
Automatic Diagnosis of Student Programs
in Programming Learning Environments

Songwen Xu and Yam San Chee
School of Computing

National University of Singapore
Lower Kent Ridge Road, Singapore 119260
email: {xusw, cheeys}@comp.nus.edu.sg

Abstract
This paper describes a method to automate the
diagnosis of students' programming errors in
programming learning environments. In order to
recognize correct students' programs as well as
to identify errors in incorrect student programs,
programs are represented using an improved de­
pendence graph representation. The student pro­
gram is compared with a specimen program
(also called a model program) at the semantic
level after both are standardized by program
transformations. The method is implemented
using Smalltalk in SIPLeS-II, an automatic pro­
gram diagnosis system for Samlltalk program­
ming learning environments. The system has
been tested on approximately 330 student pro­
grams for various tasks. Experimental results
show that, using the method, semantic errors in a
student program can be identified rigorously and
safely. Semantics-preserving variations in a stu­
dent program can be eliminated or accommo­
dated. The tests also show that the system can
identify a wide range of errors as well as pro­
duce indications of the corrections needed. This
method is essential for the development of pro­
gramming learning environments. The tech­
niques of the improved program dependence
graph representation, program standardization
by transformations, and semantic level program
comparison are also useful in other research
fields including program understanding and
software maintenance.

1 Introduction
It is essential for a programming learning environment to be
able to determine whether a program written by a student is
coirect. The system should recognize correct student pro-
grams even they contain diverse variations. The system
should also be able to identify errors together with the cor­
rections needed if the student's program is incorrect.

Research on the automatic diagnosis of student programs
relates to many fields such as programming learning envi­
ronments [Ramadhan and du Boulay, 1992; Ueno,1995],
automatic program assessment [Thorbum and Rowe, 1997],

program analysis and understanding [Rich and Wills, 1990],
and software maintenance [Kozaczynski et al., 1992]. How­
ever, there are few prototypes of systems focusing on the
problem of automatic diagnosis of programming errors. Ex­
isting work includes Adam & Laurent [1980], Johnson &
Soloway [1985], and Murray [1988]. To our knowledge, no
existing system performs the automatic diagnosis of pro­
gramming errors entirely satisfactorily today due to the dif­
ficulty of the problem.

In this paper, we describe a method to automate the diag­
nosis of students' programming errors in programming
learning environments. Specimen programs (also called
model programs) are used as the input to the diagnosis of
student programming errors. The automatic diagnosis of
students' programming error, is achieved by semantically
comparing the student program with a specimen program
after both have been standardized by program transforma­
tions. Programs are represented as Abstract Syntax Trees
(ASTs) and Augumented Object-oriented Program Depend­
ence Graphs (AOPDGs).

The method has been implemented using Smalltalk in
SIPLeS~II, an automatic program diagnosis system for
Smalltalk programming learning environments. The system
has been tested on approximately 330 student programs for
various tasks. Experimental results show that, using the
method, semantic errors in a student program can be identi­
fied rigorously and safely. Semantics-preserving variations
in a student program can be either eliminated or accommo­
dated.

This method is essential for the development of pro­
gramming learning environments. The generality of the
method makes it applicable to other object-oriented pro­
gramming languages such as C++ and Java as well because
the AOPDG representation is applicable to general object-
oriented programming languages. It is also applicable to
non-objected-oriented programming languages where pro­
grams can be represented in ordinary augmented depend­
ence graphs. The techniques of (a) the improved program
dependence graph representation, (b) program standardiza­
tion by transformations, and (c) semantic level program
comparison, are also useful in other research fields including
program understanding and software maintenance.

1102 QUALITATIVE REASONING AND DIAGNOSIS

2 Automatic Diagnosis Procedure
In our approach, for a programming task, different model
programs are used to diagnose student programs that are
coded based on different algorithms. Student programs us­
ing the same algorithm are standardized and compared to
their corresponding model program. The automatic diagno­
sis procedure in SIPLeS-II is shown in Fig. 1.

