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Abstract 

In a graph with a "small world" topology, nodes are 
highly clustered yet the path length between them is 
small. Such a topology can make search problems 
very difficult since local decisions quickly propa­
gate globally. We show that graphs associated with 
many different search problems have a small world 
topology, and that the cost of solving such search 
problems can have a heavy-tailed distribution. The 
strategy of randomization and restarts appears to 
eliminate these heavy tails. A novel restart sched­
ule in which the cutoff bound is increased geomet­
rically appears particularly effective. 

1 Introduction 

Graphs that occur in many biological, social and man-made 
systems are often neither completely regular nor completely 
random, but have instead a "small world" topology in which 
nodes are highly clustered yet the path length between them 
is small [Watts and Strogatz, 1998]. By comparison, random 
graphs with a similar number of nodes and edges have short 
path lengths but little clustering, whilst regular graphs like 
lattices tend to have high clustering but large path lengths. A 
small world topology can have a significant impact on prop­
erties of the graph. For instance, if you are introduced to 
someone at a party in a small world, you can usually find a 
short chain of mutual acquaintances connecting you together. 

One reason for the occurrence of small world graphs is that 
it only takes a few short cuts between neighbourhood cliques 
to turn a large world (in which the average path length be­
tween nodes is large) to a small world (in which the average 
path length is small). Watts and Strogatz have shown that 
a social graph (the collaboration graph of actors in feature 
films), a biological graph (the neural network of the nema­
tode worm C elegans) and a man-made graph (the electri­
cal power grid of the western United States) all have a small 
world topology. In a simple model of an infectious disease, 
they demonstrate that disease spreads much more easily and 
quickly in a small world. A small world topology may there­
fore have a significant impact on the behavior of dynamical 
systems. How do they affect search problems? 

2 Testing for a small world 
To formalize the notion of a small world, Watts and Strogatz 
define the clustering coefficient and the characteristic path 
length. The path length is the number of edges in the shortest 
path between two nodes. The characteristic path length, L is 
the path length averaged over all pairs of nodes. The clus­
tering coefficient is a measure of the cliqueness of the local 
neighbourhoods. For a node with neighbours, then at most 

edges can exist between them (this occurs if they 
form a k-clique). The clustering of a node is the fraction of 
these allowable edges that occur. The clustering coefficient, 

is the average clustering over all the nodes in the graph. 
Watts and Strogatz define a small world graph as one in 

which and where 
and are the characteristic path length and clus­

tering coefficient of a random graph with the same number 
of nodes and edges Rather than this simple qualita-
tive test, it might be useful to have a quantitative measure 
of "small worldliness". We can then compare the topology of 
different graphs. To this end, we define the proximity ratio 
as the ratio of normalized by In graphs 
with a small world topology, the proximity ratio 1. By 
comparison, the proximity ratio is unity in random graphs, 
and small in regular graphs like lattices. In table 1, we show 
that the proximity ratio, is large in those graphs studied in 
[Watts and Strogatz, 1998] with a small world topology. 

film actons 
power grid 
C. elegans 

L 
3.65 
18.7 
2.65 

2.99 
12.4 
2.25 

C 
0.79 
0.080 
0.28 

0.00027 
0.005 
0.05 

2396 
10.61 
4.755 

Tabic 1. Characteristic path lengths, clustering coefficients 
and proximity ratios for graphs studied in [Watts and Stro­
gatz, 1998] with a small world topology. 

3 Modeling a small world 
Watts and Strogatz propose a model for small world 

graphs. Starting from a regular graph, they introduce disorder 
into the graph by randomly rewiring each edge with proba­
bility p. If then the graph is completely regular and 
ordered. If then the graph is completely random and 
disordered. Intermediate values of give graphs that are nei­
ther completely regular nor completely disordered. Watts and 
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ring lattice small world random graph 

Figure 1. Random rewiring of a regular ring lattice. We start a ring of nodes, each connected to the nearest neighbours. 
With probability p, we randomly rewire each edge. For clarity, = 16 and = 4 in the above example. However, larger n and 
k are used in the rest of this paper. 

Strogatz start from a ring lattice with nodes and nearest 
neighbours. They observe similar qualitative behavior with 
other initial regular graphs and with other mechanisms for in­
troducing disorder. A rewired edge is reconnected to a node 
chosen uniformly at random from the lattice. If rewiring an 
edge would create a duplicate edge, they leave it unchanged. 

