved by a much simpler dynamic
programming algorithm. We simply scan the grid from
left to right and from top to bot tom, storing at each
point the cost of a lowest-cost path from the start node
to that grid point. This is done by adding the cost of the
edge from the left to the cost of the node immediately
to the left, adding the cost of the edge from above to
the cost of the node immediately above, and storing the
smaller of these two sums in the current node. This also
requires time and space.

The difference between these two problems is that in
the general case, any of the neighbors of a node can be its
predecessor along an optimal path, and hence Dijkstra's
algorithm must maintain an Open list of nodes generated
but not yet expanded, and process nodes in increasing
order of their cost from the root.

Since both algorithms may have to store the whole
graph in memory, the amount of memory is the main

1184 SEARCH

mailto:korf@cs.ucla.edu

constraint. We implemented Dijkstra's algorithm on
a two-dimensional grid using randomly generated edge
costs, on a SUN Ultra-Sparc Model 1 workstation wi th
128 megabytes of memory. The largest problem that we
can solve without exhausting memory is a 3500 x 3500
grid. Our implementation takes about five and a half
minutes on problems of this size.

2.2 Problems that Don't Fit in Memory
The problem is much more difficult when the entire grid
cannot fit in memory. This can happen if all the edge
costs are not explicitly listed, but are implici t ly gener­
ated by some rule. For example, in the gene sequence
alignment problem, the edge cost is based on the particu­
lar pair of amino acids being aligned at a particular point
in the two genes, and hence the number of different edge
costs is only the square of the number of amino acids.
In an even simpler example, finding the longest common
subsequence in a pair of character strings [Hirschberg,
1975], the edge costs are just one or zero, depending on
whether a pair of characters at a given position are the
same or different, respectively.

In our experiments, each edge of the grid is assigned
a unique number. This number is then used as an index
into the sequence of values returned by a pseudo-random
number generator, and the corresponding random value
is the cost of the edge. In particular, we use the pseudo­
random number generator on page 46 of [Kernighan and
Ritchie, 1988]. This requires the ability to efficiently
jump around in the pseudo-random sequence, an algo­
r i t hm for which is given in [Korf and Chickering, 1996].

One approach to the memory problem is to use a
heuristic search, such as A* [Hart, Nilsson, and Raphael,
1968] to reduce the amount of the problem space that
must be searched. This assumes that we can efficiently
compute a lower bound on the cost from a given node
to the goal, and has been applied to the gene sequencing
problem [Ikeda and Imai , 1998]. If we establish a non­
zero minimum edge cost in our random grids, we can use
the manhattan distance to the goal times this minimum
edge cost as a lower-bound heuristic. Unfortunately, A*
must st i l l store every node it generates, and ultimately
is l imited by the amount of available memory.

The memory l imita t ion of algorithms like Dijkstra's
and A* has been addressed by AI researchers over the
last 15 years [Korf, 1995]. Many such algorithms, such
as iterative-deepening-A* (IDA*) [Korf, 1985], rely on a
depth-first search to avoid the memory problems of best-
first search. The key idea is that a depth-first search
only has to keep in memory the path of nodes from the
start to the current node, and as a result only requires
memory that is linear in the maximum search depth.

While depth-first search is highly effective on problem
spaces that are trees, or only contain a small number
of cycles, it is hopeless on a problem space wi th a large
number of short cycles, such as a grid. The reason is
that a depth-first search must generate every distinct
path to a given node. In an grid, the number of
different paths of minimum length from one corner to

the opposite corner is For example, a
10 x 10 grid, which contains only 100 nodes, has 184,756
different minimum-length paths from one corner to an­
other, and a 30 x 30 grid, w i t h only 900 nodes, has over
1017 such paths. A minimum-length path only includes
moves that go toward the goal, such as down and right
moves in a path from upper-left to lower-right.

Another technique, based on finite-state-machines
[Taylor and Korf, 1993], has been used to avoid this
problem in regular problem spaces such as grids. Unfor­
tunately, this method assumes that all minimum-length
paths to a given node are equivalent, and does not apply
when different edges have different costs.

