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A b s t r a c t 

Temporal aliasing artifacts are common in both 
computer generated and natural motion se­
quences. One of the most striking manifesta­
tions of temporal aliasing is the apparent re-
versal of motion commonly referred to as the 
"wagon wheel effect." In this paper, we ex­
amine temporal aliasing from the standpoint of 
joint spatiotemporal/spatiotemporal-frequency 
representations. We show that apparent mo­
tion reversal can be explained using these repre­
sentations, and demonstrate that a motion es­
t imation algorithm based on such a representa­
tion (the 3-D Gabor transform) can accurately 
predict this illusion. 

1 I n t r o d u c t i o n 
In temporal aliasing, components of the image sequence 
with high temporal frequency appear at lower frequen­
cies due to an insufficient temporal sampling rate (com­
monly referred to as the frame rate). These components 
affect the visual quality of the sequence in two respects. 
The first, most noticeable at low frame rates, is a disrup­
tion in the smoothness of perceived motion (a breakdown 
of the apparent motion illusion underlying all motion 
picture display methods). Although predicting the sam­
pling rate at which this effect wil l become visible is not 
tr ivial, the effect itself is intuitive - the motion appears 
nonsmooth because too few samples are presented. The 
second, which may be seen at comparatively high frame 
rates, is a distortion of the direction and speed of the 
perceived motion. This distortion is common in current 
f i lm and video, and manifests in connection with ob­
jects that exhibit both significant high-spatial-frequency 
components (e.g., the spokes of a wheel) and that move 
wi th relatively high speed (the wheel is turning relatively 
rapidly). In the classical manifestation of this effect, a 
rotating wheel is seen to reverse its direction of rotation 
as the rate of rotation increases - the "wagon wheel ef­
fect." This effect is not so intuitive, and to the author's 
knowledge the connection between aliasing and apparent 
motion reversal, while observed, has not been explained 
in the literature. 

The selection of an appropriate temporal sampling 
rate for a given application is of significant practical im­
portance. A broad range of rates are in use, spanning 
from the very low rates (10 frames per second or less) 
used in current visual communications systems, through 
the moderate 24 - 30 frame per second rates used in an­
imation, film, and standard television, to 60 frames per 
second in high definition television. Much higher sam-
pling rates are used in scientific applications (hundreds 
and even thousands of frames per second), and are be­
coming increasingly common and economically viable as 
technology improves. For sequences involving high de-
grees of motion (particularly when detailed spatial struc-
ture must also be represented), temporal aliasing is the 
most important phenomenon in determining the tempo-
ral sampling rate1, providing an additional motivation 
to understand it fully. 

Motion is most intuitively a spatiotemporal phe­
nomenon. However, it has been shown that it can also 
be characterized in the frequency domain via Fourier 
analysis. [Watson and Ahumada, 1983] have used this 
approach to investigate the relationship between frame 
rate, the bandwidth of the human visual system, and 
the perceived smoothness of motion for a moving line 
stimulus. Their results clearly demonstrate the value of 
frequency domain analysis for understanding aspects of 
visual motion perception. 

In this paper, we consider the manner in which 
aliasing affects sequences at comparatively high frame 
rates, where motion is generally perceived as smooth, 
yet distortions of speed and direction may be visi-
ble. A method is demonstrated by which motion esti-
mates consistent wi th those perceived visually are ob­
tained, in cases both with and without aliasing, for 
sequences consisting of regions wi th different motions 
(a task that cannot be undertaken wi th conventional 
Fourier analysis). To do so, we utilize a generaliza-
t ion of frequency domain motion analysis, based on 
a joint spatiotemporal/spatiotemporal-frequency repre-

lNote that we distinguish here between sampling and 
screen update rates, the later being driven primarily by the 
perception of wide area flicker. Screen updates need not be 
unique samples, a fact reflected, e.g., in current film to video 
conversion practice. 
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Figure 1: The spectrum of a static sinusoid w i th fre­
quency and the same sinusoid moving wi th velocity 

sentation (the 3-D Gabor transform). 

2 M o t i o n and Al iasing in the 
Frequency Domain 

The frequency domain characterization of motion has 
been studied for some t ime, and for certain situations is 
well understood. In the case of an ini t ial ly static image 
undergoing translat ion w i th constant velocity, motion is 
particularly straightforward to describe in the frequency 
domain. The spectrum of the sequence lies in an oblique 
plane, the slope of which indicates the velocity of the 
motion. 