Fig. 1. Automatic diagnosis procedure in SIPLeS-H

In SIPLeS-II, a student program (SP) and a model pro­
gram (MP) represented in source code are obtained. Pro­
grams are first processed by a parser and the parse trees of
the two programs are generated. Based on a set of Backus-
Naur Forms (BNF) for Smalltalk, the AST representations
of the two programs are produced, called SPTree and
MPTree. The AST representation is suitable for the program
analysis at the syntax level and for the program transforma­
tions [Loveman, 1977]. After that, basic transformations,
which do not require definition-use information (DU infor­
mation) are performed to standardize the SPTree and the
MPTree.

In order to calculate DU information, flow graphs for the
student program and the model program are produced based
on the SPTree and the MPTree. Several kinds of  vertices
are augmented to the flow graphs in order to combine them
with features of Static Single Assignment (SSA) form
where every use of a variable is only defined by one defini­
tion. The DU information for the two programs are calcu­
lated and used both in the advanced standardization trans­
formations and the generation of the data dependence sub­
graphs in AOPDG representations. We call the AOPDGs
for the SP and the MP SPGraph and MPGraph respectively.

The comparison between the SPGraph and the MPGraph
produces the following results. (1) A mapping between SP
statements and their semantics-equivalent MP statements.
We call this the equivalent map. (2) A mapping between SP

statements and MP statements that are semantics-equivalent
but textually different from the SP statements. We called
this the textual difference map. (3) A set that includes un­
matched statements in the SP and the MP. The set is called
the unmatched set.

Based on the comparison results, the SP statements in the
equivalent map and the textual difference map are recog­
nized as correct statements in the error-detection step. For
every unmatched SP statement, the most similar unmatched
MP statement is found and the differences between the two
statements are identified. Among these differences, those
that are actually legal variations are learned and eliminated
by the system. Unresolved differences are reported as errors
in the student program. Unmatched statements in the SP
with no unresolved difference identified are reported as
controlling errors in the diagnosis report.

3 An example
We use a running example to explain our approach. The
task description is given below.

Define a method ca l led taxiFeeWith: mi le
isBookingCase: bookingCase. If "bookingCase"
is t rue, a booking fee of $2.00 should be
charged, and the pr ice per mi le is $3.00;
otherwise, no booking fee is charged, and the
pr ice per mile is $2.50. The t o t a l t a x i fee
is calculated by mi le*pr ice + bookingFee.

A model program is the following, where names for the
method head and statements are given at the left-hand side.

XU AND CHEE 1103

3.1 Possible semantics-preserving varia­
tions in a student program

In programming learning environments, a program written
by a student may have many semantics-preserving variations
(SPVs) compared to a model program. In general, there are
12 possible types of variations. These are given below.
• SPV1: Different algorithms may be used. The student

program will be quite different from the model pro­
gram.

• SPV2: Different format of writing program at the source
code level. For example, more or less spaces, com­
ments, etc.

• SPV3: Different ways of writing message sequences.
For example, message sequences may be written in cas­
caded messages.

• SPV4: Different temporary variable declarations. Tem­
porary variables may be declared in a method tempo­
rary variable declaration or in a block temporary vari­
able declaration.

• SPV5: Different ways of writing algebraic expressions.
• SPV6: Different messages used for a same control

structure.
• SPV7: Different numbers of temporary variables or

block temporary variables are used.
• SPV8: There are may be some dead codes or some

statements for debugging purpose in the student pro­
gram.

• SPV9: Different statement orders.
• SPV10: Different parameter names in the method head

or different temporary variable names or different block
temporary variable names are used.

• SPV11: Different control structure used. The way of
computation in the SP is different from that in the MP.

• SPV12: Different ways of writing a statement. A com­
ponent in a statement in SP is different from that in a
statement in MP although the computational results of
the two components are the same.

3.2 Differences between the MP and the
SP

A human tutor may identify the following six differences
between the student program and the model program.
• Difference 1 (SPV 10): Different parameter names are

used in S Entry and SS0011.
• Difference2 (SPV 9): Different statement orders of

551121 and S1122 compared to that of MS1321 and
MS1322.

• Difference3 (SPV 2): Different source-code format in
551122 compared to that in MS1322. There is an extra
''''before the ''J'' in SS1122.

• Difference4 (SPV 11): Different values produced at the
point of SS0011. price and bookingFee are calculated out
of the if False: control structure in the MP, whereas they

are calculated inside the if False: control structure in the
SP. However, this is a semantics-preserving variation,
because at the point of SS0012, the values produced are
the same compared to the values produced in the MP at
the point of MS0014End.

