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Abstract 
This paper describes a method to automate the 
diagnosis of students' programming errors in 
programming learning environments. In order to 
recognize correct students' programs as well as 
to identify errors in incorrect student programs, 
programs are represented using an improved de­
pendence graph representation. The student pro­
gram is compared with a specimen program 
(also called a model program) at the semantic 
level after both are standardized by program 
transformations. The method is implemented 
using Smalltalk in SIPLeS-II, an automatic pro­
gram diagnosis system for Samlltalk program­
ming learning environments. The system has 
been tested on approximately 330 student pro­
grams for various tasks. Experimental results 
show that, using the method, semantic errors in a 
student program can be identified rigorously and 
safely. Semantics-preserving variations in a stu­
dent program can be eliminated or accommo­
dated. The tests also show that the system can 
identify a wide range of errors as well as pro­
duce indications of the corrections needed. This 
method is essential for the development of pro­
gramming learning environments. The tech­
niques of the improved program dependence 
graph representation, program standardization 
by transformations, and semantic level program 
comparison are also useful in other research 
fields including program understanding and 
software maintenance. 

1 Introduction 
It is essential for a programming learning environment to be 
able to determine whether a program written by a student is 
coirect. The system should recognize correct student pro-
grams even they contain diverse variations. The system 
should also be able to identify errors together with the cor­
rections needed if the student's program is incorrect. 

Research on the automatic diagnosis of student programs 
relates to many fields such as programming learning envi­
ronments [Ramadhan and du Boulay, 1992; Ueno,1995], 
automatic program assessment [Thorbum and Rowe, 1997], 

program analysis and understanding [Rich and Wills, 1990], 
and software maintenance [Kozaczynski et al., 1992]. How­
ever, there are few prototypes of systems focusing on the 
problem of automatic diagnosis of programming errors. Ex­
isting work includes Adam & Laurent [1980], Johnson & 
Soloway [1985], and Murray [1988]. To our knowledge, no 
existing system performs the automatic diagnosis of pro­
gramming errors entirely satisfactorily today due to the dif­
ficulty of the problem. 

In this paper, we describe a method to automate the diag­
nosis of students' programming errors in programming 
learning environments. Specimen programs (also called 
model programs) are used as the input to the diagnosis of 
student programming errors. The automatic diagnosis of 
students' programming error, is achieved by semantically 
comparing the student program with a specimen program 
after both have been standardized by program transforma­
tions. Programs are represented as Abstract Syntax Trees 
(ASTs) and Augumented Object-oriented Program Depend­
ence Graphs (AOPDGs). 

The method has been implemented using Smalltalk in 
SIPLeS~II, an automatic program diagnosis system for 
Smalltalk programming learning environments. The system 
has been tested on approximately 330 student programs for 
various tasks. Experimental results show that, using the 
method, semantic errors in a student program can be identi­
fied rigorously and safely. Semantics-preserving variations 
in a student program can be either eliminated or accommo­
dated. 

This method is essential for the development of pro­
gramming learning environments. The generality of the 
method makes it applicable to other object-oriented pro­
gramming languages such as C++ and Java as well because 
the AOPDG representation is applicable to general object-
oriented programming languages. It is also applicable to 
non-objected-oriented programming languages where pro­
grams can be represented in ordinary augmented depend­
ence graphs. The techniques of (a) the improved program 
dependence graph representation, (b) program standardiza­
tion by transformations, and (c) semantic level program 
comparison, are also useful in other research fields including 
program understanding and software maintenance. 
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2 Automatic Diagnosis Procedure 
In our approach, for a programming task, different model 
programs are used to diagnose student programs that are 
coded based on different algorithms. Student programs us­
ing the same algorithm are standardized and compared to 
their corresponding model program. The automatic diagno­
sis procedure in SIPLeS-II is shown in Fig. 1. 

Fig. 1. Automatic diagnosis procedure in SIPLeS-H 

In SIPLeS-II, a student program (SP) and a model pro­
gram (MP) represented in source code are obtained. Pro­
grams are first processed by a parser and the parse trees of 
the two programs are generated. Based on a set of Backus-
Naur Forms (BNF) for Smalltalk, the AST representations 
of the two programs are produced, called SPTree and 
MPTree. The AST representation is suitable for the program 
analysis at the syntax level and for the program transforma­
tions [Loveman, 1977]. After that, basic transformations, 
which do not require definition-use information (DU infor­
mation) are performed to standardize the SPTree and the 
MPTree. 