To focus on large, sparse graphs, they demand that 
where ensures that the 

graphs remain connected. For such graphs, and 
and and 

Note that the proximity ratio 
(and this is small as 

and hence and by definition for 
That is, graphs do not have a small world topology for 
and p = 1. As increases from 0, the characteristic path 
length drops sharply since a few long-range edges introduce 
short cuts into the graph. These short cuts have little effect 
on the clustering coefficient. As a consequence the proximity 
ratio rises rapidly and the graph develops a small world topol­
ogy. As approaches 1, the neighbourhood clustering start to 
break down, and the short cuts no longer have a dramatic ef­
fect at linking up nodes. The clustering coefficient and the 
proximity ratio therefore drop, and the graph loses its small 
world topology. These topological changes arc clearly visible 
in Figure 2. 

4 Search problems 
There are many search problems in AI that involve graphs 
(for example, the constraint graph in a constraint satisfaction 
problem, and the adjacency graph in a Hamiltonian circuit 
problem). Do such graphs have a small world topology? Does 
this have an impact on the hardness of solving problems? If 
so, can we design algorithms to take advantage of the topol­
ogy? 

4.1 Graph coloring 
One search problem directly affected by the structure of an 
underlying graph is graph coloring. We therefore tested the 
topology of some graph coloring problems from the DIMACS 
benchmark library. We focused on the register allocation 
problems as these are based on real code. Table 2 demon­
strates that these problems have large clustering coefficients 
like regular graphs, yet small characteristic path lengths like 
random graphs. They therefore have a small world topology. 

Figure 2. Characteristic path length, clustering coefficient 
(left axis, normalized by the values for a regular lattice) and 
proximity ratio (right axis) for a randomly rewired ring lat­
tice. As in [Watts and Strogatz, 1998], we use ­ 1000 and 

= 10. We vary from -15 to 0 in steps of 1, and gen­
erate 100 graphs at each value of A logarithmic horizontal 
scale helps to identify the interval in which the characteristic 
path length drops rapidly, the clustering coefficient remains 
almost constant, and the proximity ratio, peaks. 

We observed similar results with other problems from the DI­
MACS benchmark library 

4.2 Time tabling 

Many time-tabling problems can be naturally modelled as 
graph coloring problems. We therefore tested some real 
world time-tabling problems from the Industrial Engineer­
ing archive at the University of Toronto. Table 3 demon­
strates that sparse problems in this dataset have large clus­
tering coefficients like regular graphs, but small characteris-

fpsol2i.l 
zeroini. 1 
mulsoli.l 

L 
1.677 
1.479 
1.586 

-

1.915 
1.815 
1.799 

C 
0.906 
0.883 
0.887 

0.0949 
0.185 
0.203 

10.902 
5.857 
4.956 

Table 2. Characteristic path lengths and clustering coeffi­
cients for some of the DIMACS graph coloring benchmarks. 
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tic path lengths like random graphs. They therefore have a 
small world topology. By comparison, dense problems from 
this dataset have nodes of large degree which are less clus­
tered. Such graphs therefore have less of a small world topol­
ogy. We conjecture that graphs wi l l often start with a sparse 
small world topology but wi l l become more like dense ran­
dom graphs as edges added "saturate" the structure. 

sparse graphs 

LSE 
U Toronto 

St Andrews 

2.484 
2.419 
1.872 

2.149 
2.161 
1.808 

c 
0.575 
0.534 
0.867 

0.0625 
0.0855 
0.196 

1.960 
5.579 
4.272 

dense graphs 
Earl Haig Col. 
York Mill Col. 
Ecole H Etudes 

L 
1.814 
1.749 
1.587 

1.729 
1.697 
1.583 

C 
0.639 
0.578 
0.680 

0.271 
0.303 
0.417 

2.247 
1.851 
1.627 

Table 3. Characteristic path lengths and clustering coeffi­
cients for time-tabling benchmarks from the University of 
Toronto archive. Sparse problems have an edge density of 
less than 15%. Dense graphs have an edge density of more 
than 25%. 

4.3 Quasigroup problems 

A quasigroup is a Latin square, a m by m multiplication table 
in which each entry appears just once in each row or column. 
Quasigroups model a variety of practical problems like tour­
nament scheduling and designing drug tests. AI search tech­
niques have been used to answer some open questions in finite 
mathematics about the existence (or non-existence) of quasi­
groups with particular properties fFujita et al., 1993]. More 
recently, Gomes and Selman have proposed a class of quasi­
group problems as a challenging benchmark for constraint 
satisfaction algorithms [Gomes and Selman, 19971. 

