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Abstract 
The paper presents a structured modeling lan­
guage (SML) and a relational database frame-
work for specification and automated genera­
tion of causal models. The framework describes 
a relational database scheme for encoding a li­
brary of causal network templates modeling the 
basic components in a modeling domain. SML 
provides a formal language for specifying mod­
els as structured components that can be com­
posed from the basic components. The lan­
guage enables specification of models as param­
eterized relational queries that can be instan­
tiated for specific model instances. The pa­
per describes an algorithm that, given a library 
and a specification, computes a causal model 
in time and space linear in the number of ba­
sic components. The algorithm enables model 
reuse by combining model fragments from the 
template library to compose new models. The 
present automated modeling approach has been 
implemented using the structured query lan­
guage (SQL) and a relational database envi­
ronment. The approach has been successfully 
used for modeling an automated work-cell in a 
real-life digital manufacturing application. 

1 Introduction 
Automated modeling is a key for developing automated 
reasoning applications in domains such as industrial au­
tomation and digital manufacturing. The models can be 
used to support reasoning tasks for two main objectives. 
One, to reduce the commissioning time by simulating, 
verifying and validating the intended function of a sys­
tem before it is built. Two, to reduce downtime after 
a system is built by diagnosing and identifying faults. 
Building adequate models is typically a time consuming 
process involving much iteration and requiring in-depth 
knowledge of the particular domain. 

The models considered here are in the form of causal 
networks [Pearl, 1988; Dechter and Pearl, 1991; Dar-
wiche and Pearl, 1994]. Causal networks represent cause-
and-effect relationships in a system by a directed acyclic 

graph in which nodes axe the variables and the edges 
represent direct causal influence. In addition to the 
graph, causal network models include quantification of 
the causal influence. Bayesian networks [Pearl, 1988] 
quantify the causal influence by conditional probabilities 
that are attached to each cluster of parents-child nodes in 
the network. Here we adopt deterministic quantification 
in the language of directed constraint networks [Dechter 
and Pearl, 1991]. 

The significance of the problem of automated mod­
eling in causal networks is well-known [Laskey and 
Mahoney, 1996]. Recently, a number of approaches 
have been proposed based on object-oriented languages, 
which allow complex domains to be described in terms 
of interrelated objects [Roller and Pfejffer, 1997; Laskey 
and Mahoney, 1997]. The focus of those works is on 
the representation of probabilistic knowledge as network 
fragments and not on algorithms for constructing mod­
els from the knowledge base. The contributions of this 
paper are a relational framework for encoding the causal 
relationships in a modeling domain; a language for model 
specification and an algorithm for constructing causal 
models. 

The paper is organized as follows. Section 2 describes 
SML relational framework and the concept of a template 
library. Section 3 gives the model specification language 
and a detailed example. Section 4 describes the algo­
rithm for constructing causal models. Sections 5 presents 
discussion and related work and Section 6 concludes, 

2 Structured Modeling Language 
SML enables specification of models using a library of 
basic components. Basic components are the building 
blocks in a modeling domain. Examples of basic compo­
nents in the industrial automation domain are a proxim­
ity switch, a cylinder, a valve, and a solenoid actuator. 
We start with a set of definitions then formalize our con­
cept of model library and then give an example. 

Definition 1 [Relational Databases] [Maier, 1983] Let 
be a set of attributes, each with an as­

sociated domain. A relational database scheme R over 
U is a collection of relation schemes , 
where A re-
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lational database d on database scheme R is a collec­
tion of relations . Each relation on re­
lation scheme , written , is a set of value tu­
ples for the attributes in from their 
respective domains, and we write t.X to denote the 
value assigned by a tuple t to a subset . A 
key of a relation is a minimal subset 
that uniquely identifies a tuple within the relation. A 
foreign key is a set of attributes within one relation that 
matches the key of some (possibly the same) relation. 
A relation scheme may contain more than one key and 
the keys explicitly listed within a relation scheme are 
called designated keys. We distinguish one of the desig­
nated keys as the primary key. To denote the primary 
key of a relation, we underline the attribute names in 
the key. Let X and Y be subsets of . we say that a 
relation satisfies the functional dependency (FD) 

if for every X-value x, there corresponds only 
one value for Y, i.e., the set 
has at most one tuple. A relation scheme Ri embod­
ies the FD if Ki', is a designated key for 
Ri. A database scheme R represents the set of FDs 
G = some embodies X —► Y}. R 
completely characterizes a set of FDs F if 
Definition 2[Causal Networks] Let U = {U i,...,Un} 
be a set of attributes, each with an associated do­
main. A causal network is a pair (G,d) where G is 
a directed acyclic graph whose nodes are U and d = 

is a relational database such that: 
(1) each scheme Ri corresponds to a family in G, i.e., a 
set consisting of a child node and all its parent nodes 
pa , (2) d completely characterizes the set of FDs, 