In order to calculate DU information, flow graphs for the 
student program and the model program are produced based 
on the SPTree and the MPTree. Several kinds of  vertices 
are augmented to the flow graphs in order to combine them 
with features of Static Single Assignment (SSA) form 
where every use of a variable is only defined by one defini­
tion. The DU information for the two programs are calcu­
lated and used both in the advanced standardization trans­
formations and the generation of the data dependence sub­
graphs in AOPDG representations. We call the AOPDGs 
for the SP and the MP SPGraph and MPGraph respectively. 

The comparison between the SPGraph and the MPGraph 
produces the following results. (1) A mapping between SP 
statements and their semantics-equivalent MP statements. 
We call this the equivalent map. (2) A mapping between SP 

statements and MP statements that are semantics-equivalent 
but textually different from the SP statements. We called 
this the textual difference map. (3) A set that includes un­
matched statements in the SP and the MP. The set is called 
the unmatched set. 

Based on the comparison results, the SP statements in the 
equivalent map and the textual difference map are recog­
nized as correct statements in the error-detection step. For 
every unmatched SP statement, the most similar unmatched 
MP statement is found and the differences between the two 
statements are identified. Among these differences, those 
that are actually legal variations are learned and eliminated 
by the system. Unresolved differences are reported as errors 
in the student program. Unmatched statements in the SP 
with no unresolved difference identified are reported as 
controlling errors in the diagnosis report. 

3 An example 
We use a running example to explain our approach. The 
task description is given below. 

Define a method ca l led taxiFeeWith: mi le 
isBookingCase: bookingCase. If "bookingCase" 
is t rue, a booking fee of $2.00 should be 
charged, and the pr ice per mi le is $3.00; 
otherwise, no booking fee is charged, and the 
pr ice per mile is $2.50. The t o t a l t a x i fee 
is calculated by mi le*pr ice + bookingFee. 

A model program is the following, where names for the 
method head and statements are given at the left-hand side. 
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3.1 Possible semantics-preserving varia­
tions in a student program 

In programming learning environments, a program written 
by a student may have many semantics-preserving variations 
(SPVs) compared to a model program. In general, there are 
12 possible types of variations. These are given below. 
• SPV1: Different algorithms may be used. The student 

program will be quite different from the model pro­
gram. 

• SPV2: Different format of writing program at the source 
code level. For example, more or less spaces, com­
ments, etc. 

• SPV3: Different ways of writing message sequences. 
For example, message sequences may be written in cas­
caded messages. 

• SPV4: Different temporary variable declarations. Tem­
porary variables may be declared in a method tempo­
rary variable declaration or in a block temporary vari­
able declaration. 

• SPV5: Different ways of writing algebraic expressions. 
• SPV6: Different messages used for a same control 

structure. 
• SPV7: Different numbers of temporary variables or 

block temporary variables are used. 
• SPV8: There are may be some dead codes or some 

statements for debugging purpose in the student pro­
gram. 

• SPV9: Different statement orders. 
• SPV10: Different parameter names in the method head 

or different temporary variable names or different block 
temporary variable names are used. 

• SPV11: Different control structure used. The way of 
computation in the SP is different from that in the MP. 

• SPV12: Different ways of writing a statement. A com­
ponent in a statement in SP is different from that in a 
statement in MP although the computational results of 
the two components are the same. 

3.2 Differences between the MP and the 
SP 

A human tutor may identify the following six differences 
between the student program and the model program. 
• Difference 1 (SPV 10): Different parameter names are 

used in S Entry and SS0011. 
• Difference2 (SPV 9): Different statement orders of 

551121 and S1122 compared to that of MS1321 and 
MS1322. 

• Difference3 (SPV 2): Different source-code format in 
551122 compared to that in MS1322. There is an extra 
''''before the ''J'' in SS1122. 

• Difference4 (SPV 11): Different values produced at the 
point of SS0011. price and bookingFee are calculated out 
of the if False: control structure in the MP, whereas they 

are calculated inside the if False: control structure in the 
SP. However, this is a semantics-preserving variation, 
because at the point of SS0012, the values produced are 
the same compared to the values produced in the MP at 
the point of MS0014End. 

• Difference5 (Error): Different computation carried out 
in SS0012 compared to MS0014End. This is a semantic 
variation, which is an error in the student program. 

• Difference6 (SPV 7): Different numbers of temporary 
variables are used in SS0012 and SS0013End. The dif­
ference changes the way computations are executed 
without changing the values computed. 

The challenge in the automatic diagnosis of students* pro­
gramming errors in this example rests in identifying Differ­
ences as an error in the student program while accommo­
dating other semantics-preserving changes in the student 
program. 