An order m quasigroup problem can be represented as a 
constraint satisfaction problem with rn2 variables, each with 
a domain of size m. The constraint graph for such a problem 
(see figure 3) consists of 2m cliques, one for each row and 
column, with each clique being of size rn. Calculation shows 
that, for large m, such constraint graphs have a small world 
topology. As any pair of entries in a quasigroup either directly 

Figure 3. The constraint graph of a m by rn quasigroup prob­
lem for The graph has nodes and 
edges. The edges form cliques, each of size m. 

constrain each other or indirectly through at most one inter­
mediate entry, the characteristic path length, is small. 

A random graph with the same number of edges and nodes 
also has a characteristic path length As each vari­
able has neighbours and these form 2 m-cliques, the 
clustering coefficient, is large. A random graph with 
the same number of edges and nodes has a smaller clustering 
coefficient As and 
for large m, the constraint graph has a small world topology, 
with a proximity ratio Computation confirms these 
calculations (see table 4). 

m 

20 
16 
12 

L 
1.905 
1.882 
1.846 

1.429 
1.908 
1.874 

C 
0.486 
0.483 
0.476 

0.0952 
0.118 
0.154 

m/4 
5 
4 
3 

5.169 
4.150 
3.138 

Table 4. Characteristic path lengths and clustering coeffi­
cients for m by m quasigroup problems. 

5 Search cost 

Graphs with a small world topology demonstrate that local 
properties (i.e. clustering) can be bad predictors for global 
property (i.e. characteristic path length). Unfortunately, 
heuristics often use local properties to guide the search for 
a (global) solution. For example, the Brelaz heuristic colors 
the node with the least available colors which is connected 
to the most uncolored nodes. Because of this mismatch be­
tween local and global properties, a small world topology 
may mislead heuristics and make search problems hard to 
solve. To test this thesis, we colored graphs generated accord­
ing to Watts and Strogatz's model using an algorithm due to 
Mike Trick, which is based upon Brelaz's DSATUR algorithm 
[Brelaz, 19791. To ensure that problems were of a manage­
able size for this algorithm, we used graphs with and 

For these graphs, the proximity ratio peaks around 
log2(P) similar to Figure 2. Whilst most graphs of 
this size can be colored without too much search, one graph 
was not solved in nodes and more than a week of CPU 
time. We therefore imposed a search cutoff at nodes. On 
a 133 MHz Pentium, this is approximately 1 hour of com­
putation. As we distributed our experiments over a variety 
of networked computers, we do not report runtimes but use 
nodes visited in the backtracking search tree. On any given 
machine, runtimes are roughly proportional to the number of 
nodes searched. 

In Figure 4, we plot the search cost against the rewiring 
probability, As increases from 0 and graphs develop a 
small world topology, the search cost in the higher percentiles 
rises rapidly. However, as p approaches 1 and graphs lose 
their small world topology, the search cost in the higher per­
centiles falls back. For graphs with a small world topology, 
most problems took less than nodes to color. However, 
1% took more than nodes. We suspect that problems with 
a small world topology can be difficult to color since local de­
cisions quickly propagate globally. 
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Figure 4. Cost to color graphs generated according to Watts 
and Strogatz' s model with =100, = 8 and varied 
from -15 to 0 in steps of 1. 

6 Heavy-tailed distributions 
Exceptionally hard problems like this have been observed in 
other search problems, though usually with less frequency. 
For example, Gent and Walsh found that a few satisfiabil­
ity problems from the constant probability model were or­
ders of magnitude harder than the median [Gent and Walsh, 
1994]. Grant and Smith also found a few exceptionally hard 
problems in a random model of binary constraint satisfaction 
problems [Grant and Smith, 19951. More recently, Gomes 
and Selman have observed similar behavior in quasigroup 
completion problems (whose constraint graph, we recall, has 
a small world topology) [Gomes et al., 19971 and in tour­
nament scheduling, planning and circuit synthesis problems 
[Gomes et al, 19981. They show that such behavior can of­
ten be modeled by a "heavy-tailed" distribution of the Pareto-
L6vy form. In such a distribution, the tail has the form, 

where is the probability that the variable X ex­
ceeds some value x, and 0 is a constant called the "index 
of stability". If 2 then any moment of X of order less 
than a is finite but higher orders are infinite1. For example, if 

1.4, then X has finite mean but infinite variance. 
To test for such heavy-tails in the distribution of search 

costs, we plot the nodes searched against the probability that 
the search takes more than this number of nodes using log 
scales. A heavy-tailed distribution of the Parcto-Levy form 
gives a straight line with gradient In Figure 5, we plot 
the distribution of search costs at a variety of different values 
of This figure shows that for graphs with a small 
world topology we can model the dis­
tribution of search costs by a heavy-tailed distribution of the 
Pareto-Levy form. The gradient suggests that the index of 
stability, That is, the model of the distribution of 
search costs has infinite mean and variance. By comparison, 

backtracking algorithms like DSATUR have an upper bound on 
their running time that is exponential in the problem size. The mean 
or variance in their running time cannot therefore be infinite. How­
ever, for large problem instances, the upper bound may be so astro­
nomically large that we can model it as if it were infinite. 

for random graphs and more structured 
graphs search costs in the tail of the 
distribution drop more rapidly. 

