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Abstract 

This paper presents part of an on-going project 
to integrate perception, attention, drives, emo­
tions, behavior arbitration, and expressive acts 
for a robot designed to interact socially with 
humans. We present the design of a visual at­
tention system based on a model of human v i ­
sual search behavior from Wolfe (1994). The 
attention system integrates perceptions (mo­
tion detection, color saliency, and face pop-
outs) with habituation effects and influences 
from the robot's motivational and behavioral 
state to create a context-dependent attention 
activation map. This activation map is used to 
direct eye movements and to satiate the drives 
of the motivational system. 

1 In t roduc t ion 
Socially intelligent robots provide both a natural human-
machine interface and a mechanism for bootstrapping 
more complex behavior. However, social skills often re­
quire complex perceptual, motor, and cognitive abilities 
[Brooks et al., 1998]. Our research has focused on a 
developmental approach to building socially intelligent 
robots that utilize natural human social cues to interact 
with and learn from human caretakers. 

This paper discusses the construction of one necessary 
component of social intelligence: an attention system. 
To provide a basis for more complex social behaviors, 
an attention system must direct limited computational 
resources and select among potential behaviors by com­
bining perceptions from a variety of modalities with the 
existing motivational and behavioral state of the robot. 
We present a robotic implementation of an attention sys­
tem based upon models of human attention and visual 
search. We further outline the ways in which this model 
interacts with existing perceptual, motor, motivational, 
and behavioral systems. 

Our implementation is based upon Wolfe's model of 
human visual attention and visual search [Wolfe, 1994]. 
This model integrates evidence from Treisman [1985], 
Julesz [1988], and others to construct a flexible model 

of human visual search behavior. In Wolfe's model, vi­
sual stimuli are filtered by broadly-tuned "categorical" 
channels (such as color and orientation) to produce fea-
ture maps with activation based upon both local regions 
(bottom-up) and task demands (top-down). The feature 
maps are combined by a weighted sum to produce an 
activation map. Limited cognitive and motor resources 
are distributed in order of decreasing activation. This 
model has been tested in simulation, and yields results 
that are similar to those observed in human subjects 
[Wolfe, 1994]. In this paper we do not attempt to match 
human performance (a task that is difficult with cur­
rent component technology), but rather require only that 
the robotic system perform enough like a human that it 
is capable of maintaining a normal social interaction. 
Our implementation is similar to other models based in 
part on Wolfe's work [ I t t i et al., 1998; Hashimoto, 1998; 
Driscoll et al., 1998], but additionally operates in con­
junction with motivational and behavioral models, with 
moving cameras, and it differs in dealing with habitua­
tion issues. 

2 Robot Hardware 
Our robotic platform consists of a stereo active vision 
system augmented with facial features for emotive ex­
pression. The robot, called Kismet and shown in Figure 
1, is able to show expressions (analogous to anger, fa­
tigue, fear, disgust, excitement, happiness, interest, sad­
ness, and surprise) which are easily interpreted by an un­
trained human observer. The platform has four degrees 
of freedom in the vision system; each eye has an inde­
pendent vertical axis of rotation (pan), the eyes share 
a joint horizontal axis of rotation ( t i l t ) , and the entire 
head has a single vertical axis of rotation (pan) at the 
neck. Kismet also has fifteen degrees of freedom in fa­
cial features, including eyebrows, ears, eyelids, lips, and 
a mouth. Each eyeball has an embedded color CCD 
camera with a 5.6 mm focal length. 

The active vision platform is attached to a parallel net­
work of eight 50MHz digital signal processors (Texas In­
struments TMS320C40). The DSP network serves as the 
sensory processing engine and implements the bulk of the 
robot's perception and attention systems. A pair of Mo­
torola 68332-based microcontrollers are also connected 
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Figure 1: Kismet, a robot designed to interact socially 
wi th humans. Kismet has an active vision system and 
can display a variety of facial expressions. 

to the robot. One controller implements the motor sys­
tem for driving the robot's facial motors. The other 
controller implements the motivational system (emotions 
and drives) and the behavior system. The microcon­
trollers communicate w i th the DSP network through a 
dual-ported R A M . 