4 Program Representations 
Three representations of programs are used in the diagnosis 
procedure: source code representation, AST representation, 
and AOPDG representation. The AST representation is 
amenable for program transformation. The AOPDG repre­
sentation combines the strengths of OPDG representation 
[McGregor et al., 1996] and the program representation 
graph (PRG) [Yang et al. , 1992], It is used for the semantic 
level comparison of programs [Horwitz,, 1990]. The merits 
of the AOPDG representation include: (1) it eliminates 
many variations existing at the source code level and AST 
level, (2) it is indispensable for the program comparison 
algorithm, and (3) it makes the comparison accommodate 
semantics-preserving behavioral changes in the student pro­
gram compared to the model program. 

4.1 AST representation 
The generation of the abstract syntax tree for a program is 
based on the Backus-Naur Forms (BNF) of the program­
ming language. An AST representation of a program is a 
frame-based representation based on the parsing tree with 
additional program analysis information added. 

Representing programs in AST eliminates SPV2 in pro-
grams. In the running example, Difference3, the "." before 
the " ] " , is eliminated. 

4.2 AOPDG representation 
An AOPDG for a program is constructed based on the aug­
mented object-oriented flow graph (AOFG) of the program 
and the DU information calculated. An AOFG is constructed 
from the OFG of the program, and an OFG is an improved 
flow graph. It accommodates the situation in pure object-
oriented programs that statement sequence may appear in a 
block as a component of another statement. This is not al­
lowed in programs such as C++ and Java. In the OFG, there 
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are additional flow edges coming out from a conditional 
node besides the usual true/false branches. 

To construct an AOFG from an OFG, a vertex labeled 
''initial: x := initialM" is added at the beginning of the OFG 
for each variable x that may be used before being defined. A 
 vertex labeled ''enter x := x" is added inside each loop 
statement immediately before the loop predicate for each 
variable x that is defined within the loop, and it is live im­
mediately before the loop predicate (i.e., x may be used ei­
ther inside the loop, after the loop, or by the loop predicate 
before being redefined). A vertex labeled '' exit x := x" is 
added immediately after the loop for each variable that is 
defined within the loop and is live after the loop. 

An AOPDG consists of an augmented object-oriented 
control dependence subgraph (AOCDS) and an augmented 
object-oriented data dependence subgraph (AODDS). Simi­
lar to the construction of CDS and DDS, AOCDS for a pro­
gram is constructed based on AOFG, and AODDS is con­
structed by calculating DU information on AOFG. 

In AOCDS representation, there are six types of vertices: 
entry vertex, end vertex, statement vertex, initialization  vertex, 
enter  vertex, and exit  vertex. The source of a control edge 
in AOCDS is always either an entry vertex or a predicate 
vertex (i.e. a conditional statement vertex). 

There are five types of control dependence edges: control-
true, controlfalse, controlloop, entertrue, and enterfalse, and the 
types of dependence edges are ftowl, flow2,..., flown, flowtrue, 
flowtalse, fbwenter, flowexit, and flowwhile. 

By representing the programs in AOPDGs, SPV9 in pro­
grams is eliminated. In the running example, the AOPDG 
representations of the SP, SPGraph, are given in Fig. 2. Dif-
ference2 in the SP is eliminated by representing the SP and 
the MP in AOPDGs. 

5 Program Transformations 
The basic standardization transformations performed are as 
follows. (1) The statement separation standardizes cascaded 
messages to a message sequence. (2) The temporary decla­
ration standardization makes all temporary variables to be 
only defined in the method temporary variable declaration. 
(3) The algebraic expression standardization applies a set of 
rules of associativity, commutativity, and distributivity on an 
algebraic expression until no more transformation rules can 
be applied. (4) Control structure standardization standard­
izes all control structures into one of three structures—if-
True:ifFalse:, whileTrue:, and to:by:do:—by applying 14 trans­
formation rules such as receiver ifTrue: b1->receiver ifTrue: b1 
if False: 0, where b1 is a block. 

With basic standardization transformations, SPV3, SPV4, 
SPV5, and SPV6 are eliminated in programs. In the running 
example, algebraic expression standardization is applied on 
both SPTree and MPTree, and control structure standardi­
zation is applied on the MPTree. 

Advanced standardization transformations of forward 
substitution and dead code removal [Muchnick, 1997] are 
used to eliminate SPV7. In the running example, no ad­
vanced standardization transformation is applicable to the 
MP. For the SP, SS0013End is changed by forward substitu­
tion and SS0012 is removed by dead code removal. Differ-
ence6 in the SP is eliminated. The SP standardized by ad­
vanced standardization transformations is given below; this 
corresponds to the AOPDG in Fig.2. 