Consider a simple 1-D continuous sinusoidal " im­
age" w i th spatial frequency moving w i th velocity 

When (the image is 
static), the Fourier transform of the sequence consists 
of two components at the spatial frequencies As 

increases, the temporal frequency coordinates of the 
two components change from zero to respectively 
(see Figure 1). The slope of the line connecting the two 
components is 

As is well known from elementary sampling theory, 
if the sinusoid is spatially and temporally sampled, the 
spectrum described above is scaled and replicated on 
centers determined by the sampling rates. We wi l l as­
sume the spatial sampling rate is sufficient, and focus on 
the temporal sampling. As i l lustrated in Figure 2, for 
a given temporal sampling rate the sequence can be 
either oversampled, crit ically sampled, or undersarnpled 
depending on whether r is less than, equal to, or greater 
than Temporal aliasing occurs when the compo­
nents of the replicated spectra occur at frequencies less 
than or equal to (the later two cases). Again this 
is well known, but sampling theory does not predict the 
visual impact of this aliasing. 

Consider these two cases from the standpoint of the 
apparent mot ion represented (the slopes of the line or 
lines connecting the components of the spectra w i th tem­
poral frequency less than however. In the cr i t i ­
cally sampled case there are in fact two lines, w i th slopes 

of indicating simultaneously motions of the same 
speed but opposite directions. In this case, one would ex­
pect the sequence to appear essentially static (although 
a " j i t ter" or "flashing" might be seen). In the undersarn­
pled case there is only a single line, w i th slope depending 
on r and the degree of undersampling. For moderate un-
desampl ing the sign of the slope is positive indicating 
motion in the direction opposite to that of the original 
sequence. This is the basis of the "wagon wheel" i l lusion. 

The above simple example might lead one to ex­
pect that temporal aliasing and its effects on perceived 
motion can be completely characterized using Fourier 
techniques. However, in sequences of practical interest 
(which may include mult iple objects in independent mo­
tion) this is not the case. Aliasing is a local phenomenon, 
and the artifacts associated wi th aliasing are restricted 
to regions of the sequence which are insufficiently sam­
pled. In practice, these regions typically correspond to 
objects or surfaces exhibit ing high spatial frequencies, 
that are also moving at relatively high velocities. A l ­
though aliasing is certainly reflected in the Fourier trans-
forms of sequences of this type, the connection between 
the aliased spectral components (or indeed any of the 
spectral components) and the spatiotemporal locations 
of the associated regions or objects cannot in general be 
made. For this reason, the Fourier transform cannot be 
used for the analysis of motion in complex sequences. 

To identify the locations and motions of objects, fre­
quency analysis localized to the neighborhoods of the 
objects is required. Windowed Fourier analysis has 
been proposed for such cases [Gafni and Zeevi, 1979]. 
However, the accuracy of a motion analysis method of 
this type is highly dependent on the resolution of the 
underlying transform, in both the spatiotemporal and 
spatiotemporal-frequency domains. It is known that the 
windowed Fourier transform does not perform particu­
larly well in this regard. Fi l ter bank-based approaches to 
this problem have also been proposed, e.g. [Fleet and 
Jepson, 1990], [Heeger, 1987]. A shortcoming of these 
approaches is the lossy nature of the proposed filter-
banks, which can introduce a bias in the motion esti­
mates. 

There are a variety of alternative methods for local 
frequency analysis beyond the windowed Fourier trans-
form. Examples include the Wigner distr ibut ion (a bi l in­
ear local frequency representation) and the Gabor trans-
form (which is linear). Because they can provide a large 
degree of spatiotemporal locality and spatiotemporal-
frequency resolution simultaneously (wi th in the bounds 
of uncertainty), the use of these techniques is part icu­
larly promising for frequency-based motion analysis w i th 
mult iple motions. The use of the Wigner distr ibut ion 
for this task was examined in [Jacobson and Wechsler, 
1987]. However, the bilinear nature of the Wigner dis­
t r ibut ion (and the attendant cross terms produced by 
multicomponent signals) can make motion analysis dif­
ficult, in practice. A motion analysis technique based 
on the Gabor transform has recently been demonstrated 
(Reed, 1997). We wi l l briefly described this approach in 
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Figure 2: For a sinusoidal signal of spatial frequency Uo sampled temporally with frequency the spectra resulting 
from (left) oversampling, (middle) critical sampling, and (right) undersampling. The original spectral components 
are represented by filled circles, the replicated components by unfilled circles. 

the following section, and use it to investigate apparent 
motion reversal in Section 4. 