The above database definition of causal networks maps 
directly to that of directed constraint networks [Dechter 
and Pearl, 1991]. The mapping from the database rep­
resentation to that in propositional logic [Darwiche and 
Pearl, 1994] is also straightforward. For each relation r, 
on the scheme I do: for each tuple 

output the propositional sentence: 

Since each embodies the the propo­
sitional sentences above are ensured to be consistent. 

2.1 Template Model L ibrary 
The library describes the structure and function of the 
basic components in a given modeling domain. Basic 
components are modeled using templates of causal net­
work fragments encoded in a relational database. The 

1The tuples in a relation ri, do not have to cover all value 
instantiations of the parent variables. This means that the 
quantification of the causal relation can be incomplete. The 
more complete the quantification the more specific the pre­
dictions that can be made using the model. 

structure of a causal network is described by a set of 
families in a directed graph. Each family may have a 
distinguished parent called assumption. A basic tem­
plate consists of a directed acyclic graph (dag) G, and a 
set of functional relations defined 
on the dag's families R1,.., Rn for all the non-root nodes 

. The structure of a basic 
template of type B is defined by its relational scheme, 

(1) 
We now describe the template library encoding of the 

causal relationships. The encoding consists of two rela­
tional tables: struc and func. The struc scheme is: 

Each tuple in the struc relation corresponds to a fam­
ily in a causal network fragment. It is identified by a 
structure id, Sid, and is associated with a basic com­
ponent type, Type. The family consists of the output 
variable, OutVar which is the child, and the input vari­
ables, InVar_l, ...,, InVarn, which are the parents. 
The domains of those variables are indexed by the in­
teger attributes: ..., InVar_n_Domld, 
OutVar-Domld. The number of input variables, n, is 
determined by the size of the largest family in the mod­
eling domain. Families with m parents, m < n, will 
have null values for all inputs with index greater than 
m. AssumDomID is an index identifying the assump­
tion domain. If a family includes no assumption then 
AssumDomID is null. The func relation scheme is: 
func(Sid,As8um, (3) 
Sid is a foreign key referencing the structure id in the 
struc relation. 

The library defines the value domains of the various 
attributes in a table having the scheme, 

(4) 
Domld is the domain identifier, and the allowed values in 
the domain are: , ..., Val_k. Here, k is a param­
eter determined by the maximum number of values in a 
domain. Each value Val_i has an associated cost, which 
is a non-negative integer. Only the domains of the as­
sumption attributes have associated costs; the costs for 
all other domains have the default value zero. The do­
mains for the assumption attributes provide the fault in­
formation required for model-based diagnosis [EI Fattah 
and Dechter, 1995]. 

The relation provides the value of the output variable as 
a function of the values of the assumption and the input 
variables. 
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2.2 Example 
Figure 1 shows an example of a basic template in the 
industrial automation domain. The figure depicts the 
schematic and the dag representation of the template's 
structure for a basic component of type cylinder. A 
cylinder has two inputs (root nodes) corresponding to 
the extend and retract pressures: EXT_P and RET_P. 
There is one assumption variable, ASSUM (also a root 
node), which represents the mode of operation of the 
cylinder. The cylinder's piston rod position, POS causally 
depends on the input pressures and the assumption. The 
cylinder has two outputs (the leaf nodes), which are the 
extended EXTD and retracted RETD positions of the pis­
ton. Table 1 shows the tuples in the struc relation 
for cylinder. The values and the costs for the various 
domain indexes are given in the dom table shown in Fig­
ure 2. Table 3 shows a partial set of tuples for cylinder 
in the func relation. The first tuple says that if the cylin­
der is ok and both pressure inputs are off then the piston 
position is neutral. 

Figure 1: Basic template for a cylinder: (a) schematic, 
(b) dag of causal network fragment. 