Other techniques, such as caching some nodes that are
generated, have been applied to these problems [Miura
and Ishida, 1998]. The problem w i t h these techniques
is that they can only cache a small fraction of the tota l
nodes that must be generated on a large problem.

We implemented I D A * on our random grid problems,
wi th pit iful results. The largest problems that we could
ran were of size In addition to the problem of
duplicate node generations, since most paths had differ­
ent costs, each iteration on average only expanded about
four new nodes that weren't expanded in the previous
iteration. As a result, five problems of size ex­
panded an average of 1.128 billion nodes each, and took
an average of about an hour each to run.

3 D i v i d e & Conquer B i d i r e c t i o n a l
Search (D C B D S)

We now present our new algorithm. While we discovered
it independently, a subsequent search of the literature re­
vealed a special case of the main idea [Hirschberg, 1975].
For pedagogical purposes, we first describe our general
algorithm, and then Hirschberg's special case.

A best-first search, such as Dijkstra's algorithm or
A*, stores both a Closed list of nodes that have been
expanded, and an Open list of nodes that have been
generated, but not yet expanded. The Open list corre­
sponds to the frontier of the search, while the Closed list
corresponds to the interior region. Only nodes on the
Open list are expanded, assuming the cost function is
consistent, and thus we could execute a best-first search
without storing the Closed list at al l .

In an exponential problem space wi th a branching fac­
tor of two or more, the Open list is larger than the Closed
list, and not storing the Closed list doesn't save much.
In a polynomial space, however, the dimensionality of
the frontier is one less than that of the interior, resulting
in significant memory savings. For example, in a two-
dimensional problem space, the size of the Closed list is
quadratic, while the size of the Open list is only linear.

There are two problems w i th this approach that must
be addressed. The first is that duplicate node expansions
are normally eliminated by checking new nodes against
the Open and Closed lists. Wi thou t the Closed list, to
prevent the search from "leaking" back into the closed
region, we store w i th each Open node a list of forbid-

K0RF 1185

Figure 1: Divide and Conquer Bidirectional Search

den operators that would take us into the closed region.
For each node, this is initially just the the operator that
generates its parent. As each node is generated, it is
compared against the nodes on the Open list, and if it
already appears on Open, only the copy arrived at via
the lowest-cost path is saved. When this happens, the
new list of forbidden operators for the given state be­
comes the union of the forbidden operators of each copy.

In fact, this technique can be used to speed up the
standard Dijkstra's and A* algorithms with a Closed list
as well. It is faster to not generate a node at all, than to
generate it and search for it in Open and Closed lists. In
our grid experiments, this technique alone sped up our
implementation of Dijkstra's algorithm by over 25%.

The main value of this technique, however, is that it
executes a best-first search without a Closed list, and
never expands the same state more than once. When the
algorithm completes, we have the cost of an optimal path
to a goal node, but unfortunately not the path itself. If
we store the path to each node with the node itself, each
node will require space linear in its path length, elim­
inating all of our space savings. In fact, this approach
requires more space than the standard method of storing
the paths via pointers through the Closed list, since it
doesn't allow us to share common subpaths.

One way to construct the path is the following. We
perform a bidirectional search from both the initial state
and the goal state simultaneously, until the two search
frontiers meet, at which point a node on a solution path
has been found. Its cost is the sum of the path costs
from each direction. We continue the search, keeping
the intermediate node on the best solution found so fax,
until the total solution cost is less than or equal to the
sum of the lowest-cost nodes on each search frontier. At
this point we are guaranteed to have a node on a lowest-
cost solution path. We save this intermediate node in
a solution vector. Then, we recursively apply the same
algorithm to find a path from the initial state to the
intermediate node, and from the intermediate node to
the goal state. Each of these searches wil l add another

node to the final solution path, and generate two more
recursive subproblems, etc, until we have built up the en­
tire solution. We call this algorithm divide-and-conquer
bidirectional search, or DCBDS.