Fig. 2.The AOPDG representation of the student program 

6 Program Comparison 
The comparison algorithm is based on the idea that two 
statements with different operators, different operands, or 
different controlling predicates will have difference behav­
iors. The vertices in the student AOPDG (i.e. the statements 
in the student program) and the vertices in the model 
AOPDG are classified into a same partition set in initial 
partition. A stable coarsest refinement of the initial partition 
is computed using a basic partitioning algorithm [Yang et 
a/., 1992]. The idea in the basic partitioning algorithm is 
that a set in a partition containing several vertices whose 
predecessors belong to different sets in the partition must be 
split into smaller sets according to the partitions of their 
predecessors. The results of the comparison reveal the se­
mantic differences between the student program and the 
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Difference 1 is correctly identified as textual difference in 
this step because taxiFeeWith:isBookingCase: ->(MEntry SEntry) 
and ifTrue :if False: -> (MSO013 SS0011) are in the textual differ­
ence map. Difference4 is accommodated in the comparison 
because 0.0->(MS0011 SS1124) and 2.5->(MS0012 SS1123) 
are in the equivalent map. Differences is correctly identified 
as a semantic error because +->(MS0014End) and 
NEW3->(SS0012End) are in the unmatched map. 

7 Error Detection 
The results of the comparison report those statements in 

the SP that have semantic errors. However, a programming 
learning environment should be able to pinpoint the errors in 
the incorrect statements and to provide corrections of the 
errors. An error detection step is necessary. In this step, 
SPV10 is eliminated by changing the model program ac­
cording to the textual difference map. The system pinpoints 
errors in an incorrect student statement by comparing it with 
the most similar model statement. The system also learns 
equivalent expressions used in the SP and the MP to elimi­
nate SPV12. The diagnosis report for the running example is 
given below. 

8 Variations and Handling Strategies 
All of the 12 semantics-preserving variations except SPV1 
are handled by various strategies discussed above. For 
SPV1, different model programs corresponding to different 
algorithms are used to diagnose student programs that use 
different algorithms. Hence, when a student program signifi­
cantly differs from all the model programs, a new model 
program must be input by the teacher. 

The semantic differences left in the student program are 
identified as student programming errors in the diagnosis 
report. It is possible that a reported error may actually be a 
semantics-preserving variation because it is not included in 
the 12 types of SPVs. However, in our approach, it is im­
possible to miss an error if one actually exists. Hence, the 
approach described here is both safe and conservative. 

In this paper, we proposed a new approach for automatic 
diagnosis of students' programming errors in programming 
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equivalent map, the textual difference map, and the un­
matched map are also given. 



learning environments. In this approach, automatic diagno­
sis of student programs is achieved by comparing the stu­
dent program with the model program after both have been 
standardized by program transformations. The approach is 
implemented in a system called SlPLeS-II using Small-
talk/VisualWorks 2.5. It has been tested on approximately 
330 student programs for 7 different programming tasks. 
The test results are shown in Table 1. 

From Table 1, we see that both the rate of correct pro­
gram diagnosis and the rate of correct statement diagnosis 
are 100% after the system learns sufficient model programs. 
From the figures shown in Table 1, the number of model 
programs needed for diagnosing a method definition is in 
the order of 3 to 5, and the number of the model programs 
needed for diagnosing a class definition is 1 only. 

Our experimental data also show that after the system has 
processed about 25 student programs for a programming 
task, the possibility of failing to diagnose errors due to the 
lack of a model program is less than 10%. This means that 
the number of model programs required becomes quite sta­
ble after about 25 student programs are processed. It is rea­
sonable to believe that, in practice, the number of model 
programs required is small although in theory the number of 
model programs needed is undecidable. 

In summary, the new features of our approach are as fol­
lows: 
• The AOPDG program representation reflects semantic 

information of the program, eliminates many non-
semantic variations, and is amenable to transformations 
and comparison. 

• Programs are analyzed, standardized, and compared 
rigorously at the semantic level. By "rigorously", we 
mean that the results are guaranteed to be correct. 

• Student programming errors are identified safely. By 
"safely", we mean that the approach may regard an ac­
tually correct statement as an incorrect statement, but 
the approach will never regard an actually incorrect 
statement to be a correct statement. It is a conservative 
approach. 

• Correct programs are recognized by the system han­
dling all the possible variations. 

• Errors in incorrect programs are identified and correc­
tions to the errors are also provided. 

This method is essential for the development of pro­
gramming learning environments. The techniques of 
(a)the improved program dependence graph representa­
tion—AOPDG, (b) program standardization by transfor­
mations, and (c) semantic level program comparison, are 
also useful in other research fields including program 
understanding and software maintenance. 

Our future work includes refining the method and ap­
plying the approach to program understanding and soft­
ware maintenance. 
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