3 Model Specification Language 
SML specification of models is based on the concept 
of structured template. Structured templates represent 
components that are composed of basic components. 
Examples of decomposable components in the industrial 
automation domain are work cells, fixtures, clamps, pins 
and dumps. We start by defining a structured template, 

then formalize the specification language and give an ex­
ample. 

3.1 Structured Template 
A structured template is specified by the basic templates 
of its sub-components and by the connections between 
those sub-components. Formally, a structured template 
composed of m basic templates can be specified as a 
pair: (5, C). S is an ordered tuple of the families of the 
m basic templates, 

(6) 
C is a set of pairs representing the structural connections 
between the basic templates: 

(7) 
Each element in C is a connection from a node which 
is the child in some family to a parent node 

in another family in S such that i pre­
cedes j. 

3.2 Specification Language 
Figure 2 gives the grammar of SML model specifica­
tion language in EBNF (Extended Bacchus Naur Form). 
Terminals are enclosed in double quotes, non-terminals 
are in italic, anything between square brackets are op­
tional. The grammar says that a structured compo­
nent is specified by one or more sub-components. Each 
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Figure 2: SML specification grammar 

sub-component is specified by the function, sub.comp. 
The parameters of that function are: the structured 
component label, struc-compJabel; the basic compo­
nent label, basic_compJabel\ the basic template struc­
ture id, struc_id and the connections from other sub­
components. A connection consists of one or more refer­
ences from the outputs of parent sub-components. The 
sub.comp function returns a reference to the output of 
the defined sub-component which can then be used as 
the "from" attribute to another child sub-component. 
The connection in a sub-component definition is op­
tional. If included then the outputs of the parent sub­
components are used to replace the inputs in the defined 
sub-component. Else, the inputs to the defined sub­
component are determined by the struc relation tuple 
identified by struc_id. 

Figure 3: Clamp pneumatic circuit 

Model specification is encoded in a relational table 
with the following scheme, 

sved(SCid, SC Label, SubCompLabel, Sid, 
From_1,..., From_n) (8) 

SCid denotes a structured component id and is the pri­
mary key. SCLabel is the structured component label. 
SubCompLabel is the label of a sub-component whose 
type is identified by the structure id, Sid. From _1, 
..., From_n are foreign keys consisting of the SCid's of 
the parent sub-components whose outputs are connected 
to the respective inputs of the basic structure template 
identified by Sid. The function sub-comp in the SML 
specification has the side effect of adding a tuple repre­
senting the sub-component entry to the spec table. The 
function then returns the SCid of that tuple which can 
be used to encode the "From" connections as explained 
earlier. 

3.3 Example 
Figure 3 shows the pneumatic circuit for an industrial 
clamp. The function of a clamp is to hold a machine 
part in place on a fixture during operation on the part, 
e.g., a robot welding operation. The clamp has two land­
mark positions; namely the extended and retracted po­
sitions. The extended (retracted) position is produced 
by the control valves that connect the extend (retract) 
port of the cylinder to pressurized air and the retract 
(extend) port to the exhaust. The circuit shows two 
pneumatic valves connected in series. The main valve 
has two solenoid actuators: one for extend and the other 
for retract. The safety valve is a spring-return valve with 
only one actuator for extend. For the clamp to extend 
(retract), the extend actuators of both valves must be on 
(off) and the retract actuator of the main valve must be 
off (on). The extend and retract position of the clamp is 
sensed by proximity switches that sense the piston rod 
at the extended and retracted positions. 

Figure 4 shows the structured template specification 
of a clamp set. The subcomponents of a clamp set in­
clude power, air, actuators, valves, cylinders and prox­
imity switches. Each clamp in the set is associated with 
a cylinder and all cylinders are actuated by the same 
valves. The specification is stated as an SQL procedure 
whose parameters are the clamp set label, Comp, and a 
variant array of cylinder labels. Each sub-component en­
try in the specification references a structure id, SID. For 
example the first sub-component, Power, has SID =15, 
which references a basic component of type power in the 
struc table. Naturally, the SID values are implementa­
tion dependent. The next subcomponent entries are: 
air, the extend and retract actuators of the main valve, 
and the extend actuator for the safety valve. Note that 
those components have no from arguments which means 
that their inputs are exogenous variables coming from 
outside the clamp set. The next three subcomponent-
entries specify the main valve and the next two specify 
the safety valve. The main valve position, Vlvl.Pos, has 
two inputs coming from the main extend and retract ac­
tuators. The main valve pressure lines A and B both 
take input from the the main valve position. The next 
two entries for the safety valve are similar. The equation 
for the safety valve B output Vlv2~B takes an input from 
the main valve B output VlvJ.B, which implies in-series 
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Figure 4: Specification of a clamp set 

connection as indicated by the schematic in Figure 3. 
The "for" loop in the procedure creates for each element 
in the cylinders list five subcomponent entries: Three en­
tries for the cylinder and two for the cylinder-extended 
and retracted proximity switches. The air inputs to each 
cylinder come from the main valve A line and the safety 
valve B line as in the schematic in Figure 3. 