Figure 1 shows an idealized view of DCBDS. The left
panel shows the final search horizons of the first bidi­
rectional search. Their intersection, node a, is the first
node found on the optimal solution. The center panel
shows the next two searches, from node a toward both
the initial and goal states, adding the intersections at
nodes b and c, respectively, to the solution. Finally,
the right panel shows the next level of searches, adding
nodes d, e, /, and g to the solution path. The reason
the search frontiers look like circles and arcs of circles is
that they represent an uniformed Dijkstra's algorithm,
which doesn't know the direction to the goal.

3.1 Hirschberg's A l g o r i t h m
[Hirschberg, 1975] gives an algorithm for computing a
maximal common subsequence of two character strings
in linear space. It generates a two-dimensional matrix,
with each of the original strings placed along one axis.
An element of the matrix corresponds to a pair of initial
substrings of the original stings, and contains the length
of the maximal common subsequence of the substrings.

If n and m are the lengths of the original strings,
the standard dynamic programming algorithm for this
problem computes this matrix by scanning from left to
right and top to bottom. This requires 0(nm) time and
0(nrn) space. However, to compute any element of this
matrix, we only need the value immediately to its left
and immediately above i t . Thus, we can compute the
entire matrix by only storing two rows at a time, delet­
ing each row as soon as the next row is completed. In
fact, only one row needs to be stored, since we can re­
place elements of the row as soon as they are used. Un­
fortunately, this only yields the length of the maximal
common subsequence, and not the subsequence itself.

Hirschberg's algorithm computes the first half of the
matrix from the top down, storing only one row at at

1186 SEARCH

time, and the second-half from the bottom up, again
only storing one row. Then, given the two different ver­
sions of the middle row, one from each direction, he finds
the column for which the sum of the two corresponding
elements from each direction is a maximum. This point
splits both original strings in two parts, and the algo­
rithm is then called recursively on the initial substrings,
and on the final substrings.

The most important difference between DCBDS and
Hirschberg's dynamic programming algorithm is that the
latter scans the matrix in a predetermined systematic or­
der, while DCBDS expands nodes in order of cost. The
dynamic programming algorithm can only be used when
we can distinguish the ancestors of a node from its de-
scendents a priori. For example, it could be modified
to find a lowest-cost path in a grid only if we restrict
ourselves to minimum-length paths. DCBDS generalizes
Hirschberg's dynamic programming algorithm to best-
first search of arbitrary graphs.

4 Complex i ty of D C B D S

In a problem of size DCBDS reduces the space
complexity from a very significant
improvement. For example, if we can store ten mil­
lion nodes in memory, this increases the size of two-
dimensional problems we can solve from about 3,000 x
3,000 to about 2,500,000 x 2,500,000 before memory is
exhausted, since the maximum size of a search frontier is
roughly the sum of the lengths of the axes. In practice,
time is the l imiting factor on large grids, and not space.

The asymptotic time complexity of Hirschberg's algo­
rithm, which only considers moves directly toward the
goal, is the same as for the standard dynamic program­
ming algorithm, or on a d-dimensional grid.

To analyze the time complexity of DCBDS, we model
the search frontiers as circles and arcs of circles. A search
frontier represents an Open list, and consists of a set of
nodes whose costs from the start node are approximately
equal, since the lowest-cost node is always expanded
next. In our experiments, we only consider the moves
up, down, left, and right. Thus, a set of nodes whose
distance from the start are equal, in terms of number of
edges, would be diamond shaped, with points at the four
compass points. In this diamond, however, the nodes at
the points only have a single path of minimal distance
to them, but the nodes closest to the diagonals through
the center have a great many different paths to them,
all of minimal distance. Thus, the lowest-cost path to
a node near the diagonal is likely to be much smaller
than the lowest-cost path to a node near a point of the
diamond. Since the frontier represents a set of nodes of
nearly equal lowest-path cost, the frontier near the di­
agonals bows out relative to the points of the diamond,
approximating the circular shape. In fact, our graphic
simulation of best-first search on a grid shows that the
search frontiers are roughly circular in shape.