Figure 5. Log-log plot of distribution of search costs to color 
graphs generated according to Watts and Strogatz's model 
with =100, =8 and 

As in [Gomes et al., 1997; 1998], we observe similar 
heavy-tail behavior even when solving a single problem in­
stance. We picked the first problem from the sample gener­
ated at which took more than nodes to 
solve. We re-solved this problem 1000 times, randomizing 
the order of the nodes in the graph so that the Brelaz heuris­
tic makes different branching decisions. We again observe 
heavy-tailed behavior, with 77% of presentations of this prob­
lem taking less than 300 nodes to solve, but the rest taking 
more than nodes. 

A small world topology appears therefore to have a signif­
icant impact on the cost to solve graph problems. In partic­
ular, it often introduces a heavy-tail into the distribution of 
search costs. We conjecture that a small world topology will 
have a similar effect on other types of search problems involv­
ing graphs. For example, we predict that the distribution of 
costs for finding a Hamiltonian circuit in a graph with a small 
world topology will often display heavy-tailed behavior. As a 
second example, we anticipate that exceptionally hard prob­
lems will be more common in constraint satisfaction prob­
lems whose constraint graph has a small world topology than 
those with a purely random topology. Gomes, Selman and 
Kautz's state that "Further studies are needed to determine 
what characteristics of combinatorial search problems lead to 
heavy-tailed behavior" page 435, [Gomes et al., 1998]. Our 
experiments suggest that a small world topology may be one 
answer to this question. 

7 Randomization and restarts 
To combat heavy-tailed distributions like this, Gomes, Sel­
man and Kautz propose the RRR strategy of randomization 
and rapid restart [Gomes et al., 1998]. This strategy pre­
vents a search procedure from being trapped in the long tail 
to the right of the median, and exploits any heavy-tail to the 
left of the distribution (i.e. occasional runs that succeed very 
quickly). Does such a strategy help when searching graphs 
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with a small world topology? Does it eliminate this heavy-
tailed behavior? In Figure 6, we plot the search cost using the 

Figure 6. The effect of randomization and rapid restarts on 
the cost to color a graph generated according to Watts and 
Strogatz's model with — 100, = 8 and 
Search is restarted after a fixed number of nodes have been 
visited. 

RRR strategy against the cuttoff parameter on the problem at 
mentioned in the previous section. This prob­

lem has a small world topology and took the chronological 
backtracking search procedure over nodes to solve. With 
a cutoff limit of between 2(X) to 400 nodes, the RRR strategy 
eliminates the heavy-tail in the search cost distribution. 

To determine a good cutoff value for the restart strategy, 
Gomes et al. suggest"... a trial-and-error process, where one 
experiments with various cutoff values, starting at relatively 
low values ..." [Gomes et a/., 19981. To help automate this 
process, we suggest the RGR strategy of randomization and 
geometric restarts. Each new trial has a cutoff value which 
is a constant factor, larger than the previous. This strat­
egy profits from the success rate being high when the cutoff 
value is close to optimal. Increasing the cutoff value geomet­
rically ensures that we get close to the optimal value within 
a few restarts. We then hope to solve the problem within a 
few more restarts, before the cutoff value has increased too 
far from optimum. Figure 7 shows that the RGR strategy is 
even better at reducing search than the RRR strategy on this 
problem instance. The RGR strategy was also less sensitive to 
the setting of the cutoff parameters than the RRR strategy. We 
obtained similar improvements on other problem instances. It 
would be interesting to see if the RGR strategy is effective on 
other search problems like planning and scheduling. 

8 Approximate entropy 
Hogg notes that real constraint satisfaction problems often 
have variables that are more clustered than in random prob­
lems [Hogg, 19981. He uses a notion of "approximate en­
tropy" to distinguish between problems drawn from a clus­
tered ensemble and those from a random ensemble. Can ap­
proximate entropy act as a replacement measure for the clus­
tering coefficient? 