The subcomponent entries in the specification are or­
dered such that all connections to the inputs of a sub­
component come from the outputs of sub-components 
that are earlier in the ordering. For example, Vlvl-Pos 
has its inputs coming from the earlier sub-component 
outputs: Act-ExLl, AcLRet. Figure 5 depicts the speci­
fication structure for a clamp set instance having 2 cylin­
ders: cyLl, cyL2. The figure shows the ordering of the 
sub-components according to the structured template 
specification of Figure 4. Each sub-component is rep­
resented as a box; the name of the sub-component is 
shown in italics; the type is in italics and bold; and the 
output is shown at the bottom of the box. The figure 
shows that a basic component (e.g., a cylinder) consists 
of multiple sub-components, which are the causal net­
work families. 

4 Model Generation 
Model generation requires two information sources: 
(a) the template library namely the struc and func re­
lations, and (b) the model specification in the form of a 
spec relation. Causal models can be generated in some 
predefined format such as symbolic or relational. Rela­
tional format represents the causal model by a relational 

Figure 5: Clamp structured template 

database where each relation corresponds to a causal net­
work family, . The name of the relation is 
the child variable, and the attributes of the rela­
tion are the family variables, The sym­
bolic format represents the equations for each family as a 
set of propositional logic sentences [Darwiche and Pearl, 
1994]. 

The model generation algorithm is given in Figure 6. 
The algorithm takes as input a library of basic compo­
nents, specification of a structured component instance, 
SCLabcl, an output model format, OutFormat, and an 
optional assumption list, AssumList. The algorithm out­
puts the causal model in the required format. The as-
sumption list consists of basic component types whose 
assumptions need to be included in the model. If no 
list is given then the model will be based on the default 
assumption ok for all basic component types. The algo­
rithm selects the specification tuples for the structured 
component instance (step 1) and computes for each tu­
ple s a causal relation r which is then output in the 
assigned format (steps 2-6). Step 3 selects the structure 
template tuple t struc having same structure id, Sid 
as tuple s. Step 4 determines the scheme for the causal 
relation. The step prefixes the sub-component label to 
the assumption, input and output variables. It caches 
the name of the output variable in the temporary out 
table. If there are connections then the input variables 
are replaced by the proper connections from the out ta­
ble. An assumption is included if the structure templates 
mentions an assumption and the sub-component type is 
a member of AssumList. Step 5 populates the causal 
relation with the function template tuples having same 
structure id, Sid as tuple t. The time and space com-
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plexity of the algorithm is 0(n-k), where n is the number 
of sub-components and k is the maximum number of tu­
ples in the functional relation of the causal families. 

Figure 6: Algorithm Create Causal Model 

5 Discussion and Related Work 
The present automated modeling approach has been im­
plemented using the structured query language (SQL) 
and a relational database environment. The approach is 
used to model the clamping fixtures in a real-life robot-
welding workcell. The fixtures consist of multiple sets of 
pins, dumps, locators, and clamps having pneumatic cir­
cuits similar to the one in Figure 3. One feature of our 
modeling approach is the explicit representation of as­
sumption attributes. This is essential for building mod­
els for diagnosis [El Fattah and Dechter, 1995]. The 
models are used to generate model-based diagnostic code 

to run on the programmable logic controller that controls 
the workcell [Provan et a/., 1998]. 

Previous work [Falkenhainer, 1991] proposed composi­
tional modeling, a framework for constructing adequate 
device models from a model fragment library which ex­
plicitly represents modeling assumptions. The frame-
work takes a domain theory, a structural description of 
a specific system, and a query about the system's behav­
ior and searches the space of possible models to compose 
the right model for the query. Recent work on causal 
explanation [Nayak, 1994] proposed the notion of causal 
approximation and showed that compositional model­
ing becomes tractable when all model fragment approx­
imations are causal approximations. Our approach does 
not represent modeling assumptions and each compo­
nent type is represented by exactly one model. This is 
not an inherent limitation in our approach and we plan 
to extend it by: (1) including modeling assumptions in 
the relational schema of the fragments, (2) incorporat­
ing compositional modeling constraints in the library in 
the form of SQL stored procedures. We can assign costs 
to various model fragments and modify our model con­
struction algorithm to compose minimum cost models. 