The time complexity can be approximated by the
number of nodes expanded, which is proportional to the

area contained within the search frontier. Assume that
we have a square grid of size whose lowest-cost
path is along the diagonal, which is of length The
first bidirectional search, to determine point a in Figure
1, will cover two quarter circles, each of which is of ra-
dius for a total area o f w h i c h
equals At the next level, we need two bidirec­
tional searches, one to determine point 6, and one for
point c. This generates two quarter circles from the ini­
tial and goal corners, plus the full circle centered at node
a and reaching nodes b and c. This full circle wil l be gen­
erated twice, once to find node 6, and once for node c.
Thus, we generate circles, each of which are
of radius for a total area of or

At the third level, which generates nodes d, e,
/, and g, we generate three full circles twice each, plus
two quarter circles, all of radius In general, the
set of searches at the nth level of recursion sweep out a
total area of circles, each of radius

for a total area of

The total area of all the searches is the sum of these
terms from n = 1 to the number of levels. As an upper
bound, we can write it as the infinite sum

It is easy to show that this sum converges to one, so the
total area, and hence time complexity of DCBDS, is

To find a lowest-cost corner-to-corner path, the search
frontier of Dijkstra's algorithm will spread in a circular
arc from the initial corner to the goal corner, at which
point the entire grid will usually be covered. Since the
area of the grid is r2, the overhead of DCBDS compared
to Dijkstra's algorithm is a constant factor of

We can perform the same analysis in three dimensions,
the differences being that the searches sweep out volumes
of spheres instead of areas of circles, the main diagonal of
a cube is instead of and the searches from the
initial and goal states only generate eighths of a sphere,
instead of quarters of a circle. In three dimensions,
DCBDS generates a constant factor of 1.8138
more nodes than Dijkstra's algorithm.

5 Experiments

We tested DCBDS on the problem of finding a lowest-
cost corner-to-corner path on a two-dimensional grid.
Each edge of the grid is assigned a random cost, and
the cost of a path is the sum of the edge costs along it.
We considered the general lowest-cost problem, which
allows moves away from the goal as well as toward the
goal. Using a technique that allows us to efficiently jump
around in a pseudo-random number sequence without

K0RF 1187

Size
1,000
2,000
3,000
4,000
5,000

10,000
20,000
30,000
40,000
50,000

Shortest Path
1,998
3,998
5,998
7,998
9,998

19,998
39,998
59,998
79,998
99,998

Solution Length
2,077
4,175
6,251
8,362

10,493
20,941
41,852
62,787
83,595

104,573

Total Nodes
1,000,000
4,000,000
9,000,000

16,000,000
25,000,000

100,000,000
400,000,000
900,000,000

1,600,000,000
2,500,000,000

Dijkstra Nodes
999,995

3,999,998
8,999,999

DCBDS Nodes
3,051,861

12,335,057
28,048,471
50,034,676
78,430,448

316,354,315
1,274,142,047
2,877,505,308
5,118,240,659
8,001,200,854

Ratio
3.052
3.084
3.116
3.127
3.137
3.164
3.185
3.197
3.199
3.200

Table 1: Experimental Results for Corner-to-Corner Paths on Square Grids

generating all the intermediate values [Korf and Chick-
ering, 1996], we can search much larger random grids
than we can store in memory.

Table 1 shows our experimental results. For each grid
size, we tested DCBDS on three different random prob­
lem instances, generated f rom different in i t ia l random
seeds, and averaged the results for the problem instances.
The results f rom one instance to the next are very simi­
lar, allowing such a small sample size. The first column
gives the length of the gr id in each dimension, and the
second gives the number of edges in a shortest corner-to-
corner path, which is twice the grid size minus two. The
th i rd column gives the average number of edges in the
lowest-cost corner-to-corner path. The reason some of
these values are odd is because they are averages of three
trials each. This data shows that in general a lowest-cost
path is usually not a path of minimum length.

The fourth column gives the total number of nodes in
the gr id, which is the square of the grid size. The fifth
column shows the average number of nodes expanded by
Dijkstra's algor i thm, for problems small enough to fit
in memory. This data shows that Dijkstra's algorithm
generates almost all the nodes in the gr id. Since grids of
size 4000 and greater are too large to fit in 128 megabytes
of memory, we were unable to run Dijkstra's algorithm
on these problems, and hence those entries are empty.