3 Perceptual Systems 
Our current perceptual systems focus on the pre-
attentive, massively parallel stage of human vision that 
processes information about basic visual features (color, 
motion, various depth cues, etc.). The implementation 
described here focuses on three such pre-attentive pro-
cesses: color, motion, and face pop-outs. In terms of the 
model from Wolfe [1994], our implementation contains 
the bottom-up feature maps, which represent the inher­
ent saliency of a specific image property for each point 
in the visual scene, and incorporates top-down influences 
from motivational and behavioral sources. 

The video signal from each of Kismet's cameras is dig­
itized by one of the DSP nodes wi th specialized frame 
grabbing hardware. The image is then subsampled and 
averaged to an appropriate size. For these ini t ia l tests, 
we have used an image size of which allows us 
to complete all of the processing in near real-time. To 
minimize latency, each feature map is computed by a sep­
arate DSP processor (each of which also has additional 
computational task load). A l l of the feature detectors 
discussed here can operate at multiple scales. 

3.1 Color Saliency Feature Maps 
One of the most basic and widely recognized visual fea­
ture is color. Our models of color saliency are drawn 
from the complementary work on visual search and at­
tention from I t t i , Koch, and Niebur [1998]. The incom­
ing video stream contains three 8-bit color channels 
and which are transformed into four color-opponency 

channels Each input color channel is 
first normalized by the luminance (a weighted average 
of the three input color channels): 

(1) 
These normalized color channels are then used to pro-
duce four opponent-color channels: 

(2) 
(3) 
(4) 

(5) 

The four opponent-color channels are clamped to 8-bit 
values by thresholding. While some research seems to 
indicate that each color channel should be considered in -
dividually [Nothdurft, 1993], we choose to maintain all 
of the color information in a single feature map to sim­
plify the processing requirements (as does Wolfe [1994] 
for more theoretical reasons). The maximum of the four 
opponent-color values is computed and then smoothed 
wi th a uniform 5 x 5 field to produce the output color 
saliency feature map. This smoothing serves both to 
eliminate pixel-level noise and to provide a neighbor­
hood of influence to the output map, as proposed by 
Wolfe [1994]. A single DSP node computes these com­
putations and forwards the resulting feature map both 
to the attention process and a V G A display processor at 
a rate of 25 Hz. The processor produces a pseudo-color 
image by scaling the luminance of the original image 
by the output saliency while retaining the same relative 
chrominance (as shown in Figure 2). 

3.2 Motion Saliency Feature Maps 
In parallel wi th the color saliency computations, a sec­
ond processor receives input images from the frame grab­
ber and computes temporal differences to detect motion. 
The incoming image is converted to grayscale and placed 
into a ring of frame buffers. A raw motion map is com­
puted by passing the absolute difference between consec­
utive images through a threshold function 

(6) 
This raw motion map is then smoothed wi th a uniform 
7 x 8 field. While using a 5 x 5 field would have main­
tained consistency w i th both Wolfe's model and the color 
saliency feature map, using a slightly larger field size al­
lows us to use the output of the motion saliency map as 
a pre-filter to the face detection routine, which has opti­
mized performance in prior tests by a factor of 3 [Scas-
sellati, 1998]. The motion saliency feature map is com­
puted at 25-30 Hz by a single DSP processor node and 
forwarded both to the attention process and the V G A 
display. 

3.3 Face Pop-Out Feature Maps 
While form and size are part of Wolfe's original model, 
we have extended the concept to include other known 
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Figure 2: Overview of the attention system. A variety of visual feature detectors (color, motion, and face detectors) 
combine wi th a habituation function to produce an attention activation map. The attention process influences eye 
control and the robot's internal motivational and behavioral state, which in tu rn influence the weighted combination 
of the feature maps. Displayed images were captured during a behavioral t r ia l session. 

pop-out features that have social relevance, such as faces. 
Our face detection techniques are designed to identify 
locations that are likely to contain a face, not to verify 
wi th certainty that a face is present in the image. The 
face detector is based on the ratio-template technique 
developed by Sinha [199G], and has been previously re­
ported [Scassellati, 1998]. The ratio template algorithm 
was designed to detect frontal views of faces under vary­
ing lighting conditions, and is an extension of classical 
template approaches [Sinha, 1996]. Ratio templates also 
offer multiple levels of biological plausibility; templates 
can be either hand-coded or learned adaptively from 
qualitative image invariants [Sinha, 1996]. 