Specifying the model template library as a relational 
database enhances the maintenance and reconfiguration 
of models. The database encoding enables adaptability 
and scalability to new and unforeseen requirements and 
applications. New fields and record types can be added 
to the library database without affecting current auto­
mated modeling programs. Our database approach en­
hances the reliability of the modeling data through the 
use of proper integrity constraints, e.g., key integrity, 
domain integrity and referential integrity. 

The focus of previous work on automated modeling in 
bayesian networks has been primarily on the represen­
tation of probabilistic knowledge as network fragments 
and not on algorithms for constructing models from the 
knowledge base [Laskey and Mahoney, 1997]. A main 
contribution of our approach is the description of an 
efficient algorithm for automated generation of causal 
models. The algorithm can be stated declaratively in 
SQL, which enhances the expressiveness and naturalness 
of model-building operations. The ubiquity of database 
environments and industry standard SQL servers are two 
factors in favor of our database approach to automated 
modeling. 

An advantage of our approach is the ability to describe 
models with a generalized number of sub-components. 
For example, our clamp set model includes a variable 
number of clamps in the template which can then be 
instantiated for generating specific models. See Fig­
ure 4. The OOBN language [Roller and Pfeffer, 1997] 
cannot represent models with varying number. For ex­
ample, the OOBN approach cannot represent a model 
of a car accident with a variable number of passengers; 
instead it will represent a distinct model for each pos­
sible number of passengers [Roller and Pfeffer, 1997]. 
Also, the OOBN language is poorly equipped to rep­
resent global constraints on the sub-components. For 
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example, it cannot represent that a car contains three 
passengers, at least one of whom is a child [Roller and 
Pfeffer, 1997]. Our relational approach can express such 
global constraints as global consistency queries. The key 
to the expressive power of our approach is that struc­
tured model templates are represented as parameterized 
relational queries that can be instantiated to generate 
specific model instances. 

The present modeling framework can be extended 
to represent temporal causal networks [El Fattah and 
Provan, 1997]. This can be done by classifying causal 
relations in two classes: instantaneous and delayed and 
by including temporal data for delayed relations. The 
value of the output of a causal relation at any time t is 
determined by the values of the inputs at t if the relation 
is instantaneous and at t - d if the relation is delayed, 
where d > 0 is the time delay. 

Our structured template specification requires a causal 
ordering of the subcomponents, similar to those used to 
describe the operation of physical devices [Kuipers, 1984; 
Iwasaki and Simon, 1986; de Kleer and Brown, 1986]. 
Previous work on bond graphs has also developed meth-
ods for causal ordering from a compositional modeling 
perspective [El Fattah, 1996]. Causal ordering is orthog-
onal to our modeling approach. We assume that all basic 
components consist of causal constraints [Dechter and 
Pearl, 1991] with pre-defined input-output directional­
ity. The causal structure of our structured components 
is determined by the directed connections between its 
subcomponenets. If the connections and the basic con­
straints are non-directional then a causal ordering algo­
rithm can be employed and the directional constraints 
are then cached in our database library. 

6 Conclusions 
The paper presents a structured modeling language for 
automated modeling in causal networks. The language 
provides a formal method for specification of models 
based on a library of basic components. The library 
is represented by two relations: struc and func. The 
struc relation describes the templates for the structure 
of basic components, which determines the causal rela­
tion scheme and the associated causal network families. 
The func relation contains the value tuples for the causal 
relations of the basic components. The specification of 
models is done by instantiating structured component 
templates defined in SML. The information required for 
instantiating the templates can be acquired automati­
cally from the schematic representation, e.g. the wiring 
diagrams, of the modeled system. The modeling knowl­
edge is captured and maintained in the basic component 
library, which is then reused to generate causal mod­
els. The paper describes an efficient algorithm for the 
automated generation of causal models from specific-
tion. The approach has been implemented and success­
fully used to model an automated work-cell in a real-life 
digital manufacturing application. 
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