The sixth column shows the average number of nodes
expanded by DCBDS, and the sixth column shows the
ratio of the number of nodes expanded by DCBDS, d i ­
vided by the number of nodes that would be expanded
by Dijkstra's algor i thm, given sufficient memory. Even
though we can't run Dijkstra's algorithm on problems
greater than 3000 nodes on a side, we compute the ratio
on the assumption that Dijkstra's algorithm would gen­
erate the entire gr id, if there were sufficient memory. As
predicted by our analysis, the number of nodes expanded
by DCBDS is approximately times the total number of
grid points. This factor seems to increase slightly wi th
increasing problem size, however.

The actual asymptotic running t ime of both algo­
ri thms is where n is the size of the grid in one
dimension. The term comes from the total number
of nodes in the grid that must be examined. The logn
term comes from the fact that both algorithms store the

Open list as a heap, and the size of the Open list is 0(n),
resulting in t ime per node to access the heap.

Even though DCBDS expands over three times as
many nodes as Dijkstra's algor i thm, it takes less than
twice as long to run. The main reason is that by sav­
ing the operators that have already been applied to a
node, and not reapplying them, expanding a node takes
less t ime than applying all operators and checking for
duplicates in the Closed list. The grids of size 10,000
take DCBDS about two hours to run, and those of size
50,000 take about 3 days. The grids of size 50,000 require
the storage of about 200,000 nodes, and w i th only 128
megabytes of memory, we can store over twelve mil l ion
nodes. Thus, memory is no longer a constraint.

6 Further Work
An obvious source of waste in DCBDS is that most of the
individual searches are performed twice. For example,
in the center panel of Figure 1, the ful l circle centered
at node a is searched twice, once to locate node 6, and
then again to locate node e. By performing the search
for nodes b and c simultaneously, we would only have
to generate the circle once. The same optimization can
be applied to all the full-circle searches. Since most of
the searches are ful l circles, this would reduce the t ime
complexity by up to a factor of two, making DCBDS run
almost as fast as Dijkstra's algori thm.

The drawback of this optimization is that it compli­
cates the algori thm. In particular, all the searches at
the same level of recursion must be performed simulta­
neously. For example, in the right panel of Figure 1, the
searches corresponding to the ful l circles must be inter­
leaved. This destroys the simple recursive structure of
the algori thm, replacing it w i th an iterative outer loop
wi th increasing numbers of interleaved searches in each
iteration. In addit ion, some of these searches wi l l termi­
nate before others, and some may not even be necessary.

Our current implementation continues executing re­
cursive bidirectional searches unt i l the in i t ia l and goal
nodes are the same. Another obvious optimization would
be to terminate the recursion when the problem size is
small enough that there is sufficient memory to hold the
entire subgrid in memory, and then execute Dijkstra's al­
gor i thm at that point. Since our analysis suggests that

1188 SEARCH

the lower-level searches in the recursion hierarchy con­
tribute diminishingly less to the overall time, this opti­
mization may not result in significant savings.

The idea of storing only the Open list in memory sug­
gests yet another algorithm for this problem. What we
could do is to execute a single pass of Dijkstra's algo­
r i thm, saving only the Open list, but wri t ing out each
node as it is expanded or closed to a secondary storage
device, such as disk or magnetic tape, along wi th its par­
ent node on an optimal path from the root. Then, once
the search is completed, we reconstruct the solution path
by scanning the file of closed nodes backwards, looking
for the parent of the goal node, then the parent of that
node, etc. Since nodes are expanded in nondecreasing
order of their cost, we are guaranteed that the complete
solution path can be reconstructed in a single backward
pass through the file of closed nodes.

The advantage of this approach is that the capacity of
most secondary storage devices is considerably greater
than that of main memory, and we can access the device
sequentially rather than randomly. Unfortunately, most
such devices can't be read backwards very efficiently.
The best we could do would be to simulate this by read­
ing a disk or tape file in blocks large enough to fit in
main memory, and then access these blocks in reverse or­
der. Given the efficiency of DCBDS, and the slow speed
of secondary storage devices, however, it's unlikely that
this w i l l lead to a faster algorithm.