The approximate entropy is a measure of the similarity be­
tween substructures in a problem. It therefore depends on 

Figure 7. The effect of randomization and geometric restarts 
on the cost to color a graph generated according to Watts and 
Strogatz's model with = 1 0 0 , =8 and 
On the ith restart, search is cutoff after nodes have been 
visited. We use the same problem and the same scales as in 
Figure 6 to aid comparison. 

the representation used. As in [Hogg, 19981, we consider 
the substructures of a graph to be subgraphs, and compare 
them up to isomorphism. Consider the distinct subgraphs 
of size m. If is the frequency of the ith distinct subgraph, 
and then the approximate entropy for 
subgraphs of size m is defined by, 

(1) 

This measures the log-likelihood that two subgraphs of size 
are isomorphic given that they contain subgraphs of 

size that are isomorphic. 
As there are only two distinct subgraphs of size 2 up to 

isomorphism (the 2 node subgraph with an edge, and the one 
without) where 

Hence, depends only on and and 
not on the topology of the graph. We wil l need to consider 
for m 2 to distinguish random graphs from clustered ones. 
Fortunately, the number of non-isomorphic subgraphs grows 
rapidly with so it is usually adequate to consider or 
In Figure 8, we plot and for randomly rewired ring 
lattices generated by Watts and Strogatz's model. As we take 
logarithms to base 2, the approximate entropy is measured 
in bits. The approximate entropy for subgraphs up to size 3 
shows no obvious correlation with the rewiring probability, 
p (and therefore the clustering coefficient). Unfortunately, 
computing the approximate entropy for larger subgraphs is 
not computationally practical as it involves considering all 
subgraphs of size 5 (or, at least, a representitive sample of 
them). 

9 Related work 
Grant and Smith studied binary constraint satisfaction prob­
lems with a "braided" constraint graph similar to a ring lattice 
[Grant and Smith, 19951. In this problem class, exceptionally 
hard problems occur more frequently and with greater vigor 
than in a purely random ensemble. They suggest that, as prob­
lems met in practice are likely to have constraint graphs with 
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Figure 8. Approximate entropy for randomly rewired ring 
lattices generated according to Watts and Strogatz's model. 
As in Figure 2, = 1000 and = 10 and edges in the ring 
lattice are rewired with probability We vary from 
-13 to 0 in steps of 1, and generate 25 graphs at each value of 

this sort of structure, such problems deserve further investi-
gation. Our research supports and refines these observations. 

To generate graphs with more realistic structures, Hogg has 
proposed a clustered ensemble based on grouping the nodes 
into a tree-like structure (Hogg, 19961. In a random ensem­
ble, each graph with n nodes and c edges is equally likely. In 
Hogg's clustered ensemble, an ultrametric distance between 
the n nodes is defined by grouping them into a binary tree 
and measuring the distance up this tree to a common ances­
tor. A pair of nodes at ultrametric distance d is joined by an 
edge with relative probability . If graphs are purely 
random. If p 1, graphs have a hierarchical clustering as 
edges arc more likely between nearby nodes. These graphs 
tend to have characteristic path lengths and clustering coeffi­
cients similar to random graphs. Although nodes at the top 
of the tree tend to be more clustered than in random graphs, 
nodes lower down tend to be less clustered. We therefore 
need a more refined notion than the clustering coefficient to 
distinguish their topology from that of random graphs. 

10 Conclusions 
In a graph with a small world topology, nodes are highly 
clustered yet the path length between them is small. Such a 
topology can make search problems very difficult since local 
decisions quickly propagate globally. To provide a quantita­
tive measure of the extent to which a graph has this topol­
ogy, we have proposed the proximity ratio, This is the 
ratio of the clustering coefficient and the characteristic path 
length, normalized by the values for a random graph with the 

same number of edges and numbers. Using this measure, we 
have shown that many graphs associated with search prob­
lems have a small world topology, and that the cost of solving 
such search problems can have a heavy-tailed distribution. As 
in other studies, randomization and restarts appear to elimi­
nate these heavy tails. 

What general lessons can be learnt from this study? First, 
search problems met in practice may be neither completely 
structured nor completely random. Since algorithms opti­
mized for purely random problems may perform poorly on 
problems that contain both structure and randomness, it may 
be useful to benchmark with problem generators that intro­
duce both structure and randomness. Second, simple topo­
logical features can have a large impact on the cost of solv­
ing search problems. In particular, search problems involv­
ing graphs with a small world topology can sometimes be 
very difficult to solve. It may therefore be useful to optimize 
algorithm performance for such topological features. Third, 
randomization and restarts is again an effective strategy to 
tackle heavy-tailed distributions. The RGR strategy in which 
the cutoff value increases geometrically shows considerable 
promise. And finally, it really does seem that we live in a 
small world. 
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