3 M o t i o n Analysis using the 3-D Gabor 
Transform 

The Gabor representation was first introduced for time-
frequency analysis [Gabor, 1946], In this representation, 
the signal of interest is expressed as a weighted sum of 
basis functions formed by the products of shifted (usu­
ally Gaussian) windows and complex exponentials. The 
relative popularity of this representation has been due in 
part to the good spatial and spectral localization prop­
erties of the Gabor functions. It has also been demon­
strated [Marcelja, 1980], [Daugman, 1985], [Webster and 
De Valois, 1985], [Field and Tolhurst, 1986], [Jones and 
Palmer, 1987] that the 2-D Gabor functions agree rea­
sonably well with receptive-field profiles measured for 
simple cells in the cat striate cortex. 

An image sequence can be considered a 3-dimensional 
(spatiotemporal) volume of data. Extending the Gabor 
representation to 3-D, this volume can be represented as 
the weighted sum of 3-D Gabor functions of the form 

(1) 
where 

is a 3-D Gaussian function, and determine 
the scale of the Gaussian along the respective axes, 

is the center of the function in the spatiotem­
poral domain, and is the center of support in 
the spatiotemporal-frequency domain. 

A complete basis can be formed using the Gabor func-
tions, resulting in an invertible transform (the Gabor 
transform). In the discrete case, for an image sequence 
with spatial dimensions N by M and P frames in length, 
N.M.P basis functions are required. The sequence can 
then be expressed at each discrete point as 

(2) 

where for completeness, 
denotes the Gabor basis func­

tion with spatiotemporal and spatiotemporal-frequency 
centers of and respectively, and 

is the associated coefficient, which is gen­
erally complex. There is substantial freedom in selecting 
the locations of these basis functions, while maintaining 
completeness. Largely for computational reasons, in this 
work the functions are centered on a regular cubic grid. 

Because the Gabor functions are not orthogonal, the 
Gabor transform coefficients cannot be calculated by 
simply computing the inner products of the basis func­
tions and the signal to be transformed (or, equivalently, 
by convolving wi th the basis functions and subsampling). 
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Due to substantial interest over the past several years in 
the computation of this transform, there are a number of 
alternative methods available. The method used in this 
work is a 3-D extension of the algorithm first reported 
in [Ebrahimi et al., 1990]. 

From the 3-D Gabor transform of an image sequence, 
the motion parameters can be estimated at each spa-
tiotemporal location by fitting the surface representing 
the spectral signature of the motion to the local spec­
trum. In the case of uniform translational motion, the 
slope of the planar spectrum is sought, yielding the mo­
tion vector There are a number of ways in which this 
can be done. 

A straightforward approach to estimating the slope of 
the local spectra, used in the examples which follow, is 
to form vectors of the and coordinates of the 
basis functions that have significant energy (magnitudes 
exceeding a threshold) for each point in the sequence at 
which basis functions are centered. The motion vector 
and the coordinate vectors and at each point are 
related as 

(3) 

where An LMS estimate of the motion vector 
at a given point can then be found using the pseudoin-
verse of A: 

(4) 

4 Results 
To examine the effects of temporal aliasing, we will first 
use a simple test sequence in which each frame includes 
two fields, consisting of both horizontal and vertical si­
nusoids wi th frequencies of and radians/pixel 
respectively, one field above the other. The sinusoids 
are scaled and offset so that all pixel intensities fall in 
the range 0 to 255. The sequence is 24 frames in length, 
with 256-by-256 pixels per frame. As the sequence pro­
gresses, the top and bottom fields move to the right at 
the same rate. We wil l consider three rates of transla­
tion: 1, 2, and 3 pixels/frame. The first three frames 
from the 3 pixel/frame sequence are shown in Figure 3. 
The top field is oversampled for all three velocities. The 
bottom field is oversampled, critically sampled, and un-
dersampled, respectively. 