A ratio template is composed of regions and relations, 
as shown to the left of the face detector in Figure 2. For 
each target location in the grayscale peripheral image, a 
template comparison is performed using a special set of 
comparison rules. The set of regions is convolved w i t h 
a 14 x 16 image patch around a pixel location to give 
the average grayscale value for that region. Relations 
are comparisons between region values, for example, be­
tween the "left forehead" region and the "left temple" 
region. The relation is satisfied if the ratio of the first 
region to the second region exceeds a constant value (in 
our case, 1.1). The number of satisfied relations serves 
as the match score for a particular location; the more 
relations that are satisfied the more likely that a face is 
located there. In Figure 2, each arrow indicates a re­
lation, wi th the head of the arrow denoting the second 

region (the denominator of the ratio). 
The ratio template algorithm has been shown to 

be reasonably invariant to changes in i l lumination and 
slight rotational changes [Scassellati, 1998]. The ratio 
template algorithm processes video streams in real time 
using optimization and pre-filtering techniques, and the 
system has been tested on a variety of lighting condi­
tions and subjects. The algorithm can operate on each 
level of an image pyramid in order to detect faces at 
multiple scales. In the current implementation, due to 
l imited processing capability, we elected to process only 
a single scale for faces. Applied to a 64 x 64 image from 
Kismet's cameras, the 14 x 16 ratio template finds faces 
in a range of approximately 3-6 feet from the robot. This 
range was suitable for our current investigations of face-
to-face social interactions, and could easily be expanded 
wi th additional processors. The implemented face detec­
tor operates at approximately 15-20 Hz. 

4 Behaviors and Motivat ions 
In previous work, Breazeal and Scassellati [2000] pre­
sented how the design of Kismet's motivation and be­
havior systems (modeled after theories ofLorenz [1973]) 
enable it to socially interact w i th a human while regu­
lating the intensity of the interaction via expressive dis­
plays. For the purposes of this paper, we present only 
those aspects of these systems which bias the robot's 
attention (see Figure 3). 

Perceptual st imuli are classified into social st imuli (i.e. 
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Figure 3: Schematic of motivations and behaviors rele­
vant to attention. See text for details. 

people, which move and have faces) which satisfy a drive 
to be social and non-social s t imuli (i.e. toys, which move 
and are colorful) which satisfy a drive to be stimulated 
by other things in the environment. 

For each drive, there is a desired operation point, and 
an acceptable bounds of operation around that point 
(the homeoslatic regime). As long as a drive is within 
the homeostatic regime, that corresponding need is be-
ing adequately met. Unattended, drives drift toward 
an under-stimulated regime. Excessive stimulation (too 
many stimuli or stimuli moving too quickly) push a drive 
toward an over-stimulated regime. 

The robot's drives influence behavior selection by pref­
erentially passing activation to select behaviors. By 
doing so, the robot is more likely to activate behav­
iors that serve to restore its drives to their homeo­
static regimes. The top level (level 0) of the behav­
ior system consists of a single cross-exclusion group 
(CEG) containing two behaviors: s a t i a t e s o c i a l and 
s a t i a t e s t i m u l a t i o n . Each behavior is viewed as a 
self-interested, goal-directed process. W i t h i n a CEG, 
behaviors compete for activation in a winner-take-all 
scheme based upon perceptual factors, motivational fac­
tors, and its own behavioral persistence. Competition 
between behaviors at the top level represents selection 
at the task level. By organizing the top level behaviors 
in . this fashion, the robot can only act to restore one 
drive at a time. This is reasonable since the satiating 
stimuli for each drive are mutually exclusive and require 
different behaviors. Specifically, whenever the s a t i a t e 
s o c i a l behavior wins, the robot's task is to do what it 
must to restore the s o c i a l drive, and when the s a t i a t e 
s t i m u l a t i o n behavior wins, the robot's task is to do 
what it must to restore the s t i m u l a t i o n drive. 