7 Conclusions
We generalized Hirschberg's dynamic programming al­
gorithm to reduce the memory requirement of best-first
search in arbitrary graphs wi th cycles. The most impor­
tant difference between DCBDS and the dynamic pro-
gramming algorithm is that the latter only works when
we know a priori which neighbors of a node can be its
ancestors and descendents, respectively, while DCBDS
requires no such knowledge. For example, Hirschberg's
algorithm can find a lowest-cost path in a grid if we only
allow edges in the direction of the goal, whereas DCBDS
allows arbitrary solution paths. Our experiments show
that in general the lowest-cost path in a two-dimensional
grid is not of minimal length.

DCBDS is most effective on polynomial-sized prob­
lems that are too big to fit in memory. In such prob­
lems, it reduces the memory requirement from

Our analysis suggests that the time cost of
this reduction is only a constant factor of in two dimen­
sions, which is supported by our experimental results. In
three dimensions, our analysis predicts a constant over­
head of Further optimizations could
reduce these constants by up to a factor of two, and <ad-
ditional constant savings may reduce the actual running
time to no more that tradit ional best-first search.

While we used Dijkstra's algorithm in our experi­
ments, the generalization of DCBDS to A* is straightfor­
ward. A* may prune more of the search space, allowing
larger problems to be solved, but it is also space-bound

in practice, and hence wi l l benefit from this technique.
The traditional drawback of bidirectional search has

been its memory requirements. Ironically, DCBDS
shows that bidirectional search can be used to save mem­
ory, and has the potential to revive study of this area.

8 Acknowledgements
Thanks to Toru Ishida and Teruhisa Miura for introduc­
ing me to the gene sequence alignment problem. Thanks
to Hania Gajewska for developing the graphics code.
This research was supported by NSF grant IRI-9619447.

References
[1] Carrillo, H. , and D. Liprnan, The multiple sequence

alignment problem in biology, SI AM Journal of Ap­
plied Mathematics, Vol. 48, No. 5, October 1988, pp.
1073-1082.

[2] Dijkstra, E.W., A note on two problems in connex­
ion with graphs, Numerische Mathematik, Vol. 1,
1959, pp. 269-71.

[3] Hirschberg, D.S., A linear space algorithm for com­
puting maximal common subsequences, Communi­
cations of the ACM, Vol. 18, No. 6, June, 1975, pp.
341-343.

[4] Hart, P.E., N.J. Nilsson, and B. Raphael, A formal
basis for the heuristic determination of minimum
cost paths, IEEE Transactions on Systems Science
and Cybernetics, Vol. SSC-4, No. 2, July 1968, pp.
100-107.

[5] Ikeda, T. , and H. Imai, Enhanced A* algorithms
for multiple alignments: optimal alignments for sev­
eral sequences and k-opt approximate alignments
for large cases, Theoretical Computer Science, Vol.
210, 1998.

[6] Kernighan, B.W., and D . M . Ritchie, The C Pro­
gramming Language, second edition, Prentice Hall ,
Englewood Cliffs, N.J. , 1988.

[7] Korf, R.E., Space-efficient search algorithms, Com­
puting Surveys, Vol. 27, No. 3, Sept., 1995, pp. 337-
339.

[8] Korf, R.E., Depth-first iterative-deepening: An op­
timal admissible tree search, Artificial Intelligence,
Vol. 27, No. 1, 1985, pp. 97-109.

[9] Korf, R.E., and D . M . Chickering, Best-first mini-
max search, Artificial Intelligence, Vol. 84, No. 1-2,
July 1996, pp. 299-337.

[10] Miura, T., and T. Ishida, Stochastic node caching
for memory-bounded search, Proceedings of the Na­
tional Conference on Artificial Intelligence (AAAI-
98), Madison, W I , July, 1998, pp. 450-456.

[I I] Taylor, L . , and R.E. Korf, Pruning duplicate nodes
in depth-first search, Proceedings of the National
Conference on Artificial Intelligence (AAAI-93),
Washington D.C., July 1993, pp.* 756-761.

KORF 1189