• Difference5 (Error): Different computation carried out
in SS0012 compared to MS0014End. This is a semantic
variation, which is an error in the student program.

• Difference6 (SPV 7): Different numbers of temporary
variables are used in SS0012 and SS0013End. The dif­
ference changes the way computations are executed
without changing the values computed.

The challenge in the automatic diagnosis of students* pro­
gramming errors in this example rests in identifying Differ­
ences as an error in the student program while accommo­
dating other semantics-preserving changes in the student
program.

4 Program Representations
Three representations of programs are used in the diagnosis
procedure: source code representation, AST representation,
and AOPDG representation. The AST representation is
amenable for program transformation. The AOPDG repre­
sentation combines the strengths of OPDG representation
[McGregor et al., 1996] and the program representation
graph (PRG) [Yang et al. , 1992], It is used for the semantic
level comparison of programs [Horwitz,, 1990]. The merits
of the AOPDG representation include: (1) it eliminates
many variations existing at the source code level and AST
level, (2) it is indispensable for the program comparison
algorithm, and (3) it makes the comparison accommodate
semantics-preserving behavioral changes in the student pro­
gram compared to the model program.

4.1 AST representation
The generation of the abstract syntax tree for a program is
based on the Backus-Naur Forms (BNF) of the program­
ming language. An AST representation of a program is a
frame-based representation based on the parsing tree with
additional program analysis information added.

Representing programs in AST eliminates SPV2 in pro-
grams. In the running example, Difference3, the "." before
the "] " , is eliminated.

4.2 AOPDG representation
An AOPDG for a program is constructed based on the aug­
mented object-oriented flow graph (AOFG) of the program
and the DU information calculated. An AOFG is constructed
from the OFG of the program, and an OFG is an improved
flow graph. It accommodates the situation in pure object-
oriented programs that statement sequence may appear in a
block as a component of another statement. This is not al­
lowed in programs such as C++ and Java. In the OFG, there

1104 QUALITATIVE REASONING AND DIAGNOSIS

are additional flow edges coming out from a conditional
node besides the usual true/false branches.

To construct an AOFG from an OFG, a vertex labeled
''initial: x := initialM" is added at the beginning of the OFG
for each variable x that may be used before being defined. A
 vertex labeled ''enter x := x" is added inside each loop
statement immediately before the loop predicate for each
variable x that is defined within the loop, and it is live im­
mediately before the loop predicate (i.e., x may be used ei­
ther inside the loop, after the loop, or by the loop predicate
before being redefined). A vertex labeled '' exit x := x" is
added immediately after the loop for each variable that is
defined within the loop and is live after the loop.

An AOPDG consists of an augmented object-oriented
control dependence subgraph (AOCDS) and an augmented
object-oriented data dependence subgraph (AODDS). Simi­
lar to the construction of CDS and DDS, AOCDS for a pro­
gram is constructed based on AOFG, and AODDS is con­
structed by calculating DU information on AOFG.

In AOCDS representation, there are six types of vertices:
entry vertex, end vertex, statement vertex, initialization  vertex,
enter  vertex, and exit  vertex. The source of a control edge
in AOCDS is always either an entry vertex or a predicate
vertex (i.e. a conditional statement vertex).

There are five types of control dependence edges: control-
true, controlfalse, controlloop, entertrue, and enterfalse, and the
types of dependence edges are ftowl, flow2,..., flown, flowtrue,
flowtalse, fbwenter, flowexit, and flowwhile.

By representing the programs in AOPDGs, SPV9 in pro­
grams is eliminated. In the running example, the AOPDG
representations of the SP, SPGraph, are given in Fig. 2. Dif-
ference2 in the SP is eliminated by representing the SP and
the MP in AOPDGs.

5 Program Transformations
The basic standardization transformations performed are as
follows. (1) The statement separation standardizes cascaded
messages to a message sequence. (2) The temporary decla­
ration standardization makes all temporary variables to be
only defined in the method temporary variable declaration.
(3) The algebraic expression standardization applies a set of
rules of associativity, commutativity, and distributivity on an
algebraic expression until no more transformation rules can
be applied. (4) Control structure standardization standard­
izes all control structures into one of three structures—if-
True:ifFalse:, whileTrue:, and to:by:do:—by applying 14 trans­
formation rules such as receiver ifTrue: b1->receiver ifTrue: b1
if False: 0, where b1 is a block.