Each behavior node of the top level CEG has a child 
CEG (level 1) associated wi th i t . Once a level 0 behavior 
wins the competition, it activates its child CEG at level 

1. Subsequently, the behaviors wi th in the active level 
1 CEG compete for activation. Competition between 
behaviors wi th in the active level 1 CEG represents com­
petition at the strategy level. Each behavior has its own 
distinct conditions for becoming relevant and winning 
the competition. For instance, the a v o i d person be­
havior is the most relevant when the robot's social drive 
is in the overwhelmed regime and a person is stimulat­
ing the robot too vigorously. The goal of this behavior is 
to reduce the intensity of stimulation. If successful, the 
s o c i a l drive w i l l be restored to the homeostatic regime. 
Similarly, the goal of the seek person behavior is to ac­
quire a social stimulus of reasonable intensity. If success­
ful, this w i l l serve to restore the s o c i a l drive from the 
under-stimulated regime. The engage person behavior 
is active by default (i.e. the s o c i a l drive is already in 
the homeostatic regime and the robot is receiving a good 
quality stimulus). 

5 A t t e n t i o n Sys tem 

The attention system must combine the various effects 
of the perceptual input wi th the existing motivational 
and behavioral state of the robot both to direct limited 
computational resources and to select among potential 
behaviors. Figure 2 shows an overview of the attention 
system. 

5.1 Combin ing Perceptual Inputs 

Each of the feature maps contains an 8-bit value for each 
pixel location which represents the relative presence of 
that visual scene feature at that pixel. The attention 
process combines each of these feature maps using a 
weighted sum to produce an attention activation map 
(using the terminology of Wolfe [1994]). The gains for 
each feature map default to values of 200 for color, 40 
for motion, and 50 for face detection. The attention 
activation map is thresholded to remove noise values, 
and normalized by the sum of the gains. Connected ob­
ject regions are extracted using a grow-and-merge pro­
cedure wi th 8-connectivity. To further combine related 
regions, any regions whose bounding boxes have a sig­
nificant overlap are also merged. 

Statistics on each region are collected, including the 
centroid, bounding box, area, average attention activa­
t ion score, and average score for each of the feature maps 
in that region. The tagged regions that have an area 
in excess of 30 pixels are sorted based upon their av­
erage attention activation score. The attention process 
provides the top three regions to both the eye motor 
control system and the behavior and motivational sys­
tems. The eye motor control system uses the centroid 
of the most salient regions to determine where to look 
next. The top-down processes use the attention activa­
t ion score and the individual feature map scores of the 
most salient region to determine which of the drives and 
behaviors wi l l become activated. 
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5.2 At ten t ion Drives Eye Movement 

The eye motor control process acts on the data from 
the attention process to center the eyes on an object 
within the visual field. Our current implementation uses 
a static linear mapping between image position and eye 
position, which has been sufficient for our init ial inves­
tigations. We are currently in the process of converting 
to a self-calibrated system that learns the sensori-motor 
mapping for foveation similar to that described by Scas-
sellati [1998]. 

Each time that the eyes move, the eye motor process 
sends two signals. The first signal inhibits the motion 
detection system for approximately 600 msec, which pre­
vents self-motion from appearing in the motion feature 
map. The second signal resets the habituation state, 
which is described below. 

Figure 4: Changes of the face, motion, and color gains 
from top-down motivational and behavioral influences 
(top). When the s o c i a l drive is activated by face stimuli 
(middle), the face gain is influenced by the seek people 
and avoid people behaviors. When the s t i m u l a t i o n 
drive is activated by color stimuli (bottom), the color 
gain is influenced by the seek toys and avoid toys 
behaviors. Al l plots show the same 4 minute period. 