We next compute the Gabor transform of the se­
quences, using a complete basis on 8 pixel centers in 
space-time, wi th a 3.5 pixel offset in each dimension, 
spaced apart in spatiotemporal- frequency, and with 

Computing the slope of the plane 
which best fits the local spectra for each sequence, the 
motion estimates shown in Figure 4 result for the point 
in time between frames 12 and 13 of the sequences. Note 
that the estimates are located between frames because 
the basis functions used in the transform are centered 
between frames. The arrows in the figure are scaled to 

the maximum velocity for each case. Similar results are 
obtained between frames 4 and 5, and frames 20 and 21. 

As shown to the left in Figure 4, for a translation of 1 
pixel/frame where both fields are oversampled, the mo­
tion estimates for the two fields are correct and identical 
(with the exception of some edge effects). For 2 pix­
els/frame (Figure 4, center), the estimate for the upper 
field (which is still oversampled) remains correct, while 
the motion estimate for the lower field is zero. In this 
case, the lower field is critically sampled. Visually, this 
field appears to "flash*' or "j itter", but not to translate, 
which is consistent with the motion estimate. In the 
third sequence (Figure 4, right), the motion estimate for 
the (oversampled) upper field is correct (3 pixels/frame 
to the right). The estimate for the lower field, which is 
now undersampled, is 1 pixel/frame in the reverse direc­
tion, exhibiting the apparent motion reversal discussed 
above. Visually, the lower field appears to move to the 
left, consistent with the estimate. 

We next consider the sequence shown in Figure 5, 24 
frames in length, with 256-by-256 pixels per frame. The 
background is static, consisting of a sinusoidal "plaid" 
field with horizontal and vertical frequencies of 7r/4 ra-
dians/pixel. Superimposed on this background are two 
blocks, 80 pixels square, starting in the upper and lower 
left of the frame. The first has spatial frequency com­
ponents identical to the background, while the second 
has horizontal and vertical frequency components of 7r/2. 
The sinusoidal plaids are each scaled and offset, so that 
all pixel intensities fall in the range 0 to 255. As the 
sequence progresses, the two blocks move to the right at 
3 pixels/frame. 

The 3-D Gabor transform of the sequence was com­
puted as in the previous example. Computing the LMS 
estimate described in equation 4 the motion estimates 
shown in Figure 6 result, for the points in time between 
frames 4 and 5, 12 and 13, and 20 and 21,respectively. 

This example illustrates two points. Viewed as ob­
jects, the surface characteristics of the blocks lead to 
correct motion estimates for the interior of the upper 
block (consistent with the object motion), but incorrect 
(reversed in direction and reduced in speed) for the in­
terior of the lower block. This is exactly as found for 
the two fields moving at 3 pixels/frame in the previous 
example. However, as is clear by examining Figure 6 
from left to right, the motion of the blocks themselves 
remains correctly represented. They both move from left 
to right, retaining the same relative position. This is the 
same behavior observed in the classical "wagon wheel" 
illusion, where the wheel appears to reverse its direction 
of rotation and to rotate at a lower rate, but as a whole 
continues to move in the proper direction at the proper 
speed. 

5 Conclusions 

In this paper we have investigated the mechanism un­
derlying apparent motion reversal in image sequences 
which exhibit temporal aliasing. We have demon-
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Figure 3: The first three frames from the first test sequence. 

Figure 4: The optical flow fields for translations of 1, 2 and 3 pixels/frame. 

Figure 5: From left to right: frames 5, 9, 13 and 21 (of 24) from the second test sequence. 
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Figure 6: The optical flow fields between frames 4 and 5, 12 and 13, and 20 and 21. 

strated analytically and experimentally that this phe­
nomenon can be both understood and predicted us-
ing spatiotemporal/spatiotemporal-frequency represen­
tations. Using a motion estimation procedure based on 
one such representation, the 3-D Gabor transform, mo­
tion estimates consistent w i th those perceived visually 
were obtained in cases w i th and without aliasing. F i ­
nally, it was shown that overall object motion informa­
tion is preserved using a procedure of this type, even 
when the surface properties of the object induce appar­
ent motion reversal over the object surface. This is just 
as observed in the classical "wagon wheel" illusion. 
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