With basic standardization transformations, SPV3, SPV4,
SPV5, and SPV6 are eliminated in programs. In the running
example, algebraic expression standardization is applied on
both SPTree and MPTree, and control structure standardi­
zation is applied on the MPTree.

Advanced standardization transformations of forward
substitution and dead code removal [Muchnick, 1997] are
used to eliminate SPV7. In the running example, no ad­
vanced standardization transformation is applicable to the
MP. For the SP, SS0013End is changed by forward substitu­
tion and SS0012 is removed by dead code removal. Differ-
ence6 in the SP is eliminated. The SP standardized by ad­
vanced standardization transformations is given below; this
corresponds to the AOPDG in Fig.2.

Fig. 2.The AOPDG representation of the student program

6 Program Comparison
The comparison algorithm is based on the idea that two
statements with different operators, different operands, or
different controlling predicates will have difference behav­
iors. The vertices in the student AOPDG (i.e. the statements
in the student program) and the vertices in the model
AOPDG are classified into a same partition set in initial
partition. A stable coarsest refinement of the initial partition
is computed using a basic partitioning algorithm [Yang et
a/., 1992]. The idea in the basic partitioning algorithm is
that a set in a partition containing several vertices whose
predecessors belong to different sets in the partition must be
split into smaller sets according to the partitions of their
predecessors. The results of the comparison reveal the se­
mantic differences between the student program and the

XU AND CHEE 1105

Difference 1 is correctly identified as textual difference in
this step because taxiFeeWith:isBookingCase: ->(MEntry SEntry)
and ifTrue :if False: -> (MSO013 SS0011) are in the textual differ­
ence map. Difference4 is accommodated in the comparison
because 0.0->(MS0011 SS1124) and 2.5->(MS0012 SS1123)
are in the equivalent map. Differences is correctly identified
as a semantic error because +->(MS0014End) and
NEW3->(SS0012End) are in the unmatched map.

7 Error Detection
The results of the comparison report those statements in

the SP that have semantic errors. However, a programming
learning environment should be able to pinpoint the errors in
the incorrect statements and to provide corrections of the
errors. An error detection step is necessary. In this step,
SPV10 is eliminated by changing the model program ac­
cording to the textual difference map. The system pinpoints
errors in an incorrect student statement by comparing it with
the most similar model statement. The system also learns
equivalent expressions used in the SP and the MP to elimi­
nate SPV12. The diagnosis report for the running example is
given below.

8 Variations and Handling Strategies
All of the 12 semantics-preserving variations except SPV1
are handled by various strategies discussed above. For
SPV1, different model programs corresponding to different
algorithms are used to diagnose student programs that use
different algorithms. Hence, when a student program signifi­
cantly differs from all the model programs, a new model
program must be input by the teacher.

The semantic differences left in the student program are
identified as student programming errors in the diagnosis
report. It is possible that a reported error may actually be a
semantics-preserving variation because it is not included in
the 12 types of SPVs. However, in our approach, it is im­
possible to miss an error if one actually exists. Hence, the
approach described here is both safe and conservative.

In this paper, we proposed a new approach for automatic
diagnosis of students' programming errors in programming

1106 QUALITATIVE REASONING AND DIAGNOSIS

model program and accommodate the semantics-preserving
behavior changes between the two programs.

SPVI1 is accommodated in program comparison. In the
running example, the refined partition is given below, where
the names of the partition sets are shown on left. The
equivalent map, the textual difference map, and the un­
matched map are also given.

learning environments. In this approach, automatic diagno­
sis of student programs is achieved by comparing the stu­
dent program with the model program after both have been
standardized by program transformations. The approach is
implemented in a system called SlPLeS-II using Small-
talk/VisualWorks 2.5. It has been tested on approximately
330 student programs for 7 different programming tasks.
The test results are shown in Table 1.

From Table 1, we see that both the rate of correct pro­
gram diagnosis and the rate of correct statement diagnosis
are 100% after the system learns sufficient model programs.
From the figures shown in Table 1, the number of model
programs needed for diagnosing a method definition is in
the order of 3 to 5, and the number of the model programs
needed for diagnosing a class definition is 1 only.