5.3 Hab i t ua t i on 
For our robot, the current object under consideration is 
always the object that is in the center of the visual field.1 

The habituation function can be viewed as a feature map 
that initially maintains eye fixation by increasing the 
saliency of the center of the field of view and slowly de­
cays the saliency values of central objects unti l a salient 
off-center object causes the eyes to move. The habitua­
tion function is a Gaussian field centered in the 
field of view wi th peak amplitude of 255 (to remain con­
sistent with the other 8-bit values) and = 50 pixels. It 
is combined linearly with the other feature maps using 
the weight 

(7) 
where is the weight, is the time since the last habit­
uation reset, is a time constant, and W is the maximum 
habituation gain. Whenever the eyes move, the habitu­
ation function is reset, forcing to W and amplifying 
the saliency of central objects until a time when = 0 
and there is no influence from the habituation map. As 
time progresses, decays to a minimum value of 
which suppresses the saliency of central objects. In the 
current implementation, we use a value of W = 10 and 
a time constant = 5 seconds. 

The entire attention process (with habituation) oper­
ates at 10-25 Hz on a single DSP processor node. The 
speed varies with the number of attention activation pix­
els that pass threshold for region growing. While this 
code could be optimized further, rates above 10 Hz are 
not necessary for our current purposes. 

5.4 Mot i va t ions and Behaviors Inf luence 
Feature M a p Gains 

Kismet's drives and behaviors bias the attentional gains 
based on the current internal context to preferentially at­
tend to behavior ally relevant stimuli. Behaviors that sa­
tiate the s t i m u l a t i o n drive influence the color saliency 
gain because color is characteristic of toys. Similarly, the 
face saliency gain is adjusted when the robot is tending 
to its s o c i a l drive. Active level 1 behaviors influence 
attentional gains in proportion to the intensity of the 
associated drive. 

As shown in Figure 3, the face gain is enhanced when 
the seek people behavior is active and is suppressed 
when the avoid people behavior is active. Similarly, 
the color gain is enhanced when the seek toys behavior 
is active, and suppressed when the avoid toys behavior 
is active. Whenever the engage people or engage toys 
behaviors are active, the face and color gains are restored 
to their default values, respectively. Weight adjustments 
are constrained such that the total sum of the weights 
remains constant at all times. Figure 4 illustrates how 
the face, motion, and color gains are adjusted as a func­
tion of drive intensity, the active level 1 behavior, and 
the nature and quality of the perceptual stimulus. 

1This is extremely relevant on our other robotic platforms 
which have a second camera that captures a high resolution 
foveal image. 
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Figure 5: Preferential looking based on habituation and top-down influences. When presented wi th two salient 
stimuli (a face and a brightly colored toy), the robot prefers to look at the stimulus that has behavioral relevance. 
Habituation causes the robot to also spend time looking at the non-preferred stimulus. 

6 Results and Evaluation 
Top-down gain adjustments combine wi th bottom-up ha­
bituation effects to bias the robot's gaze preference (see 
Figure 5). When the seek people behavior is active, 
the face gain is enhanced and the robot prefers to look 
at a face over a colorful toy. The robot eventually ha­
bituates to the face stimulus and switches gaze briefly 
to the toy stimulus. Once the robot has moved its gaze 
away from the face stimulus, the habituation is reset and 
the robot rapidly re-acquires the face. In one set of be-
havioral trials when seek people was active, the robot 
spent 80% of the time looking at the face. A similar af­
fect can be seen when the seek t o y behavior is active 
— the robot prefers to look at a toy over a face 83% of 
the time. 

The opposite effect is apparent when the a v o i d 
people behavior is active. In this case, the face gain 
is suppressed so that faces become less salient and are 
more rapidly affected by habituation. Because the toy is 
relatively more salient than the face, it takes longer for 
the robot to habituate. Overall, the robot looks at faces 
only 5% of the time when in this behavioral context. A 
similar scenario holds when the robot's avo id t o y be­
havior is active — the robot looks at toys only 24% of 
the time. 

7 Future W o r k 
In this paper we have demonstrated an attentional sys­
tem that combines bottom-up perceptions and habitua­
t ion effects w i th top-down behavioral and motivational 
influences. This results in a system that directs eye gaze 
based on current task demands. In the future, we intend 
to construct a richer set of perceptual inputs (depth, 
orientation, and texture) and motor responses (smooth 
pursuit tracking, vergence, and vestibulo-ocular reflex). 
We are also currently combining this system wi th ex­
pressive behaviors to facilitate social interaction wi th a 
human. 
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