Our experimental data also show that after the system has
processed about 25 student programs for a programming
task, the possibility of failing to diagnose errors due to the
lack of a model program is less than 10%. This means that
the number of model programs required becomes quite sta­
ble after about 25 student programs are processed. It is rea­
sonable to believe that, in practice, the number of model
programs required is small although in theory the number of
model programs needed is undecidable.

In summary, the new features of our approach are as fol­
lows:
• The AOPDG program representation reflects semantic

information of the program, eliminates many non-
semantic variations, and is amenable to transformations
and comparison.

• Programs are analyzed, standardized, and compared
rigorously at the semantic level. By "rigorously", we
mean that the results are guaranteed to be correct.

• Student programming errors are identified safely. By
"safely", we mean that the approach may regard an ac­
tually correct statement as an incorrect statement, but
the approach will never regard an actually incorrect
statement to be a correct statement. It is a conservative
approach.

• Correct programs are recognized by the system han­
dling all the possible variations.

• Errors in incorrect programs are identified and correc­
tions to the errors are also provided.

This method is essential for the development of pro­
gramming learning environments. The techniques of
(a)the improved program dependence graph representa­
tion—AOPDG, (b) program standardization by transfor­
mations, and (c) semantic level program comparison, are
also useful in other research fields including program
understanding and software maintenance.

Our future work includes refining the method and ap­
plying the approach to program understanding and soft­
ware maintenance.

References
[Adam and Laurent, 1980] A. Adam, and J. Laurent. A System to
Debug Student Programs. Artificial Intelligence, 15(1): 75-122,
1980.

[Ferrante et al, 1987] J. Ferrantc, K. Ottenstein, and J. Warren.
The Program Dependence Graph and its Use in Optimization.
ACM Transactions on Programming Languages, 9(3): 319—349,
1987.

[Horwitz, 1990] S. Horwitz. Identifying the Semantic and Textual
Differences between Two Versions of a Program. ACM SIGPLAN
Notices, 25(6):234-245, 1990.

[Johnson and Soioway, 1985] W.L. Johnson, and E. Soloway.
Proust: Knowledge-based Program Understanding. IEEE Transac­
tions on Software Engineering, SE-11(3): 11-19, 1985.

[Kozaczynski et ai, 1992] W. Kozaczynski, J. Ning, and A. Eng-
berts. Program Concept Recognition and Transformation. IEEE
Transactions on Software Engineering, 18(12): 1065-1075,1992.

[Loveman, 1977] D. Loveman. Program Improvement by Source
to Source Transformation. Journal of ACM, 24(1): 121-145, 1977.

[McGregor et ai, 1996] J.D. McGregor, B.A. Malloy, and R.L.
Siegmund. A Comprehensive Program Representation of Object-
oriented Software. Annals of Software Engineering, 2:51-91,
1996.

[Muchnick, 1997] S.S. Muchnick, Advanced Compiler Design and
Implementation. Morgan Kaufmann Publishers, 1997.

[Murray, 1988] W.R. Murray, Automatic Program Debugging for
Intelligent Tutoring Systems. Morgan Kaufmann Publishers, 1988.

[Ramadhan and du Boulay, 1992] H. Ramadhan, and B. du Bou-
lay. Programming Environment for Novices. E. Lemut, B. du
Boulay, and G. Dettori, eds., Cognitive Models and Intelligent
Environments for Learning Programming. Springer-Verlag, 1992.

[Rich and Wills, 1990] C. Rich, and L.M. Wills. Recognizing a
Program's Design: a Graph-parsing Approach. IEEE Software.
1:82-89,1990.

[Thorbum and Rowe, 1997] G. Thorburn, and G. Rowe. PASS: An
Automated System for Program Assessment. Computers and Edu-
cation, 29(4): 195-206, 1997.

[Ueno, 1995] H. Ueno. Concepts and Methodologies for Knowl­
edge-based Program Understanding-the ALPUS's Approach.
IEICE Transactions on Information and Systems, E78-D(9):l 108-
1117,1995.

[Yang et al, 1992] W. Yang, S. Horwitz, and T. Reps. A Program
Integration Algorithm that Accommodates Semantics-preserving
Transformations. ACM Transactions on Software Engineering and
Methodology, l(3):310-354, 1992.

XU AND CHEE 1107

